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T he additive model

Given n pairs of observations (z;,vy;), i=1,...,n

yi = g(x;) + €
€;'’S are random errors.

Assume that g is a realization of a Gaussian process.
and e are M N(0,o0°I)

Formulating a statistical model for g makes a very big differ-
ence in how we solve the problem.



A Normal World
We assume that g(x) is a Gaussian process,

pk(z, ") = COV (g(z),g9(z))
For the moment assume that E(g(x)) = 0.

(A Gaussian process = any subset of the field locations has
a multivariate normal distribution. )

We know what we need to do!
If we know k£ we know how to make a prediction at z!

g(z) = Elg(x)|datal

I.e. Just use the conditional multivariate normal distri-
bution.



A review of the conditional normal

u~ N(O0,X)

u—[ Y1) v — 2 11,212
U- 2 21,222

[usur] = N(Z2137721, Too — 013113 1)

and

Our application is
u; =y (the Data)
and

us> = (g(x1,...9(xy)) a vector of function values where we
would like to predict.



The Kriging weights

Conditional distribution of g given the data y is Gaus-
sian.

Conditional mean

g = COV(g,y) [COV(y)] "y = Sy

rows of S are the Kriging weights.

Conditional variance
COV(g,g) — COV(g,y) [COV (y)] ' COV(y,g)

With these two pieces we characterize the en-
tire conditional distribution



My geostatistics/BLUE overhead

For any covariance and any smoothing matrix (not just
S above) we can easily derive the prediction variance.

Question find the minimum of
E|(g(z) - §(x))?

over all choices of S. The answer: The Kriging weights
. or what we would do if we used the Gaussian process
and the conditional distribution.

Folklore and intuition: The spatial estimates are not very
sensitive if one uses suboptimal weights, especially if
the observations contain some measurement error.

It does matter for measures of uncertainty.



The connection to penalized least squares,
splines and the smoothing parameter

Let COV(g) = pK

(recall p is a just scale factor)
COV (y) = pK + oI
and so

g =pK(pK +o°I)"'y = K(K + X))y = A(\)y

where \ = ¢2/p

Have we seen this before?



T he main results

Recall

) = S Gutnl()
(=1

mgin > (y — [W0];)* + 0" B
=1

The Kriging estimator is identical to a penalized least squares
estimator with basis functions k(.,x;), penalty matrix B = K
and A = o?/p.

The Kriging estimator is a spline with reproducing
kernel k!

A is proportional to the measurement (nugget)
variance



T he Bayes connection

Bracket notation is very useful:
[Z] the density function for the random variable Z

[Y|z] the conditional density function for the random
variable Y given :z.

[y|g] the likelihood for the data
lylg] ~ MN(g,o°I)

[g] the prior for g.
lg] ~ MN(O, pK)
Bayes T heorem: the posterior

gl = M99 a1t
[y]




The Posterior mode: where [gly] has a maxi-
mum.

Maximizing [g|y] is the same as

minimizing —2in[g|y] = —2In([y|g]) — 2In([g]) + 2in([y])

or
min[—2in(lylg]) — 2in(lg])]

or plugging in the densities and some hand waving

in 37 = LKOL)

2
T he posterior mode is the penalized least squares estimate
where the penalty is equivalent to a prior!

+ p0' K6

(o)

This is true even we let "g” be the entire field, not just its
values at the observations.



A causal example of identifying a covariance
function

A useful form for k£ are isotropic correlations:

k(z,z') = o(x)o(x)o(||lx — z'||)

T he Matern class of covariances:

¢(d) = pip,(d/0))

6 a range parameter, r smoothness at 0.
Y, IS an exponential for v = 1/2 as v — co Gaussian.



Matern family: the shape v
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Using the temporal information

In many cases spatial processes also have a temporal
component. Here we take the 89 days over the " ozone
season” and just find sample correlations among sta-
tions.
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Mean and SD surfaces for 1987 ozone

seasonal mean (PPB) seasonal sd (PPB)
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Covariance model:
k(z,2') = po(z)o(a)exp(—|lx — z'||/0)

Mean model: E(z(x)) = pu(x)
where p IS also a Gaussian spatial process.




Spatial estimate and uncertainty

Posteror mean Posterior standard deviation.
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Summary

A spatial process model leads to a penalized least squares
estimate

A spline = Kriging estimate—= Bayesian posterior mode

For spatial estimators the basis functions are related to the
covariance functions and can be identified from data



