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Why are we doing this?

Many geophysical/biological processes are nonstationary over large area

• meteorological variables: precipitation

• forecast errors from a weather prediction

• electric field in the upper atmosphere

• pollutants: ambient ozone

• human health: disease incidence

• remotely sensed measurements

Also many interesting data sets are large.
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A large spatial dataset
Reporting stations for monthly precipitation 1997.
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Spatial Models

z(x), is a random field, e.g. ozone concentration at location x,

k(x,x′) = COV (z(x), z(x′))

There are other parts of z that are important:

• E(z(x)), fixed effects and covariates

• z(x) is not Gaussian

• Copies of z(x) observed at different times are correlated, e.g ozone
fields for each day.
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Spatial Models

z(x), is a random field, e.g. ozone concentration at location x,

k(x,x′) = COV (z(x), z(x′))

There are other parts of z that are important:

• E(z(x)), fixed effects and covariates

• z(x) is not Gaussian

• Copies of z(x) observed at different times are correlated, e.g ozone
fields for each day.

I don’t want to talk about these today!

The wavelet/Gaussian model is a platform for more complicated models,
just as many methods use weighted least squares as a primitive.
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Spatial Models (continued)

Let u be the field values on a large, regular 2-d grid (and stacked as a
vector). This is our universe.

Σ = COV (u)
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Spatial Models (continued)

Let u be the field values on a large, regular 2-d grid (and stacked as a
vector). This is our universe.

Σ = COV (u)

Observational model

We observe part of u, possibly with error.

Y = Ku + e

K is usually sparse , e.g. an incidence matrix of ones and zeroes for
irregularly spaced data

COV (e) = R
(also sparse, often diagonal)
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Spatial Prediction

Assuming Y has zero mean.

û = ΣKT (KΣKT +R)−1Y

and the covariance of the estimate is

Σ − ΣKT (KΣKT +R)−1KΣ

log likelihood for Σ:

−(1/2)log(|(KΣθK
T +R)|) − (1/2)Y T (KΣθK +R)−1Y + C
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Spatial Prediction

Assuming Y has zero mean.

û = ΣKT (KΣKT +R)−1Y

and the covariance of the estimate is

Σ − ΣKT (KΣKT +R)−1KΣ

log likelihood for Σ:

−(1/2)log(|(KΣθK
T +R)|) − (1/2)Y T (KΣθK +R)−1Y + C

An approximate posterior:
I like to think of the Kriging estimate as based on the conditional

multivariate normal distribution of the grid points given the data: [u|Y ]
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The problems

Given a large numbers of irregularly spaced observations and the usual
covariance models,
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Finding

• the spatial prediction: equations are hard to compute because
(KΣKT +R)−1 is large.
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The problems

Given a large numbers of irregularly spaced observations and the usual
covariance models,

Finding

• the spatial prediction: equations are hard to compute because
(KΣKT +R)−1 is large.

• the covariance formula: hopeless for many grid points

• MLEs for covariance parameters:

Don’t even think about it!
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Creating a random function
Start with a set of fixed basis functions {ψj}

Multiply them times random coefficients

Add ’em up.
z(x) =

∑
j
ajψj(x)
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Creating a random function
Start with a set of fixed basis functions {ψj}

Multiply them times random coefficients

Add ’em up.
z(x) =

∑
j
ajψj(x)

The choice of the basis {ψj} and the covariances among the coef-
ficients {aj} are the key to this work.
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In matrix/vector notation:

z = Ψa

Each column of Ψ is a basis function evaluated on a grid.
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In matrix/vector notation:

z = Ψa

Each column of Ψ is a basis function evaluated on a grid.

From linearity

COV (z) = Σ = ΨCOV (a)ΨT = ΨHHTΨT

The big idea:
The basis functions are localized and H is nearly diagonal.
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A set of 32 1-d multiresolution basis functions
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Bases are organized in
levels and are trans-
lations and scalings
of fixed father and
mother wavelets.
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Why wavelets?

Reduction in complexity
A complicated random function may have a simpler representation by
specifying the covariances among the coefficients instead of directly on
the function.

Local support:
Wavelets can represent nonstationary covariances easily because in-

dividual basis functions are associated with specific locations. Local
support also leads to fast computation with the basis functions.

Another good thing:
The covariances among the {aj} are sparse. This leads to efficient

algorithms for spatial prediction e.g. generating ensembles – sampling
the posterior distribution.
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What can go wrong.
Assuming the coefficients are uncorrelated (H is diagonal):
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Covariance Models

Covariance of the field, Σ = ΨH2ΨT

So the goal is to find good choices for H
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Two dimensions: (1) father and (3) mothers
An Old Testament version!
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16 Smooth (father) basis functions
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16 horizontal basis functions
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16 vertical basis functions
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16 diagonal basis functions
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64 vertical basis functions
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Organizing 1024 = 32 × 32 basis functions in a lattice
Smooth

4 × 4

4 × 4

8 × 8

16 × 16
Horizontal Vertical Diagonal
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What does H look like for a Matern Σ?

Suppose Σ follows a Matern covariance smoothness 1 and range .2 on

a 32 × 32 grid in [0, 1] × [0, 1].

Σ = ΨH2ΨT

H2 = Ψ−1Σ(ΨT )−1

where H is the symmetric square root.
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Smooth basis function, (range=.2, smoothness=1)
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Horizontal basis function at first level

0.
00

0.
05

0.
10

0.
15

+

23



Diagonal basis function at second level
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Trace plots of Hθ

How do the elements of H change as the range is varied?
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Row of H smooth (2,2) as the range varies
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Row of H for mother (2,2)
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Introducing sparseness
Decimation:
Set all small elements of H that are small to zero.

Hθ,ν Gives an accurate approximation to the Matern family.

H , its inverse and tranposes are now efficient for computing.

The number of nonzero elements goes linearly with the number of
observations.
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Introducing nonstationarity

We are interested in a spatial field that in the neighborhood of x
roughly has a Matern covariance with range parameters θ(x).

This is the Higdon/Fuentes/Paciorek model.
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θ W
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Introducing nonstationarity

We are interested in a spatial field that in the neighborhood of x
roughly has a Matern covariance with range parameters θ(x).

This is the Higdon/Fuentes/Paciorek model.

Modifying rows of H
If a wavelet basis functions is localized around x then the correspond-
ing row of H is based on θ(x).

Σθ = WHθH
T
θ W

A Hierarchical Model: (theta is a spatial field)

[Y |Σθ] [log(θ)|γ] [γ]

where the likelihood is computationally tractable due to sparseness!
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Irregularly spaced locations

Register each location to a grid box.

An EM approach:

Step 0 Start with an initial ( possibly nonstationary) covariance model
H found from the irregular locations.

E-Step Generate (random) complete fields from the conditional dis-
tribution using this H .

M-Step Apply a wavelet-based covariance estimate to the complete
realizations.

Repeat E and M Steps until covariance estimate converges.
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Nonparametric estimates from data.
Sample estimates of H
With complete data and (independent) replications over time, one can
get sample estimates of the elements of H . The amount of computa-
tion and storage is of the order of the image size and time points, not
(image size)2.

Decimation
The sparseness ofH guarantees that we do not have to look at (or even
compute) many off-diagonal elements. The elements that are nonzero
based on the Matern family are reasonable choice.

Once the elements of Ĥ are found one can:

• decimate them

• smooth across ”spatially adjacent” entries.

• shrink toward a stationary model
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Concluding remarks

• Wavelets provide flexible methods for introducing nonstationary
spatial structure at different spatial scales. But they can also re-
produce standard spatial models.

• Wavelet bases are well suited for computation with large data sets.
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