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e Some equations, some problems
e Wavelet bases

e Sparsity

e Nonstationarity and EM
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Why are we doing this?

Many geophysical /biological processes are nonstationary over large area

e meteorological variables: precipitation

e forecast errors from a weather prediction
e electric field in the upper atmosphere

e pollutants: ambient ozone

e human health: disease incidence

e remotely sensed measurements

Also many interesting data sets are large.



A large spatial dataset
Reporting stations for monthly precipitation 1997.

Station Darsity July 1997
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Spatial Models

z(x), is a random field, e.g. ozone concentration at location x,
k(z, ') = COV (2(), 2(x'))

There are other parts of z that are important:

e F(z(x)), fixed effects and covariates
e z(x) is not Gaussian

e Copies of z(x) observed at different times are correlated, e.g ozone
fields for each day.
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There are other parts of z that are important:

e F(z(x)), fixed effects and covariates
e z(x) is not Gaussian

e Copies of z(x) observed at different times are correlated, e.g ozone
fields for each day.

I don’t want to talk about these today!

The wavelet/Gaussian model is a platform for more complicated models,
just as many methods use weighted least squares as a primitive.
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Let u be the field values on a large, regular 2-d grid (and stacked as a
vector). This is our universe.
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Let u be the field values on a large, regular 2-d grid (and stacked as a
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¥ =COV(u)

Observational model

We observe part of u, possibly with error.
Y =Ku+e

K is usually sparse , e.g. an incidence matrix of ones and zeroes for
irregularly spaced data

COV(e)=R

(also sparse, often diagonal)



Spatial Prediction

Assuming Y has zero mean.

=YK (KLK" + R)'Y
and the covariance of the estimate is

Y - YK'(KSK' 4+ R)T'KY

log likelihood for X::
—(1/2)log(|(KSgK" + R)|) — (1/2) Y (KXgK + R)'Y +C



Spatial Prediction

Assuming Y has zero mean.

=YK (KLK" + R)'Y
and the covariance of the estimate is

Y - YK'(KSK' 4+ R)T'KY

log likelihood for X::
—(1/2)log(|(KSgK" + R)|) — (1/2) Y (KXgK + R)'Y +C
An approrimate posterior:

| like to think of the Kriging estimate as based on the conditional
multivariate normal distribution of the grid points given the data: [u|Y]
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The problems

Given a large numbers of irregularly spaced observations and the usual
covariance models,

Finding
e the spatial prediction: equations are hard to compute because
(KXKT + R)~!is large.
e the covariance formula: hopeless for many grid points

e MLEs for covariance parameters:
Don’t even think about it!



Creating a random function
Start with a set of fized basis functions {1;}

Multiply them times random coefficients

Add ‘em up.
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Creating a random function
Start with a set of fized basis functions {1;}

Multiply them times random coefficients

Add 'em up.
+(a) = X a0,

The choice of the basis {1);} and the covariances among the coef-
ficients {a;} are the key to this work.



In matriz/vector notation:
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Each column of W is a basis function evaluated on a grid.
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In matriz/vector notation:

z =Va

Each column of W is a basis function evaluated on a grid.

From linearity

COV(z) =% =0COV(a)V' = VHH' U

The big idea:

The basis functions are localized and H is nearly diagonal.



A set of 32 1-d multiresolution basis functions
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Bases are organized in
levels and are trans-
lations and scalings
of fixed father and

mother wavelets.



Why wavelets?

Reduction in complexity

A complicated random function may have a simpler representation by
specifying the covariances among the coeflicients instead of directly on
the function.

Local support:

Wavelets can represent nonstationary covariances easily because in-
dividual basis functions are associated with specific locations. Local
support also leads to fast computation with the basis functions.

Another good thing:

The covariances among the {a;} are sparse. This leads to efficient
algorithms for spatial prediction e.g. generating ensembles — sampling
the posterior distribution.



What can go wrong.

Assuming the coefficients are uncorrelated (H is diagonal):
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Covariance Models
Covariance of the field, ¥ = WH*U!

So the goal is to find good choices for H



Two dimensions: (1) father and (3) mothers
An Old Testament version!
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16 horizontal basis functions




16 vertical basis functions










Organizing 1024 = 32 x 32 basis functions in a lattice
Smooth
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What does H look like for a Matern X7

Suppose 2 follows a Matern covariance smoothness 1 and range .2 on
a 32 x 32 grid in |0, 1] x [0, 1].

Y = HApL
HQ _ \D—lz(\IjT)—l

where H is the symmetric square root.



1)

Smooth basis function, (range=.2, smoothness



Horizontal basis function at first level




Diagonal basis function at second level
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Trace plots of Hg

How do the elements of H change as the range is varied?



Row of H smooth (2,2) as the range varies
Recall 6 = .2
H B

6000

4000

Hij

2000

theta




Row of H for mother (2,2) Row of H for daughter (2,2)
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Introducing sparseness
Decimation:
Set all small elements of H that are small to zero.

Hy, Gives an accurate approximation to the Matern family.
H . its inverse and tranposes are now efficient for computing.

The number of nonzero elements goes linearly with the number of
observations.



Introducing nonstationarity

We are interested in a spatial field that in the neighborhood of x
roughly has a Matern covariance with range parameters 0(x).

This is the Higdon/Fuentes/Paciorek model.
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Introducing nonstationarity

We are interested in a spatial field that in the neighborhood of x
roughly has a Matern covariance with range parameters 0(x).

This is the Higdon/Fuentes/Paciorek model.
Moditying rows of H

[f a wavelet basis functions is localized around « then the correspond-
ing row of H is based on 0(x).

Yo = WHyHF W
A Hierarchical Model: (theta is a spatial field)

Y% [log(0)ly] D]

where the likelihood is computationally tractable due to sparseness!



Irregularly spaced locations

Register each location to a grid box.

An EM approach:

Step 0 Start with an initial ( possibly nonstationary) covariance model
H found from the irregular locations.

E-Step Generate (random) complete fields from the conditional dis-
tribution using this H.

M-Step Apply a wavelet-based covariance estimate to the complete
realizations.

Repeat E and M Steps until covariance estimate converges.



Nonparametric estimates from data.

Sample estimates of H

With complete data and (independent) replications over time, one can
oet, sample estimates of the elements of H. The amount of computa-
tion and storage is of the order of the image size and time points, not
(image size)?.

Decimation

The sparseness of H guarantees that we do not have to look at (or even
compute) many off-diagonal elements. The elements that are nonzero
based on the Matern family are reasonable choice.

Once the elements of H are found one can:

e decimate them
e smooth across "spatially adjacent” entries.

e shrink toward a stationary model



Concluding remarks

e Wavelets provide flexible methods for introducing nonstationary
spatial structure at different spatial scales. But they can also re-
produce standard spatial models.

e Wavelet bases are well suited for computation with large data sets.



