Douglas Nychka, www.image.ucar.edu/~nychka

- A penalized robust smoother
- Pseudo data.
- Empirical pseudo data
- Robust wavelets (and wavelets)

Supported by the National Science Foundation L' Ecole D'Ete, Ovoronnaz Sep 2005

Given n pairs of observations (x_i, y_i) , i = 1, ..., n

$$y_i = g(x_i) + \epsilon_i$$

 ϵ_i 's are random errors.

Assume that g is a smooth function or a realization of a Gaussian process and ϵ are symmetric but potentially heavy tailed.

Being tied to local averages makes it difficult to think about a robust method.

What is the model for the unknown function?

A univariate robust estimate as a minimization problem

Recall that

$$min_a\sum_{i=1}^n(y_i-a)^2$$

is a complicated way to characterize \bar{y} Let $\rho(t)$ be a convex function symmetric about 0.

 ρ is like t^2 close to 0 but grows like |t| when t is large

$$min_a\sum_{i=1}^n
ho(y_i-a)$$

will give a robust estimator that down weights the effect of large values of Z.

An example of ρ and its derviative Transition is at -2 and 2.

A smoother version is $\rho(t) = log(cosh(t))$...

A reasonable penalized smoother

Just replace the sum of squares with a robust measure of fit.

Recall

$$\widehat{g}(x) = \sum_{l=1}^{n} \widehat{\theta}_{k} \psi_{k}(x)$$
$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \rho(\boldsymbol{y} - [W\boldsymbol{\theta}]_{i}) + \lambda \boldsymbol{\theta}^{T} B \boldsymbol{\theta}$$

This is now a nonlinear problem to find $\boldsymbol{\theta}$

But in some sense we are done

Some details of actually finding $\widehat{g}(x)$

For convenience parametrize this as $f = W\theta W^{-1}f = \theta$

$$\min_{\boldsymbol{f}} \sum_{i=1}^{n} \boldsymbol{\rho}(\boldsymbol{y}_i - \boldsymbol{f}_i) + \lambda \boldsymbol{f}^T W^{-T} B W^{-1} \boldsymbol{f}$$

Differentiate, set equal to zero and Solve for f.

$$\eta =
ho'$$
 and $R = W^{-T}BW^{-1}$
 $\eta(y_i - f_i) - \lambda[Rf]_i = 0$

Adding an outlier to the ozone data

Some examples of robust smooths

Analysis of the robust estimator based on pseudo-data

This is theory – not yet practical. Create alternative observations: pseudo-data

$$ilde{y_i} = g(x_i) + rac{\eta(\epsilon_i)}{2}$$

Recall that $\eta = \rho$ and $\eta(\epsilon_i)$ will be bounded.

Use a least squares type smoother applied to the pseudo data

Theoretical Result for pseudo data

Consider smoothers that are based on a reproducing kernel (i.e. spatial statistics type estimates)

- \hat{g} robust estimate
- \tilde{g} LS estimate of g based on pseudo data.

$$\|f\|_n^2 = (1/n) \sum_{i=1}^n f(x_i)^2$$
 and $C_n = E \|\tilde{g} - g\|_n^2$

$$\|\widehat{g} - \widetilde{g}\|_n / \sqrt{(C_n)} \to 0$$

as $n \to \infty$.

Under several assumptions , e.g. on λ , $A(\lambda)$

Use an estimate in place of g.

$$\tilde{y}_i = \hat{g}(x_i) + \eta(y_i - \hat{g}(x_i))/2$$

Empirical pseudo data (EPD) and fixed points

Apply a LS smoother to the EPD to get a robust estimate of g. Our goal is a fixed point where the estimate obtained is the same as that used to construct the EPD

An algorithm:

- Start with initial \hat{g}^0 .
- Repeat:

1. Form EPD: $\tilde{y}_i = \hat{g}^J(x_i) + \eta(y_i - \hat{g}^J(x_i))/2$ **2.** \hat{g}^{J+1} LS smoother based on \tilde{y}

Comments

- If the algorithm converges it will give the robust estimator!
- In the smoothing step 2 one can also use Cross validation to choose the smoothing parameter.
- One need not use a spline type smoother any penalized LS smoother can work.

Wavelets

Choose a multiresolution basis: members are similiar shape but different sizes of supports at different locations.

A simple shrinkage estimate

Usually the wavelet basis is orthogonal, locations eqaully spaced.

$$W^T y = \theta^*$$

These are the empirical coefficients for g. (i.e. $y = W\theta^*$) Now shrink and decimate

For some C > 0

$$\widehat{\theta}_k = sign(\theta_k^*)(|\theta_k^*| - C)_+$$
$$(u)_+ = u \text{ if } u > 0 \text{ and } 0 \text{ if } u \le 0$$

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} (\boldsymbol{y}_{i} - [W\boldsymbol{\theta}]_{i})^{2} + \lambda \sum_{i=1}^{n} |\boldsymbol{\theta}_{i}|$$

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} (\boldsymbol{y}_{i} - [W\boldsymbol{\theta}]_{i})^{2} + \lambda \sum_{i=1}^{n} |\boldsymbol{\theta}_{i}|$$

$$\min_{\boldsymbol{\theta}} \|(\boldsymbol{y} - W\boldsymbol{\theta}\|^2 + \lambda \sum_{i=1}^n |\boldsymbol{\theta}_i|$$
$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}^* - \boldsymbol{\theta}\|^2 + \lambda \sum_{i=1}^n |\boldsymbol{\theta}_i|$$

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} (\boldsymbol{y}_{i} - [W\boldsymbol{\theta}]_{i})^{2} + \lambda \sum_{i=1}^{n} |\boldsymbol{\theta}_{i}|$$

$$\min_{\boldsymbol{\theta}} \|(\boldsymbol{y} - W\boldsymbol{\theta}\|^2 + \lambda \sum_{i=1}^n |\boldsymbol{\theta}_i|$$
$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}^* - \boldsymbol{\theta}\|^2 + \lambda \sum_{i=1}^n |\boldsymbol{\theta}_i|$$

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} (\boldsymbol{\theta}_{i}^{*} - \boldsymbol{\theta}_{i})^{2} + \lambda \sum_{i=1}^{n} |\boldsymbol{\theta}_{i}|$$

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} (\boldsymbol{y}_{i} - [W\boldsymbol{\theta}]_{i})^{2} + \lambda \sum_{i=1}^{n} |\boldsymbol{\theta}_{i}|$$

$$\min_{\boldsymbol{\theta}} \|(\boldsymbol{y} - W\boldsymbol{\theta}\|^2 + \lambda \sum_{i=1}^n |\boldsymbol{\theta}_i|$$
$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}^* - \boldsymbol{\theta}\|^2 + \lambda \sum_{i=1}^n |\boldsymbol{\theta}_i|$$

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} (\boldsymbol{\theta}_{i}^{*} - \boldsymbol{\theta}_{i})^{2} + \lambda \sum_{i=1}^{n} |\boldsymbol{\theta}_{i}|$$

For each *i*

$$\min_{\boldsymbol{\theta}_i} (\boldsymbol{\theta}_i^* - \boldsymbol{\theta}_i)^2 + \lambda |\boldsymbol{\theta}_i|$$

We know how to do this! And it is the same as shrinkage.

A robust wavelet

Choose a multiresolution basis

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \rho(\boldsymbol{y} - [W\boldsymbol{\theta}]_i) + \lambda \sum_{i=1}^{n} |\boldsymbol{\theta}_i|$$

The absolute value penalty really changes the estimator! EPD also works here.

LS denoising

John Lennon with outlier noise

Robust version

Summary

We have substituted a robust measure of fit for the sum of squares to get a robust smoother.

There is some theory for the robust smoother based on pseudo data.

Empirical pseudo data provides a computational algorithm and a generalization to more exotic penalized estimators.