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Overview

Data Assimilation (DA):

Combining predictions made by a numerical model with ob-

served data to estimate the state of a system, x.

This is also called a filter: We filter the noisy observations to

estimate the state.

The statistical foundation is Bayes Theorem and the uncertainty

in the state of the system is represented by a probability distri-

bution.

PRIOR for x + observations → POSTERIOR for x

Usually the assimilation is done at many consecutive time points

and the practical implementation involves many shortcuts to ap-

proximate a posterior distribution.
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Why do this?

• Forecast the weather

• Forecast air quality

• Assimilating data for a given geophysical model may be one

of the few ways to test it.

• Solve an inverse problem such as estimating sources and sinks

of pollutant precursors.

Some key ideas:

• Represent a continuous distribution by a random sample.

• Only update state variables ”local” to the observations

• Use local regression to update the state variables

Contribution:

A Local-Local filter to handle non-Gaussian data assimilation

problems.
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40-Dimensional Lorenz System (Lorenz, 1996)

• Atmospheric system describing k values of an atmospheric

variable at k longitudes: x1, . . . , x40. (Subscript denotes spatial

location.)

• Equations: for j = 1, . . . , 40,

ẋj = xj−1(xj+1 − xj−2)− xj + F,

where F represents forcing.

• The equations contain quadratic nonlinearities mimicking ad-

vection:

u̇i ∝ ui
∂ui
∂x ≈ ui(ui′ − ui?)/δ.

• F is chosen so that phase space is bounded and the system

exhibits chaotic behavior.

• ’observe’ z2, z4, . . . , z40: yj = zj + εj, εj ∼ N(0, .52) and δt = .20.
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Atmospheric models 101

• A deterministic numerical model that describes the circula-

tion of the atmosphere.

• State of system, xt at time t defined on a 3-d grid of the the

atmosphere.

Community Atmospheric Model (CAM) 128×64×30 boxes (≈ 280km)

Rapid Update Cycle Model (RUC) is run on part of the earth but

on a 40km grid.

• Evolution of the model is governed by a discretizing the non-

linear equations of motion derived from fluid dynamics, usu-

ally deterministic.

xt+1 = g(xt)

g is nonlinear, complicated and fairly expensive to evaluate

Making a deterministic forecast:

x̂t+1 = g(x̂t)
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The Bayes cycle

p(xt), yt
Bayes−→ p(xt|yt)

g(.)−→ p(xt+1|yt) = p(xt+1), yt+1

Yesterday’s posterior becomes today’s prior!
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Standard Kalman Filter/ conditional multivariate nor-
mal distributions

This is easy in closed form if everything is multivariate normal and

linear.

Observation Model

y = Hxt + e

with

e ∼MN(0, R)

Prior

xt ∼MN(µt,Σ)

Kalman update for state

x̂t = E(xt|y) = µt + ΣHT (HΣHT +R)−1(y −Hµt)

Kalman update for covariance

V AR(xt|y) = P t
a = Σ−HT (HΣHT +R)−1H
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Forecast mean:

Assume that g is linear

x̂t+1 = Gx̂t

Forecast covariance:

P t+1
f,t = GP t

aG
t

A qualifier problem:

These are just results based on the conditional distributions

for the multivariate normal because everything is assumed to be

Gaussian or a linear transformation.
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Problems

• x ≈ 106 − 107 and y ≈ 105 − 106

So even with closed form expressions the computations may

not be feasible because the linear systems are huge.

• Finding

p(xt+1|yt) = p(g(xt)|yt)
from

p(xt|yt)
is the mother of all change of variable problems!

• Pf can not be stored or directly propagated.
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Ensembles

Each distribution is represented by a random sample of the states

called an ensemble.

In place of

π(xt|yt) → π(g(xt)|yt)
propagate each ensemble member.

xt,1

xt,2
...

xt,M

g →

g(xt,1) = xt+1,1

g(xt,2) = xt+1,2
...

g(xt,M) = xt+1,M

By elementary probability:

{xt,j} is a random sample from p(xt|yt) implies {xt+1,j} will be a

random sample from p(xt+1|yt)
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Ensemble Kalman filter (EKF)

• If the observations have independent errors, the observations

can be assimilated sequentially to get the same result.

• Wherever a covariance matrix or mean vector appears replace

these by the sample quantities from the ensemble. The covari-

ance matrix is tapered to be a better estimate and inflated

to make the filter stable.

• Sampling to get the new ensemble for posterior is computed

in a very similar way as the standard update (perturbed ob-

servation method).
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Ensemble Kalman filter (EKF) (continued)

The first point suggests a double loop algorithm:

Assimilating at a given time:

Loop over observations {y1, y2, ...yn}
Loop over ensemble members: {x1,x2, ...,xM}

Update ensemble member xi based on yj
Modify components of xi “close” to yj

A key aspect is that the observation only changes part of the

state vector that is ”close” to it due to the covariance tapering.

Given an observation in Washington,DC update a Baltimore grid

point ...

but a grid point near Moscow is unchanged.
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Tapering a covariance

Suppose the variables xi and xj are separated by physical distance

dij and ψ(d) is a positive definite function, with compact support.

Use

Σ̂ijψ(dij)

It is an open question how/why the approximations and tuning

parameters in the EKF change its statistical performance.
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BTW:

By tapering with a compactly supported kernel we ( Furrer,

Genton and Nychka (2004) ) can accurately ”krig” 5000 points

and evaluate the surface on a 1000× 1000 grid in ≈ 15 seconds

... in R!

This taper method will scale linearly with the number of observations.

17



Non-Gaussian distributions

Given that g is nonlinear one can not expect Gaussian distri-

butions.

Represent the prior distributions as mixtures of multivariate nor-

mals

p(xt) =
∑k

i=1 piMN(µi,Pi)

The posterior distribution is also a mixture:

p(xt|yt) =
∑k

i=1 p
?
iMN(µ?

i ,P
?
i )

Ensembles as a mixture distribution:

Each ensemble member is the center of a mixture where the

covariance is the sample covariance of its nearest neighbors.

From the form for the posterior mean using ensembles the pos-

terior probabilities look like weights based on a normal kernel.

The use of neighborhoods to find the covariance results in a local

linear regression.
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A non-Gaussian update

Observe X2 with error and wish to update X1 and X3.
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Local-local filter

Curse of dimensionality:

Even 40 dimensions is too large a state space to apply the mix-

ture ensemble filter directly.

In 40 dimensions every state vector is far away from every other!

Basic idea is to only use the mixture model for components of

the state vector close to the observations. Otherwise use the

usual EKF for updating components.

For example

Given an observation of Y2 consider non-Gaussian model to up-

date

(X1, X2, X3)

Complement, (X4, ..., X40) is updated using the Gaussian EKF.
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LOCAL-LOCAL

LOCAL in physical space:

Only update components close to the observation location.

LOCAL in state space:

only use ensemble members that are ”close” to the observed

value.

We have worked on this for two years and in the process rediscovered non-

parametric regression kernel smoothing!

The reason this was not obvious is because it is the numerical

model that is generating the approximate regression relationship

through the ensemble members. Also we got hung up on the

Bayesian thing ...
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Summary

Results

• We have some evidence that the practical version of the EKF

actually handles non-Gaussian distributions better than an

exact Kalman filter.

• The Local-Local filter clearly out performs EKF in a simple

3-d system especially in places where g is very nonlinear.

• A version of the L-L filter also performs better than EKF

with about 5% improvement (without any extensive tuning)

for the 40 variable model.

Some Future Work

• Adaptive estimates of tuning parameters

• Robust estimators
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• Exploring more realistic test systems, e.g. primitive equation

models for a dry atmosphere.
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