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Abstract

The U.S. Environmental Protection Agency’s (EPA) National Ambient Air Quality Standard (NAAQS) for

ground-level ozone is now based on the fourth-highest daily maximum 8-hour average ozone level (FHDA).

Standard geostatistical models may not be appropriate for interpolating such a statistic off of a network

of monitoring sites. In this paper we compare the performance of different statistical models in predicting

this standard at locations where monitors are not located. We give special attention to two models: a daily

model that uses an autoregression to account for spatial and temporal dependence, and a seasonal model

that assumes the FHDA field is Gaussian and employs spatial statistical techniques. Based on five seasons

of ozone data collected in and around North Carolina, we find that the daily model is superior enough to

the seasonal model to warrant its added complexity.

1 Introduction

The application of statistical techniques to environmental problems often involves a tradeoff between

simple methods that are easily implemented and interpreted and more complicated methods that

may have smaller errors. In this paper we compare simple and complicated statistical models

for interpolating the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality

Standard (NAAQS) for ground-level ozone off of a network of monitoring sites. A recent change in

the NAAQS for ground-level ozone is based on the fourth-highest value from the daily sequence of

maximum 8-hour average ozone measured over an ozone season. This order statistic will be referred

to here as FHDA. The standard requires that the average FHDA for three consecutive seasons (years)

be below 84 parts per billion (ppb) in order for a location to be in attainment. Understanding the

spatial distribution for the FHDA for a given ozone season presents a new statistical problem for

infering regions of attainment or nonattainment because it is not clear that the FHDA field (a

field of order statistics) is Gaussian–a fundamental assumption of most standard spatial statistical

techniques. This problem is addressed in this work.

Although the use of spatial statistics for interpolating air quality measurements would not be

disputed by a statistical audience, surprisingly the use of monitoring data in a regulatory context is

often limited to point locations. For example, a region that does not have a monitoring station would

not have any information about the amount of ozone exposure on the population or environment
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of this region from the EPA; even if a contiguous region with monitoring has violated air quality

standards. Accordingly, Holland et al. [13] argue for the introduction of modern statistical methods

to understand the spatial and temporal extent of pollution fields based on monitoring data. Given

the range of statistical backgrounds associated with the regulatory community, it is appropriate

to propose statistical methods that are simple and understandable to a broad group when such

methods provide an accurate and defensible analysis. In particular, for interpolating the FHDA

standard, it is useful to ascertain the feasibility of approximate statistical methods that treat the

FHDA statistics directly. From this perspective we compare two statistical models. The first, a

fairly complex model, uses a spatial AR(1) model for daily ozone measurements and samples the

FHDA field conditional on the daily data for the entire season. This approach will be referred to as

the daily model. The second model, referred to as the seasonal model, is a geostatistical model that

predicts the FHDA field from the network values using standard best linear unbiased prediction, or

kriging (see Cressie [1] or Stein [17] for more details on kriging). This seasonal model is similar to

the model proposed by Fuentes [6], except that the region of interest here is much smaller and so

can be assumed to be spatially and temporally stationary. A third approach that will be used as a

benchmark estimates the FHDA field by way of a thin plate spline (see Green and Silverman [11]

or Hastie and Tibshirani [12] for details on thin plate splines). This last method is generic and uses

the least amount of information concerning the actual air quality context.

The paper is organized as follows. Section 2 describes the ozone monitoring data. Section 3

describes how the ozone data is standardized and presents the daily and seasonal models. Section 4

presents a comparison of these models along with thin plate spline interpolation as a benchmark.

One interesting aspect is that the daily model implies a covariance function for the FHDA field, and

this choice is included in the results for the seasonal approach. Our results suggest that the daily

model is worth the extra effort and complexity. Section 5 discusses the results and suggests some

future research.

2 Ozone Monitoring Data

Data used for these analyses consist of maximum daily 8-hour average ozone levels measured in

parts per billion (ppb) for the 72 monitoring stations in a study region centered on North Carolina

(Fig. 1). The dashed rectangle in Fig. 1 shows a region around the Research Triangle Park (RTP) in

North Carolina in which the models will be interpolated onto a 15×15 grid. These data are a subset

of the 513 stations covering the eastern United States used by Fuentes [6] and can be obtained from

the web through http://www.cgd.ucar.edu/stats/Data.

Partly because of the high cost of operation, ozone monitoring occurs only during the hotter
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Figure 1: Network of ozone monitoring locations with a rectangular region (with 15× 15 grid) in the

Research Triangle Park (RTP) in North Carolina. The numbers represent the fourth-highest value

for 1997.

months when weather conditions are most conducive to forming ozone; this “ozone season” essentially

spans the months from April through October. For these analyses, the data cover five seasons (1995-

1999), with each season consisting of 184 days.

From a total of 66, 240 possible daily data measurements, there are fewer than 5, 000 missing

observations. Although the data have missing values, it is not serious enough in estimating the

autoregressive models for the individual stations; and, in our judgement, each day has a reasonable

representation of reporting stations. In effect, we assume that the missing data are missing at

random so that they do not affect parameter inferences.

3 Daily model for ozone and a seasonal model for FHDA

Ideally one would like to know the complete multivariate distribution of the FHDA field. This would

enable us to not only interpolate to values off of the monitoring network, but to better understand

the error associated with such an interpolation. Because the FHDA statistic is an order statistic

based on a serially correlated sample, it is difficult to derive a form for its distribution. As an
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alternative, we suggest a model for daily ozone measurements and then infer the distribution of

the FHDA through aggregating the daily model over the season. The daily model uses a spatial

AR(1) model to model the daily maximum 8-hour averages and then uses Monte Carlo sampling to

approximate the conditional distribution of the FHDA field given the observed network data. One

important practical issue is whether this constructive and rigorous approach has any benefits over a

simple spatial interpolation of the FHDA sample statistics. We divide the presentation of the model

into a preliminary standardization, an autoregressive time series for individual stations and a spatial

model for the innovations. Section 3.3 describes the algorithm to simulate a process from the daily

model.

3.1 Standardizing the Data

Ozone has a seasonal dependence even during the relatively short ozone season described in section 2.

It is useful to account for this seasonality as a fixed effect before modeling space-time structure.

Let O(x, t) denote the maximum 8-hour average ozone at location x and day t. The following

standardization is used for the daily maximum 8-hour ozone measurement

O(x, t) = µ(x, t) + σ(x)u(x, t), (1)

and we assume that u(x, t) for any given location and time has mean zero and variance 1; and σ(x)

is estimated from the residuals, and is allowed to vary over space. Note that µ is a function of

both seasonality and space, and the variation of µ(x, t) over space has the potential to account for

large-scale spatial trend.

The seasonal means are smoothed over space using a singular value decomposition approach.

The m individual station time series are regressed on an intercept and three sine and cosine pairs

with periods 365, 365/2 and 365/3; and let B denote the m × 7 matrix of regression coefficients

across all the stations. Next, B can be decomposed as B = UDVT where U and V are orthogonal

matrices and D is a diagonal matrix of the singular values of B. By setting some of the singular

values of D to zero (call the resulting matrix D∗), the multiplication B∗ = UD∗VT yields a matrix

of the original regression parameters, but having reduced the parameter variability across stations.

For the analyses here, the first three principal components explained about 96% of the variance,

and thus were retained; and, in this case, results in smoothing the estimated parameters over space.

Finally, the estimates of µ and σ based on station locations are extrapolated to unobserved locations

using thin plate spline interpolation.
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3.2 Daily Model

Given the standardized process, u(x, t) (from (1)), we consider a spatial AR(1) model.

u(x, t) = ρ(x)u(x, t− 1) + ε(x, t) (2)

The shocks, ε(x, t), are assumed to be independent over time and to be a mean zero Gaussian process

over space with spatial covariance√
1− ρ2(x)

√
1− ρ2(x′)ψ(d(x,x′)) (3)

Here, ψ(d(x,x′)) is considered to be an isotropic and stationary correlation function where d(x,x′)

is a metric to measure separation between locations. For this application, the great circle distance,

transformed to ensure positive definiteness, is used for d(x,x′). That is, d(x,x′) = 2 sin(h
2 ), where

h ∈ [0, π] denotes the angular great circle distance between x and x′ (see Gneiting [9], Weber and

Talkner [18], Freeden et al. [5] sec. 5.8.1, and Gaspari and Cohn [7]). Model (2) with covariance (3)

implies a space-time covariance function

Cov(u(x, t), u(x′, t− τ)) =
(ρ(x))τ

√
1− ρ2(x)

√
1− ρ2(x′)ψ(d(x,x′))

1− ρ(x)ρ(x′)
, τ = 0, 1, 2, . . . (4)

Thus, if the AR(1) parameters are not constant over space, then (i) the spatial process u(x, t) is

not stationary and (ii) covariance model (4) is not space-time separable. Covariance model (4) is

not fully symmetric because C(u(x, t), u(x′, t− τ)) and C(u(x′, t), u(x, t− τ)) generally differ from

each other (see Gneiting [8] for a discussion of full symmetry). The violation of full symmetry is

physically justifiable here because ozone is often transported by wind in only one direction.

3.3 Sampling the distribution of FHDA conditioned by the monitoring

data

Under the assumption that all the components of the data model are known, there is a straight-

forward algorithm for sampling the FHDA field conditional on the observed data. This algorithm

is quite efficient and uses the autoregressive structure over time to recursively generate the daily

process. Let x0 be a location where ozone is unobserved. A spatial prediction for the FHDA at this

location involves two steps. One first obtains a sample of the time series of daily ozone measure-

ments at this location conditional on the observed data (for all locations and all times). Next one

calculates the FHDA for this series. By elementary probability, the resulting FHDA statistics will

be a sample of the FHDA field at x0 conditional on the data. Repeating these two steps, one can

generate a random sample that approximates the FHDA conditional distribution; and, of course, the

sample mean is a point estimate for the conditional expectation of the FHDA at x0. The conditional

variance can be used as a measure of uncertainty.
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Sampling from the conditional distribution of the ozone field is simplified by the autoregressive

structure over time and the restriction of spatial dependence to the shocks in the AR(1) innovation.

In this section we will assume that all parameters (µ(x, t), σ(x), ρ(x), ψ) are fixed quantities and

known, but more will be said about this assumption in section 5. Also let {xk, for 1 ≤ k ≤ m} be

the station locations. Based on these assumptions it is sufficient to find the conditional distribution

of {u(x0, t), 1 ≤ t ≤ T} given {u(xk, t), 1 ≤ t ≤ T, and 1 ≤ k ≤ m} because the standardized

random variables can always be transformed back to the raw scale of the measurements. Moreover,

knowledge of {u(x, t), 1 ≤ t ≤ T}, for any x is equivalent, through the autoregressive relationship, to

knowledge of {u(x, 1), ε(x, t), 2 ≤ t ≤ T}. Recall that the AR shocks are temporally independent so

that the conditional distribution for the ozone fields at x0 can be found based on the much simpler

conditional distribution of ε(x0, t) given {ε(xk, t), 1 ≤ k ≤ m}. Thus we can easily generate a

conditional ozone field by considering the conditional field of the AR(1) shocks and then transform

these results to the original scale of measurements. Specifically, we assume the spatial shocks to be

multivariate Gaussian so that

[ε(x0, t)|{ε(xk, t), 1 ≤ k ≤ m}] ∼ Gau(M,Σε0|ε), (5)

where, if c0 = cov(ε(x0, t), ε(xk, t), 1 ≤ k ≤ m), K is the covariance matrix [cov(ε(xi, t), ε(xj , t))]

(xi, 1 ≤ i ≤ m and xj , 1 ≤ j ≤ m station locations), and ε the vector of observed spatial shocks;

then M = cT0 K−1ε and Σε0|ε = cov(ε(x0, t), ε(x0, t))−cT0 K−1c0. Note that for predicting to a single

location (as described here), cov(ε(x0, t), ε(x0, t)) is a scalar quantity.

Because the number of locations and grid points here is small, it is sufficient to use the Cholesky

decomposition method, but for larger domains other faster approximate methods can be implemented

(see, for example, Davis [2], Gotway [10], and Fang and Tacher [3] for details on this and other

methods).

The algorithm for conditional sampling of the FHDA field is now summarized below.

1. Initialize the time series by interpolating u(x0, 1) from u(xk, 1) (1 ≤ k ≤ m) using a thin plate

spline.

2. For t = 2, . . . , T sample the spatial shocks from (5).

3. Accumulate the sampled shocks and initial value using the autoregressive relationship (2) to

obtain a conditional realization of the standardized process u(x0, t).

4. Unstandardize the simulated data, and compute the FHDA at x0.

The shocks at a station location are based on the actual daily observations and so the sample is

tied explicitly to the data. If in fact x0 is a station location and the spatial process has a zero nugget
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variance, then the resulting conditional sample will just be the observed data. Thus the “conditional

realization of the FHDA field” will be the FHDA statistic for that station’s measurements. It should

be noted that this algorithm works because we assume complete observations at the station locations.

It would be more complicated if observations were sparse over time. For these data there are no

instances where there are missing observations at a given time point at every station. Therefore,

when shocks are sampled from the conditional distribution, locations that have missing values are

simply not used in the calculation for that time point. Although it is possible to sample from

[u(x0, 1)|u(xk, 1), 1 ≤ k ≤ m] in Step 1 exactly, we have found that sampling from a geostatistical

model fit to the standardized fields is adequate.

In this algorithm it is straightforward to replace the conditional sampling of a single location

with a vector, or grid of locations. Thus one obtains a conditional field with spatial and temporal

dependence among the grid points consistent with the space-time model. In addition, this algorithm

can be modified simply to simulate a space-time process that follows this model. In this case, it is

necessary to substitute the unconditional sample (7) for the conditional sample (5) of the shocks at

Step 2. This unconditional Monte Carlo result is used in the next section to identify an approximate

Gaussian model for the FHDA field.

3.4 Seasonal Model

For the seasonal model we posit that the FHDA field is approximately Gaussian distributed, so

the main modeling issue is to derive a suitable covariance function. Although extreme value theory

suggests that, in the limit, extreme order statistics will not follow a Gaussian distribution; it is

not clear that for the ozone application, the fourth highest out of a sample of 184, will achieve

the limiting case. In fact, the bivariate FHDA distribution derived from simulations of correlated

bivariate normal random variables with unit variances is well approximated by a bivariate normal.

This perhaps surprising result is a partial justification of the Gaussian assumption.

In the next section we present results based on a standard geostatistical technique for estimating

a stationary covariance from the FHDA values. However, with access to a daily model, one can also

compute a covariance model for the FHDA field by Monte Carlo simulation. One generates many

realizations of the space-time ozone process and accumulates independent realizations of the FHDA

field. The sample covariances are then used to fit a covariance function for the FHDA field. That is,

let Y i = (Yi1, . . . , Yim)′ be the ith (i = 1, . . . , N) sampled FHDA values obtained from the algorithm

in section 3.3 using the unconditional distribution (7) in Step 2. Then, for each pair of locations

(Yij , Yik), compute ĈY = 1
N

∑N
i (Yij − Ȳi)(Yik − Ȳi), and finally fit a covariance (ψm) to the ĈY ’s

as a function of distance. We note that this is a purely computational exercise; and by increasing

the Monte Carlo sample size, one can obtain arbitrarily accurate estimates of the second moments
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for the FHDA spatial process implied by the daily model.

4 Results

4.1 Daily Model Results

Individual autoregressive models were fit by maximum likelihood to the standardized station data

to estimate the parameter of the AR(1) model. An AR(2) model was also tried, but did not show

significant improvement to warrant its added complexity. The AR(1) parameter estimate varies

across stations, which is to be expected even under stationarity. To assess stationarity of the AR

shocks, a local correlogram is fit for each station location using an exponential covariance function.

The estimated nugget variance and estimated range parameters do not vary significantly across the

domain; the estimated nugget ranges from 0.83 to 1.03 ppb (0.04 ppb) and the estimated range

parameter from 164 to 328 miles (33 miles), where standard errors are given in parentheses, and

units have been converted into miles for more intuitive interpretations. This suggests that the

spatial shocks field can be approximated by a stationary process. The general shape of the empirical

correlations suggested fitting a mixture of exponentials function to these correlations.

ψ(d(x,x′)) = α exp(−d(x,x′)/θ1) + (1− α) exp(−d(x,x′)/θ2) (6)

where θ1 represents a short range correlation and θ2 a long range correlation. Correlation model

(6) allows the spatial field to be interpreted as the sum of two independent spatial processes with

possibly different correlation scales. The smoothness of ψ will still be linear at zero, but the shape

will be modified for short distances. The reader should note that unlike a geostatistical analysis for

a single field, the correlations associated with the shocks are statistics based on a large (n > 500)

sample size, which enables enough accuracy to facilitate modeling detailed features such as the

mixture component. Fig. 2 (a) shows the fitted correlogram for the spatial shocks as a function of

distance of separation along with box plots of the binned sample correlations.

The fitted function is shown as a dashed line in Fig. 2. Within a distance of about 50 miles the

shocks show a correlation of around 0.8 or higher, and remain above 0.6 as far out as 100 miles.

The fitted parameter estimates are α̂ ≈ 0.130 (0.02), θ̂1 ≈ 11 miles (3.37 miles) and θ̂2 ≈ 272 miles

(16.89 miles) with parametric bootstrap standard errors in parentheses.

The fitted model was used to generate conditional fields for the FHDA for each year and the

15×15 rectangular grid in the RTP subregion (Fig. 1). One thousand Monte Carlo realizations were

used to approximate the distribution. Results for 1997 (Fig. 3 (a) and (b)) give predicted FHDA

for the RTP in 1997 that are mostly above the 84 ppb standard. Most areas in the north and west

are found to be more than one model standard error of prediction (MPSE) above 84 ppb, and most
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Figure 2: Fitted empirical correlation functions for original daily maximum 8-hour average ozone

measurements, the standardized daily values, the spatial AR(1) shocks, unconditional (seasonal

model) and conditional (daily model) simulations of the FHDA field. The box plots are of corre-

lations binned by distance (miles) for the empirical spatial shocks.

locations found to be in attainment are within one MPSE of being at or above this threshold. It

should be noted that a down-side of this approach is that the daily model is not able to account for

occassional large ozone values that appear in the data based on a Gaussian assumption at a daily

time scale so that it does not accurately capture the variability of the FHDA field.

4.2 Seasonal Model Results

The seasonal approach applies a spatial model directly to the FHDA values, so a key step is to

estimate a covariance function for this field. It should be noted that no standardization of the

FHDA values is performed, but that a linear spatial trend is included in the model. Empirical

variograms for each of the 5 seasons indicate that almost all of the spatial dependence in the FHDA

field appears to be limited to a very short range less than 100 miles. A mixture of exponentials
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variogram

γ(d(x,x′)) = σ2(1− α exp(−d(x,x′)/θ1)− (1− α) exp(−d(x,x′)/θ2))

was fit using all five years of data with parameter estimates: σ̂ ≈ 7.37 ppb, α̂ ≈ 0.38, θ̂1 ≈ 0.62

miles and θ̂2 ≈ 48.61 miles and subsequently converted to a covariance function, ψv.

For comparison to estimating the covariance from the FHDA variogram, a covariance function

was estimated from unconditional simulations of the daily model. That is, in step 2 of the daily

model algorithm, we sample shocks from the unconditional distribution

ε(xk, t) ∼ Gau(0,K), 1 ≤ k ≤ m (7)

(K the same as in (5)) instead of sampling from the conditional distribution (5).

Based on a Monte Carlo sample of 600 FHDA simulated fields, a mixture of exponentials (6) was

fit to the empirical correlations, call it ψm. The estimated parameters are α̂ ≈ 0.51, θ̂1 ≈ 8.66 and

θ̂2 ≈ 128.76. For each choice of covariance model, the seasonal model is fit using the function Krig

from the R [15] package fields (Nychka et al. [14]).

The thin plate spline model was fit (using Tps from the R [15] package fields (Nychka et

al. [14])) with a linear drift and the smoothing parameter chosen by generalized cross-validation.

The seasonal model, ψm, for 1997 shows similar predictive results (Fig. 3 (c) and (d)) to those

of the daily model (Fig. 3 (a) and (b)). It appears that there are fewer areas predicted to be out

of attainment with this model than with that of the daily model, and the seasonal model generally

favors attainment more than the daily model. However, some of the areas found to be in (or out

of) attainment are within one MPSE of being out of (or in) attainment. Generally, the MPSE’s for

both models are very similar, but the seasonal model MPSE is as high as 1 ppb higher than that

of daily model in areas, such as the southeast corner of the RTP region, where station locations are

not situated nearby.

4.3 Model Comparison

Model-based standard errors can either be reliable or misleading depending on the adequacy of

the spatial model. It is, therefore, of interest to use cross-validation to evaluate the average prediction

error of these methods. Specifically, let Ŷ−i represent the predicted FHDA value at station i, having

removed this station’s data from the analysis, and Yi be the observed FHDA for station i. The

cross-validation residuals (CV) are given by

CV = Ŷ−i − Yi, i = 1, . . . ,m. (8)
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Figure 3: Daily ((a) and (b)) and seasonal model (ψm) ((c) and (d)) prediction results for RTP region

in 1997, where (a) and (c) are predicted FHDA; and (b) and (d) are model prediction standard errors

(MPSE). Observed FHDA for 1997 are overlayed (larger numbers) on plots (a) and (c) at station

locations. Dashed lines are county boundaries.

The standard leave-one-out procedure was applied to each monitoring location for each method.

Table 1 reports the root mean squared error (RMSE) of Eq. (8) for each year. The seasonal model

(both ψm and ψv) CV RMSE and thin plate spline are very similar for each year. The daily model

CV RMSE is consistently lower than the other models, but only slightly. Of course, it is desired to

have a model that is correct (low CV) and has low MPSE. In addition to slightly better CV values,

the daily model has comparable MPSE (Table 2) with the thin plate spline, which are lower than

those of the seasonal models. All of this suggests that the daily model out performs the other models

compared here; at least enough to warrant its added complexity.

5 Discussion

Although care is needed in generalizing results from a specific data set to other cases, this work

has shown a preference to analyze the FHDA standard using a daily model for ozone and then

aggregating over the season to infer the FHDA field. The results for the North Carolina study

region show that the seasonal model is reasonable, but the daily model is generally more accurate,
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Table 1: Leave-one-out cross-validation (CV) root mean squared error (RMSE) (ppb) for predicting

FHDA.
Thin Plate Seasonal Seasonal Daily

Spline Model (ψv) Model (ψm) Model

1995 5.34 5.19 5.33 4.73

1996 5.61 5.51 5.68 4.84

1997 6.27 6.03 6.05 4.59

1998 5.00 4.98 4.93 3.25

1999 6.25 6.47 6.30 4.91

Table 2: Averages of model prediction standard errors (MPSE) (ppb).

Thin Plate Seasonal Seasonal Daily

Spline Model (ψv) Model (ψm) Model

1995 2.23 5.68 5.27 2.67

1996 2.49 5.96 5.90 2.85

1997 2.91 6.41 6.02 3.01

1998 2.75 5.35 4.85 2.93

1999 4.34 6.76 6.22 2.94

based on the CV measures of RMSE. Of course, the MPSEs for the daily model are not as accurate

as the other approaches because the daily model is not able to account for occassional large ozone

values that appear in the data based on a Gaussian assumption at a daily time scale.

Conceptually, the daily model has advantages in using fairly simple statistical components on a

daily scale that can produce relatively complicated seasonal statistics. For example, as long as a

standard correlation function is reasonable for ψ(d(x,x′)) from (3), the entire daily model can be fit

using standard geostatistical and regression methods even if the observed FHDA field is nonstation-

ary. We believe that part of the success of the daily model is that much of the spatial correlation

and the nonstationarity of the raw measurements can be accounted for by standardizing the process

and building in a temporal evolution. Additionally, this standardization probably accounts for the

spatial trend better than the seasonal approach, and may explain the better performance of the daily

model. While the seasonal model is much simpler and easier to employ in general, it can actually be

more complicated if the FHDA field is not stationary. The lack of long-range correlation structure

in the FHDA field simulated by the daily model approach (conditional on the data) and reaffirmed

by empirical variograms of the observed FHDA field suggest that standard spatial techniques may

not be very effective at predicting the FHDA at locations relatively far from any monitoring station.
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Fig. 2 contrasts the different correlation scales among different transformations of the ozone field,

and we note the marked difference between daily fields and the seasonal FHDA. Specifically, at

about 100 miles the daily model FHDA fitted correlogram function shows nearly zero correlation,

whereas that of the seasonal model shows a correlation above 0.3. This is further justified by the

greater MPSE found by both the seasonal model (Fig. 3 (d)) and the thin plate spline (not shown)

at locations away from the monitoring network. Additionally, the apparent correlation structure in

the FHDA field, found from using the daily model approach without conditioning on the data, may

be an artifact of the model. One source of model bias may be the lack of a heavy tail distribution

for the AR shocks.

The data used here are from a relatively small, homogeneous subset of a much larger network of

monitoring stations, and the more practical application of our work is to extend the analysis to the

Eastern United States. Stationarity for this field cannot be assumed (see, for example, Fuentes [6])

and, indeed, some heterogeneity might be modeled using additional covariates. Generally, meteo-

rological data, such as temperature, is difficult to use for the daily model approach because at any

time point the temperatures at two locations can vary greatly, and meteorological measurements

are generally gathered only on a coarse spatial scale. Therefore, incorporation of such covariates

becomes problematic. Two possible covariates, however, that would be easy to incorporate into the

daily model are elevation and aspect, and preliminary results have suggested these are useful.

In this work we have considered some parameter uncertainty in parts of the models, but have not

propagated the uncertainty into the FHDA fields. A fully Bayesian model could perhaps synthesize

covariates, model parameters, and any uncertainty associated with them in an efficient manner. Note

that by varying the model parameters in the algorithm, one can include uncertainty into the daily

model analysis resulting from uncertainty in the parameters. Although a fully Bayesian approach

may be the most elegant solution, bootstrapping is a good compromise in terms of less demands

for new software and computing resources. For example, one could use a parameteric bootstrap to

generate a sample of parameters that reflect the uncertainty (in a frequentist sense!) with respect

to the MLEs. These values would then be used to generate the conditional FHDA fields.

We understand that the use of an extreme order statistic (4th largest) suggests a standard

sensitive to the tail of the ozone distribution. For this reason, a productive extension of our models

is to incorporate methods from extreme value theory to explicitly model the frequency of large, but

rare, ozone events. Part of the benefit of this approach is a statistical description for the entire tail

of the distribution, rather than just a particular order statistic or quantile. The biggest challenge,

however, would be to incorporate spatial correlations into such a model; an active area of research.

This might be accomplished by fitting Generalized Pareto (GP) distributions at each location with

values from other stations used as covariates in the scale parameter. Another idea would be to fit
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GP distributions without any spatial covariates and introduce correlations through a penalty based

on the scale parameter. Some recent work on characterizing extremal dependencies can be found in

Schlather and Tawn [16], Ferro and Segers [4] and the references therein.

In closing, although this problem suggests ample areas of new research, we also believe the daily

model provides a substantial improvement in interpolating monitoring data with respect to the

regulatory standard. Moreover, our methods are easily implemented with supporting packages in

the R [15] environment, and so can be used by a broad group of scientists beyond statisticians.
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