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Abstract

The application of statistical techniques to environmental problems often involves a tradeoff between

simple methods that are easily implemented and interpreted and more complicated methods that may

have smaller errors. In this paper we compare simple and complicated statistical models for

interpolating the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality

Standard (NAAQS) for ground-level ozone off of a network of monitoring sites. A recent change in the

NAAQS for ground-level ozone is based on the fourth-highest value from the daily sequence of

maximum 8-hour average ozone (FHDA). In particular, two models are given special attention: a daily

model that uses an autoregressive model to obtain many Monte Carlo samples of FHDA and a seasonal

model that assumes the FHDA is Gaussian and employs standard statistical techniques to model the

FHDA. We find that the daily model is superior enough to the seasonal model to warrant the added

complexity. We also suggest other ways to model FHDA.

1 Introduction

The application of statistical techniques to environmental problems often involves a tradeoff

between simple methods that are easily implemented and interpreted and more complicated

methods that may have smaller errors. In this paper we compare simple and complicated

statistical models for interpolating the U.S. Environmental Protection Agency (EPA) National

Ambient Air Quality Standard (NAAQS) for ground-level ozone off of a network of monitoring

sites. A recent change in the NAAQS for ground-level ozone is based on the fourth-highest value

from the daily sequence of maximum 8-hour average ozone (FHDA). The standard requires that

the average over three ozone seasons be below 80 parts per billion (ppb) in order for a location

to be in attainment. Understanding the spatial distribution for the FHDA for a given ozone

season presents a new statistical problem for infering regions of attainment or nonattainment

because it is not clear that the FHDA field (a field of order statistics) is Gaussian–a fundamental
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assumption of most standard spatial statistical techniques. This problem is addressed in this

work.

Although the use of spatial statistics for interpreting air quality measurements would not

be disputed by a statistical audience, surprisingly the use of monitoring data in a regulatory

context is often limited to point locations. Accordingly, Holland et al. [6] argue for the introduc-

tion of modern statistical methods to understand the spatial and temporal extent of pollution

fields based on monitoring data. Given the range of statistical backgrounds associated with

the regulatory community, it is appropriate to propose statistical methods that are simple and

understandable to a broad group when such methods provide an accurate and defensible analy-

sis. In particular, for interpreting the FHDA standard, it is useful to ascertain the feasibility of

approximate statistical methods that treat the FHDA statistics directly. From this perspective

we compare two statistical models. The first, a fairly complex model, uses a spatial AR(1)

model for daily ozone measurements and samples the FHDA field conditional on the data for

the entire season. This approach will be referred to as the daily model. The second model,

referred to the seasonal model, is a geostatistical model that predicts the FHDA field from the

network values using standard best linear unbiased estimation, or kriging (see Cressie [1] or

Stein [9] for more details on kriging). This seasonal model is similar to the model proposed

by Fuentes [2], except that the region of interest here is much smaller and so can be assumed

to be spatially and temporally stationary. A third approach that will be used as a benchmark

estimates the FHDA field by way of a thin plate spline (see Green and Silverman [4] or Hastie

and Tibshirani [5] for details on thin plate splines). This last method is generic and uses the

least amount of information concerning the actual air quality context.

The paper is organized as follows. Section 2 describes the ozone monitoring data. Section 3

describes how the ozone data is standardized and presents the daily and seasonal models.

Section 4 presents a comparison of these models along with thin plate spline interpolation as

a benchmark. One interesting aspect is that the daily model implies a reasonable covariance

function for the FHDA field, and this choice is included in the results for the seasonal approach.

Our results suggest that the daily model is worth the extra effort and complexity. Section 5

discusses the results and suggests some future research.



Figure 1: Network of ozone monitoring locations with RTP region (dashed rectangle (with

15× 15 grid)). The numbers represent the fourth-highest value for 1997.

2 Ozone Monitoring Data

Data used for these analyses consist of maximum daily 8-hour average ozone levels measured

in parts per billion (ppb) for the 72 monitoring stations in a study region centered on North

Carolina (Figure 1). The dashed rectangle in Figure 1 shows a region around the Research

Triangle Park (RTP), N.C., in which the models will be interpolated onto a 15×15 grid. These

data are a subset of the 513 stations covering the eastern United States used by Fuentes [2] and

can be obtained from the web through www.cgd.ucar.edu/stats/Data.

Partly because of the high cost of operation, ozone monitoring occurs only during the hotter

months when weather conditions are most conducive to forming ozone; this “ozone season”

essentially spans the months from April through October. For these analyses, the data cover

five seasons (1995-1999), with each season consisting of 184 days. Summary statistics for the



Table 1: Observed fourth-highest daily 8-hour maximum (FHDA) ozone.

1995 1996 1997 1998 1999

No. of stations 66 69 72 71 70

mean 85.68 83.12 87.64 95.87 92.70

Std.Dev. 7.527 6.736 7.495 5.974 7.864

min 67 70 68 80 67

Q1 81 80 82 92 88

median 86 82 87 96 93

Q3 91 87 93 100 98

max 102 101 105 110 108

Stations with missing values 6 3 0 1 2

FHDA statistics for the stations in the study region over this period are given in Table 1.

There are some missing values and; in particular, there are seasons where some stations

have no values reported. The fact that 1995 has six missing values means that there were

six stations that had less than four observations for that season. The 1997 season is the only

season where all of the stations have a nearly compete record; of the 13,248 data points, only

189 total data points across all of the 72 stations are missing for this season. In particular,

the stations with the most missing values for this season have 50, 45, 25 and 16 missing values

respectively, and 57 of the stations have no missing values at all. Given that the data record is

nearly complete, our analysis will not handle missing observations explicitly, and no effort will

be made to inpute the few missing measurements.

3 Daily model for ozone and a seasonal model for FHDA

Ideally one would like to know the complete multivariate distribution of the FHDA field. This

would enable us to not only interpolate to values off of the monitoring network, but to better

understand the error associated with such an interpolation. Because the FHDA statistic rep-

resents an order statistic based on a serially correlated sample, it is difficult to derive a form

for its distribution. As an alternative, we suggest a model for daily ozone measurements and

then infer the distribution of the FHDA through aggregating the daily model over the season.



The daily model uses a spatial AR(1) model to model the daily maximum 8-hour averages and

then uses Monte Carlo sampling to approximate the conditional distribution of the FHDA field

given the observed network data. One important practical issue is whether this constructive

and rigorous approach has any benefits over a simple spatial interpolation of the FHDA sample

statistics. We divide the presentation of the model into a preliminary standardization, autore-

gressive time series for individual stations and spatial model for the innovations. The last part

of this section describes the algorithm to simulate a process from the daily model.

3.1 Standardizing the Data

Ozone can have a seasonal effect even during the relatively short ozone season described in

Section 2. It is useful to account for this seasonality as a fixed effect before modeling space-

time structure.

Let O(x, t) denote the maximum 8-hour average ozone at location x and day t. The following

standardization is used for the daily maximum 8-hour ozone measurement

O(x, t) = µ(x, t) + σ(x)u(x, t) (1)

and we assume that u(x, t) for any given location and time has mean zero and variance 1. Note

that µ is a function of both time and space in order to remove any seasonality.

The seasonal means are smoothed over space using a single value decomposition approach.

Them individual station time series are regressed on an intercept and three sine and cosine pairs

with periods 365, 365/2 and 365/3 and let B denote the m× p matrix of regression coefficients

across all the stations. Next, B can be decomposed as B = UDVT where U and V are

orthogonal matrices and D is a diagonal matrix of the singular values of B. By setting some of

the singular values of D to zero (call the resulting matrix D∗), the multiplication B∗ = UD∗VT

yields a matrix of the original regression parameters, but having reduced the variability across

stations. For the analyses here, the first three principle components were retained (i.e., the last

four singular values were set to zero); and, in this case, results smooth the estimated parameters

over space. Finally, the estimates of µ and σ based on station locations are extrapolated to

unobserved locations using thin plate spline interpolation.



3.2 Daily Model

Given the standardized process, u(x, t), we consider a spatial AR(1) model.

u(x, t) = ρ(x)u(x, t− 1) + ε(x, t) (2)

The shocks, ε(x, t), are assumed to be independent over time and be a mean zero Gaussian

process over space with spatial covariance

C(ε(x, t), ε(x′, t)) = k(x,x′) (3)

Here, the covariance (3) is considered to be isotropic and stationary so that k(x,x′) = ψ(|x−x′|).

For this application the great circle distance is used as a metric to measure separation between

locations. Equation (2) implies a space-time covariance function

C(u(x, t), u(x′, t− τ)) =
(ρ(x)ρ(x′))τψ(|x− x′|)

1− ρ(x)ρ(x′)
, τ ≥ 0 (4)

Thus, if the AR(1) parameters are not constant over space, then (i) the spatial process u(x, t) is

not stationary even if the shocks are stationary in space and (ii) covariance (4) is not space-time

separable. Ma [7] further shows that there are circumstances where Equation (4) is not positive

(or even nonnegative) definite. This is not a concern for the daily model presented here because

this covariance is not used and we sample directly from the daily model (2).

3.3 Sampling the distribution of FHDA conditioned by the monitoring data

Under the assumption that all the components of the data model are known, there is a straight-

forward algorithm for sampling the FHDA field conditional on the observed data. This algo-

rithm is quite efficient and uses the autoregressive structure over time to recursively generate

the daily process. Let x0 be a location where ozone is unobserved. A spatial prediction for the

FHDA at this location involves two steps. One first obtains a sample of the time series of daily

ozone measurements at this location conditional on the observed data (for all locations and all

times). Next one calculates the FHDA for this series. By elementary probability, the resulting

FHDA statistics will be a sample of the FHDA field at x0 conditional on the data. Repeating

these two steps, one can generate a random sample that approximates the FHDA conditional

distribution; and, of course, the sample mean is a point estimate for the conditional expectation

of the FHDA at x0. The conditional variance can be used as a measure of uncertainty.



Sampling from the conditional distribution of the ozone is simplified by the autoregressive

structure over time and the restriction of spatial dependence to the shocks in the AR(1) in-

novation. In this section we will assume that all parameters (µ(x, t), σ(x), ρ(x), ψ) are fixed

quantities and known, but more will be said about this assumption in Section 5. Also let

{xk, for 1 ≤ k ≤ m} be the station locations. Based on these assumptions it is sufficient to find

the conditional distribution of {u(x0, t), 1 ≤ t ≤ T} given {u(xk, t), 1 ≤ t ≤ T, and 1 ≤ k ≤ m}

because the standardized random variables can always be transformed back to the raw scale

of the measurements. Moreover, knowledge of {u(x, t), 1 ≤ t ≤ T}, for any x is equiva-

lent, through the autoregressive relationship, to {u(x, 1), ε(x, t), 2 ≤ t ≤ T}. Recall that

the AR shocks are temporally independent so that the conditional distribution for the ozone

fields at x0 can be found based on the much simpler conditional distribution of ε(x0, t) given

{ε(xk, t), 1 ≤ k ≤ m}. Thus we can easily generate a conditional ozone field by considering the

conditional field of the AR(1) shocks and then transform these results to the original scale of

measurements.

The algorithm for conditional sampling of the FHDA field is now summarized below.

1. Initialize the time series by sampling [u(x0, 1)|u(xk, 1), 1 ≤ k ≤ m]

2. For t in 2 to T sample the spatial shocks from [ε(x0, t)|{ε(xk, t), 1 ≤ k ≤ m}].

3. Accumulate the sampled shocks and initial values using the autoregressive relationship

(2) to obtain a conditional realization of the standardized process u(x0, t).

4. Unstandardized and compute the FHDA at x0 based on this series to obtain the ozone

series in the raw scale.

Note that the shocks at a station location are based on the actual daily observations and

so the sample is tied explicitly to the data. If in fact x0 is at a station location and the

spatial process has a zero nugget variance, then the resulting conditional sample will just be

the observed data. Thus the “conditional realization of the FHDA field” will be the FHDA

statistic for that station’s measurement. It should be noted that this algorithm works because

we assume complete observations at the station locations. It would be more complicated if

observations were sparse over time. For these data there are no instances where there are

missing observations at a given time point at every station. Therefore, when shocks are sampled



from the conditional distribution, locations that have missing values are simply not used in the

calculation for that time point. Although it is possible to sample in Step 1 exactly, we have

found that sampling from a geostatistical model fit to the standardized fields is adequate.

In this algorithm it is straightforward to replace the conditional sampling of a single location

with a vector, or grid of locations. Thus one obtains a conditional field with spatial and

temporal dependence among the grid points consistent with the space-time model. In addition,

this algorithm can be modified simply to simulate a space-time process that follows this model.

In this case one does not condition on observed data, and one substitutes an unconditional

sample for the conditional sample of the shocks at Step 2. This unconditional sampling is used

in the next section to identify an approximate Gaussian model for the FHDA field.

3.4 Seasonal Model

For the seasonal model we posit that the FHDA field is approximately Gaussian distributed, so

the main modeling issue is to derive a suitable covariance function. The Gaussian assumption

can be justified by simulations of bivariate data. Based on the results of other research (see

Gilleland et al [3]), the joint distribution of the fourth-highest order statistics for bivariate sam-

ples of size 184 were found to be again approximately bivariate normal. In the next section we

present results based on a standard geostatistical technique for estimating a stationary covari-

ance from the FHDA values. However, with access to a daily model, one can also compute a

covariance model for the FHDA field by Monte Carlo simulation. One generates many realiza-

tions of the space-time ozone process and accumulates independent realizations of the FHDA

field. One then can use the sample covariances among the FHDA realizations to identify and

fit a covariance function. This is a purely computational exercise; and by increasing the Monte

Carlo sample size, one can obtain arbitrarily accurate estimates of the second moments for the

FHDA spatial process implied by the daily model.

4 Results

4.1 Daily Model Results

Individual autoregressive models were fit by maximum likelihood to the standardized station

data to estimate the parameters of the AR(1) parameter; an AR(2) model was also tried, but



did not show significant improvement to warrant the added complexity. The AR(1) parameters

vary across stations and so suggest that the daily ozone observations are nonstationary even in

this small homogeneous region. To assess stationarity of the AR shocks, a local correlogram is

fit for each station location using an exponential covariance function. The nugget variance and

the range parameters do not vary significantly across the domain, and each has a small range

and standard deviation; from 0.83 to 1.03 ppb (0.04 ppb) for the nugget and 164 to 328 miles (33

miles)–suggesting that the spatial shocks field can be approximated by a stationary process.

The general shape of the empirical correlations suggested fitting a mixture of exponentials

function to these correlations.

ψ(h) = α exp(−h/θ1) + (1− α) exp(−h/θ2) (5)

where θ1 represents short range correlation and θ2 the long range correlation and h is the

great circle distance between two locations. Correlation model (5) allows the spatial field to be

interpreted as the sum of two independent spatial processes with possibly different correlation

scales without changing the smoothness of ψ zero, but the shape will be modified for short

distances in a similar fashion to the Matérn family. The reader should note that unlike a

geostatistical analysis for a single field, the correlations associated with the shocks are statistics

based on a large (n > 500) sample size, which enables enough accuracy to facilitate modeling

detailed features such as the mixture component. Figure 2 plots the fitted correlogram for the

spatial shocks as a function of distance of separation.

The fitted function is shown as the solid line in Figure 2. The shocks are tightly correlated

within a distance of about 100 miles and are still somewhat correlated as far as about 200 miles.

The fitted parameter estimates are α̂ ≈ 0.13 (0.017), θ̂1 ≈ 11 miles (3.373 miles) and θ̂2 ≈ 272

miles (16.887 miles) with bootstrap standard errors in parentheses.

The fitted model was used to generate conditional fields for the FHDA for each year and

the rectangular RTP subregion in Figure 1. One thousand Monte Carlo realizations were used

to approximate the distribution. Standard errors of prediction are summarized in Table 4, and

on average these prediction errors are about 3 ppb. Results are similar for other years.



Figure 2: Fitted empirical correlation functions for original daily maximum 8-hour average

ozone measurements, the standardized daily values, the spatial AR(1) shocks and unconditional

(seasonal model) and conditional (daily model) simulations of the FHDA field.



4.2 Seasonal Model Results

The seasonal approach applies a spatial model directly to the FHDA values, so a key step is

to estimate a covariance function for this field. Empirical variograms for each of the 5 seasons

indicate that almost all of the spatial dependence in the FHDA field appears to be limited to

a very short range less than 100 miles. A mixture of exponentials variogram

γ(h) = σ2(1− α exp(−h/θ1)− (1− α) exp(−h/θ2))

was fit using all five years of data with parameter estimates: σ̂ ≈ 7.37 ppb, α̂ ≈ 0.38, θ̂1 ≈ 0.62

miles and θ̂2 ≈ 48.61 miles and subsequently converted to a covariance function, ψv. Standard

errors of prediction for using this model for the RTP grid are summarized in Table 4. On

average, these prediction errors are about 6 ppb, slightly greater than that of the daily model

approach.

For comparison to estimating the covariance from the FHDA variogram, a covariance func-

tion was estimated from unconditional simulations of the daily model. Based on a Monte Carlo

sample of 600 FHDA simulated fields, a mixture of exponentials (5) was fit to the empirical

correlations, call it ψm. The estimated parameters are α̂ ≈ 0.51, θ̂1 ≈ 8.66 and θ̂2 ≈ 128.76.

The spatial prediction errors using this covariance are summarized in Table 4 and are, on aver-

age, 5.6 ppb, which is comparable to the seasonal model prediction errors using ψv. Regardless

of covariance used, the seasonal model is fit using the fields package [8] in R.

The thin plate spline model was fit (also using the fields package [8] in R) withm = 2 and the

smoothing parameter chosen by generalized cross-validation. A thin plate spline of this order

includes a linear spatial drift and is the limiting case of a Matern covariance function as the

range becomes large. Moreover, the smoothing parameter for the spline is directly equivalent to

estimating the nugget variance. Standard errors of prediction (Table 4) are, on average, about

3 ppb, considerably greater than all of the other models.

4.3 Model Comparison

Table 2 compares the mean predicted FHDA between the models. The root mean squared

error for the fields is with respect to the daily model predictions and indicates that the differences

in the spatial predictions among the three methods are consistently small across all years. The



Table 2: RMSE of mean predicted FHDA (ppb) between the daily model approach and the

seasonal and thin plate spline approaches.

Thin Plate Seasonal

Spline Model (ψm)

1995 3.54 2.66

1996 3.01 2.24

1997 2.82 2.39

1998 2.55 2.20

1999 6.07 1.78

relatively large value between the daily model and the thin plate spline may be caused by higher

variability of FHDA for this year.

Daily model standard errors (Table 4) are generally smaller than the seasonal models; par-

ticularly away from station locations. The spline method tends to have similar prediction stan-

dard errors as the daily model, but there is less prediction precision away from the monitoring

network than the seasonal model.

Model-based standard errors can either be realiable or misleading depending on the ade-

quacy of the spatial model. It is also of interest to use cross-validation (CV) to evaluate the

average prediction error of these methods. The standard leave-one-out procedure was applied

to each monitoring location and method, and Table 3 reports for each year the CV RMSE for

the differences between the predicted FHDA and the actual station values. The seasonal model

CV RMSE for either choice of covariance and thin plate spline are very similar for each year.

The daily model CV RMSE is consistently lower than the other models, but only slightly.

5 Discussion

Although care is needed in generalizing results from a specific data set to other cases, this

work has shown a preference to analyze the FHDA standard using a daily model for ozone and

then aggregating over the season to infer the FHDA field. The results for the North Carolina

study region show that the seasonal model is reasonable, but the daily model is generally more

accurate, based on the CV measures of RMSE in addition to having lower model standard



Table 3: Leave-one-out cross-validation RMSE (ppb) and root median squared error (ppb) (in

parentheses) for predicting FHDA.

Thin Plate Seasonal Seasonal Daily

Spline Model (ψv) Model (ψm) Model

1995 5.34 (2.74) 5.19 (2.65) 5.33 (2.92) 4.74 (2.68)

1996 5.61 (3.46) 5.51 (3.32) 5.68 (4.31) 4.82 (3.20)

1997 6.27 (4.37) 6.03 (3.93) 6.05 (3.75) 4.61 (2.65)

1998 5.00 (3.79) 4.98 (3.87) 4.93 (3.59) 3.22 (2.57)

1999 6.25 (4.76) 6.47 (3.97) 6.30 (3.62) 4.93 (2.16)

Table 4: Mean standard errors of prediction (ppb).

Thin Plate Seasonal Seasonal Daily

Spline Model (ψv) Model (ψm) Model

1995 2.23 5.68 5.27 2.67

1996 2.49 5.96 5.90 2.87

1997 2.91 6.41 6.02 2.98

1998 2.75 5.35 4.85 2.93

1999 4.34 6.76 6.22 2.97



errors of prediction.

Conceptually, the daily model has advantages in using fairly simple statistical components

on a daily scale that can produce relatively complicated seasonal statistics. For example, as

long as the AR(1) shocks are stationary over space, the entire daily model can be fit using

standard geostatistical and regression methods even if the original field (in this case standardized

maximum 8-hour ozone levels) is nonstationary. We believe that part of the success of the daily

model is that much of the spatial correlation and the nonstationarity of the raw measurements

can be accounted for by standardizing the process and building in a temporal evolution. While

the seasonal model is much simpler and easier to employ in general, it can actually be more

complicated if the FHDA field is not stationary.

The lack of long-range correlation structure in the FHDA field simulated by the daily model

approach (conditional on the data) and reaffirmed by empirical variograms of the observed

FHDA field suggest that standard spatial techniques may not be very effective at predicting

the FHDA at locations relatively far from any monitoring station. Figure 2 contrasts the

different correlation scales among different transformations of the ozone field, and we note the

marked difference between daily fields and the seasonal FHDA. This is further justified by

the greater standard errors of prediction found by both the seasonal model and the thin plate

spline at locations away from the monitoring network. Additionally, the apparent correlation

structure in the FHDA field, found from using the daily model approach without conditioning

on the data, may be an artifact of the model. One source of model bias may be the lack of a

more heavy tail distribution associated with the AR shocks.

The data used here are from a relatively small, homogeneous subset of a much larger network

of monitoring stations, and the more practical application of our work is to extend the analysis

to the Eastern United States. Stationarity for this field cannot be assumed (see, for example,

Fuentes [2]) and, indeed, some heterogeneity might be modeled using additional covariates.

Generally, meteorological data, such as temperature, might be difficult to use for the daily

model approach because at any time point the temperatures at two locations will vary and may

or may not be similar. Also, determining meteorological covariates where there are not weather

stations is problematic. Two possible covariates, however, that would be easy to incorporate

into the daily model are elevation and aspect, and preliminary results have suggested these are

useful.



In this work we have considered some parameter uncertainty in parts of the models, but

have not propagated the uncertainty into the FHDA fields. A fully Bayesian model could

perhaps synthesize covariates, model parameters, and any uncertainty associated with them

in an efficient manner. Note that by varying the model parameters in the algorithm, one can

include uncertainty into the daily model analysis resulting from uncertainty in the parameters.

Although a fully Bayesian approach may be the most elegant solution, bootstrapping is a good

compromise in terms of less demands for new software and computing resources. For example,

one could use a parameteric bootstrap to generate a sample of parameters that reflect the

uncertainty (in a frequentist sense!) with respect to the MLE. These values would then be used

to generate the conditional FHDA fields.

We understand that the use of an extreme order statistic (4th largest) suggests a standard

sensitive to the tail of the ozone distribution. For this reason, a productive extension of our

models is to incorporate methods for extreme value theory to explicitly model the frequency of

large, but rare, ozone events. Part of the benefit of this approach is a statistical description for

the entire tail of the distribution, rather than just a particular order statistic or quantile. The

biggest challenge would be to incorporate spatial correlations into such a model. This might

be accomplished by fitting Generalized Pareto (GP) distributions at each location with values

from other stations used as covariates in the scale parameter. Another idea would be to fit GP

distributions without any spatial covariates and introduce correlations through a penalty based

on the scale parameter.

In closing, although this problem suggests ample areas of new research, we also believe the

daily model provides a substantial improvement in interpreting monitoring data with respect

to the regulatory standard. Moreover, our methods are easily implemented with supporting

packages in the R environment and so can be used by a broad group of scientists beyond

statistical research.
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