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The additive model

Given n pairs of observations (xi, yi), i = 1, . . . , n

yi = g(xi) + εi

εi’s are random errors.

Assume that g is a realization of a Gaussian process.
and ε are MN(0, σ2I)

Formulating a statistical model for g makes a very big differ-
ence in how we solve the problem.
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A Normal World
We assume that g(x) is a Gaussian process,

ρk(x,x′) = COV (g(x), g(x′))

For the moment assume that E(g(x)) = 0.

(A Gaussian process ≡ any subset of the field locations has
a multivariate normal distribution. )

We know what we need to do!
If we know k we know how to make a prediction at x!

ĝ(x) = E[g(x)|data]

i.e. Just use the conditional multivariate normal distri-
bution.
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A review of the conditional normal

u ∼ N(0,Σ)

and

u =

(
u1

u2

)
Σ =

(
Σ11,Σ12

Σ21,Σ22

)

[u2|u1] = N(Σ2,1Σ
−1
1,1z1, Σ2,2 −Σ2,1Σ

−1
1,1Σ1,2)

Our application is

u1 = y (the Data)

and

u2 = (g(x1, ...g(xN)) a vector of function values where we
would like to predict.
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The Kriging weights

Conditional distribution of g given the data y is Gaus-
sian.

Conditional mean

ĝ = COV (g,y) [COV (y)]−1 y = Sy

rows of S are the Kriging weights.

Conditional variance

COV (g, g)− COV (g,y) [COV (y)]−1COV (y, g)

With these two pieces we characterize the en-
tire conditional distribution
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My geostatistics/BLUE overhead

For any covariance and any smoothing matrix (not just
S above) we can easily derive the prediction variance.

Question find the minimum of

E
[
(g(x)− ĝ(x))2

]
over all choices of S. The answer: The Kriging weights
... or what we would do if we used the Gaussian process
and the conditional distribution.

Folklore and intuition: The spatial estimates are not very
sensitive if one uses suboptimal weights, especially if
the observations contain some measurement error.
It does matter for measures of uncertainty.
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The connection to penalized least squares,
splines and the smoothing parameter

Let COV (g) = ρK

(recall ρ is a just scale factor)

COV (y) = ρK + σ2I

and so

ĝ = ρK(ρK + σ2I)−1y = K(K + λI)−1y = A(λ)y

where λ = σ2/ρ

Have we seen this before?
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The main results

Recall

ĝ(x) =
n∑
l=1

θ̂kψk(x)

min
θ

n∑
i=1

(y − [Wθ]i)
2 + λθTBθ

The Kriging estimator is identical to a penalized least squares
estimator with basis functions k(.,xi), penalty matrix B = K

and λ = σ2/ρ.
The Kriging estimator is a spline with reproducing
kernel k!
λ is proportional to the measurement (nugget)

variance
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The Bayes connection

Bracket notation is very useful:

[Z] the density function for the random variable Z

[Y |z] the conditional density function for the random
variable Y given z.

[y|g] the likelihood for the data

[y|g] ∼MN(g, σ2I)

[g] the prior for g.

[g] ∼MN(0, ρK)

Bayes Theorem: the posterior

[g|y] =
[y|g][g]

[y]
∼ [y|g][g]
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The Posterior mode: where [g|y] has a maxi-
mum.

Maximizing [g|y] is the same as

minimizing −2ln[g|y] = −2ln([y|g])− 2ln([g]) + 2ln([y])

or
min
g

[−2ln([y|g])− 2ln([g])]

or plugging in the densities and some hand waving

min
θ

n∑
i=1

(y − [Kθ]i)2

σ2
+ ρθTKθ

The posterior mode is the penalized least squares estimate
where the penalty is equivalent to a prior!

This is true even we let ”g” be the entire field, not just its
values at the observations.
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A causal example of identifying a covariance
function

A useful form for k are isotropic correlations:

k(x,x′) = σ(x)σ(x′)φ(‖x− x′‖)

The Matern class of covariances:

φ(d) = ρψν(d/θ))

θ a range parameter, ν smoothness at 0.
ψν is an exponential for ν = 1/2 as ν →∞ Gaussian.
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Matern family: the shape ν
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Using the temporal information

In many cases spatial processes also have a temporal
component. Here we take the 89 days over the ”ozone
season” and just find sample correlations among sta-
tions.
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Mean and SD surfaces for 1987 ozone
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Covariance model:
k(x,x′) = ρσ(x)σ(x′)exp(−||x− x′||/θ)

Mean model: E(z(x)) = µ(x)
where µ is also a Gaussian spatial process.
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Spatial estimate and uncertainty

Posteror mean Posterior standard deviation.
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Summary

A spatial process model leads to a penalized least squares
estimate

A spline = Kriging estimate= Bayesian posterior mode

For spatial estimators the basis functions are related to the
covariance functions and can be identified from data
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