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• A mixture filter

• A local- local filter

• A hybrid

• Something completely different
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Overview

Data Assimilation
Combining predictions made by a numerical model with observed data
to estimate the state of a system, x. This is also called a filter.

The statistical foundation is Bayes Theorem and the uncertainty in the
state of the system is represented by a probability distribution.
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Overview

Data Assimilation
Combining predictions made by a numerical model with observed data
to estimate the state of a system, x. This is also called a filter.

The statistical foundation is Bayes Theorem and the uncertainty in the
state of the system is represented by a probability distribution.

PRIOR for x + observations → POSTERIOR for x
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Effects of nonlinear dynamics

Nonlinear systems can generate assimilation problems where distribu-
tions of priors are not well represented by multivariate normals.

Lorenz ’63 a simple three dimensional system

Easy to visualize, large distortion occurs for trajectories near the origin.
Ensembles are often distinctly non-Gaussian.
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Following an ensemble through state space
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The Bayes cycle

Observations at time t

yt = Hxt + measurement error

System dynamics:

xt+1 = g(xt) (deterministic)

p(xt), yt
Bayes−→ p(xt|yt)

g(.)−→ p(xt+1|yt) = p(xt+1), yt+1

data update forecast new data

Yesterday’s posterior becomes today’s prior!

5



Some key ideas:

• Represent a continuous distribution by a discrete sample.

• Non-Gaussian update for components of the state vector local to the
observation locations and close to the observation value.

• Parts of state vector far from the observation are updated using
Ensemble Kalman Filter.
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Standard Kalman Filter/ conditional multivariate normal dis-
tributions

This is easy in closed form if everything is multivariate normal and
linear.

Observation Model

y = Hxt + e with e ∼ MN(0, R)

Prior

xt ∼ MN(µt, P )
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Standard Kalman Filter/ conditional multivariate normal dis-
tributions

This is easy in closed form if everything is multivariate normal and
linear.

Observation Model

y = Hxt + e with e ∼ MN(0, R)

Prior

xt ∼ MN(µt, P )

Kalman update for state

x̂t = E(xt|y) = µt + PHT (HPHT + R)−1(y −Hµt)
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The Ensemble KF

• All means and covariances in Kalman Filter are replaced by sample
quantities found from the ensemble.

• The sample covariance matrix from the ensemble is tapered spatially
to regularized the estimate.

• Essentially the ensemble encodes a low rank approximation to the
mean and covariance following the exact calculation under the as-
sumption that everything is multivariate normal.
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Forecast step with EnKF

In place of
p(xt|yt) → p(g(xt)|yt)

propagate each ensemble member.

xt,1

xt,2
...

xt,M

g →

g(xt,1) = xt+1,1

g(xt,2) = xt+1,2
...

g(xt,M) = xt+1,M

Note:
With no model error, the relationship among state vectors is preserved

correctly. The dynamics generates information ...
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Ensemble Kalman filter and regression

Suppose we observe just the Jth state component with noise

Y = xJ + e

Update the ith ensemble member:

xu
i = xf

i + COV (x, xJ)V AR(Y )−1(Y − xf
i,J − perturbation)
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Ensemble Kalman filter and regression

Suppose we observe just the Jth state component with noise

Y = xJ + e

Update the ith ensemble member:

xu
i = xf

i + COV (x, xJ)V AR(Y )−1(Y − xf
i,J − perturbation)

xu
i = xf

i +
COV (x, xJ)

V AR(xJ)

V AR(xJ)

V AR(Y )
× (Y − xf

i,J − perturbation)

xu
i = xf

i +
COV (x, xJ)

V AR(xJ)
×( draw from p(xJ |Y )− xf

i,J)

Now substitute sample COV and sample VAR to get a linear regression.
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Non-Gaussian distributions

Represent the prior distributions as mixtures of multivariate normals
p(xt) = ∑k

i=1 piMN(µi,Pi)

The posterior distribution is also a mixture:
p(xt|yt) = ∑k

i=1 p?
iMN(µ?

i ,P
?
i )

Each component is just the usual KF or EnKF update!
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Non-Gaussian distributions

Represent the prior distributions as mixtures of multivariate normals
p(xt) = ∑k

i=1 piMN(µi,Pi)

The posterior distribution is also a mixture:
p(xt|yt) = ∑k

i=1 p?
iMN(µ?

i ,P
?
i )

Each component is just the usual KF or EnKF update!

Key aspect is the update of the mixture probability

p?
i ∼

e−(y−Hµi)
T (HPiH

T+R)−1(y−Hµi)

|(HPiHT + R)|1/2

pi is large if Hµi is close to the observed value.
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Ensembles as a mixture distribution:

A random subset of ensemble members are the centers of the mixture.
(µk).

The sample covariance of nearest neighbors about the center is the co-
variance (P k).

The posterior probabilities look like weights based on a normal kernel.
The use of neighborhoods to find the covariance results in a local linear
regression.
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A non-Gaussian example
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Results for Lorenz ’63

With a time step of .5 and observation standard deviation of 2 in the
saddle region of the state space
(400 ensemble members, 100 centers, 25 Nearest neighbors.)

RMSE Ensemble KF filter = 1.64
RMSE Mixture filter = .73
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Extensions to larger state spaces
The mixture filter breaks down as the dimension of the state vector

increases.

e.g. the posterior probability concentrates on a single member or is small
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The Local-Local Filter

LOCAL in physical space:
Only update components close to the observation location.

Call these local state components xL

LOCAL in state space:
only use ensemble members that are “close” to the observed value.

Hybrid filter
Update remaining components using EnKF.

Call these remaining (global) components xG
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A 40 dimensional system: Lorenz ’96

True state
Single Observation at 20
5 ensemble members (as lines)

Local state components: 19, 20, 21

Global components of state: the rest!
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How do we splice two types of solutions together?

Our first idea

Find the global part conditional on first finding the local posterior.

p(x|y) = p(xG|xL)p(xL|y)

p(xL|y) from local-local (non-Gaussian) filter

p(xG|xL) assuming Gaussian distributions.
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How do we splice two types of solutions together?

Our first idea

Find the global part conditional on first finding the local posterior.

p(x|y) = p(xG|xL)p(xL|y)

p(xL|y) from local-local (non-Gaussian) filter

p(xG|xL) assuming Gaussian distributions.

This did not work ...
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What worked as a hybrid filter.

Use posterior means from p(xG|xL) and p(xL|y)
The non Gaussian gives good point predictions.
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What worked as a hybrid filter.

Use posterior means from p(xG|xL) and p(xL|y)
The non Gaussian gives good point predictions.

Reverse conditioning! [xL|xG]
Posterior for xG is just p(xG|Y )

Posterior draw for xL is ( up to the mean)

E[xL|xG] + [AxL|y]

The matrix A is chosen so that complete ensemble agrees with posterior
covariance for EnKF.
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Summary

Results

• We have some evidence that the practical version of the EnKF actu-
ally handles non-Gaussian distributions better than an exact Kalman
filter.

• The Local-Local filter clearly out performs EnKF in a simple 3-d
system especially in places where g is very nonlinear.

• A version of the L-L filter also performs better than EnKF with about
5% improvement (without any extensive tuning) for the 40 variable
model.
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Issues

• The local linear fitting seems important but it is hard to beat the
EnKF

• The spread of the ensemble may have nothing to do with Bayes; All
that is important is to generate a good regression relationship.

• RMSE as a criterion has little to do with non-Gaussian distributions.

• Are components far away from observations more amenable to a
Gaussian update?
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Better models for covariance functions

A set of 32 wavelet basis functions
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Sparseness with wavelets
Decomposition of a 1-d covariance matrix
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