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The additive model

Given n pairs of observations (xi, yi), i = 1, . . . , n

yi = g(xi) + εi

εi’s are random errors.

Assume that g is a smooth function or a realization of
a Gaussian process and ε are symmetric but potentially
heavy tailed.

Being tied to local averages makes it difficult to think about
a robust method.

What is the model for the unknown function?
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A univariate robust estimate as a minimization
problem

Recall that

mina
n∑
i=1

(yi − a)2

is a complicated way to characterize ȳ

Let ρ(t) be a convex function symmetric about 0.

ρ is like t2 close to 0 but grows like |t| when t is large

mina
n∑
i=1

ρ(yi − a)

will give a robust estimator that down weights the effect
of large values of Z.
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An example of ρ and its derviative
Transition is at −2 and 2.
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A smoother version is ρ(t) = log(cosh(t)) ...
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A reasonable penalized smoother

Just replace the sum of squares with a robust measure
of fit.

Recall

ĝ(x) =
n∑
l=1

θ̂kψk(x)

min
θ

n∑
i=1

ρ(y − [Wθ]i) + λθTBθ

This is now a nonlinear problem to find θ

But in some sense we are done ...
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Some details of actually finding ĝ(x)

For convenience parametrize this as f = Wθ W−1f = θ

min
f

n∑
i=1

ρ(yi − f i) + λfTW−TBW−1f

Differentiate, set equal to zero and Solve for f .

η = ρ′ and R = W−TBW−1

η(yi − f i)− λ[Rf ]i = 0
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Adding an outlier to the ozone data
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Some examples of robust smooths
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Analysis of the robust estimator based on
pseudo-data

This is theory – not yet practical. Create alternative
observations: pseudo-data

ỹi = g(xi) +
η(εi)

2

Recall that η = ρ and η(εi) will be bounded.

Use a least squares type smoother applied to the pseudo data
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Theoretical Result for pseudo data

Consider smoothers that are based on a reproducing
kernel (i.e. spatial statistics type estimates )

ĝ robust estimate

g̃ LS estimate of g based on pseudo data.

‖f‖2
n = (1/n)

∑n
i=1 f(xi)

2 and Cn = E‖g̃ − g‖2
n

‖ĝ − g̃‖n/
√
(Cn) → 0

as n→∞.

Under several assumptions , e.g. on λ, A(λ)
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Empirical pseudo data

Use an estimate in place of g.

ỹi = ĝ(xi) + η(yi − ĝ(xi))/2

Empirical pseudo data (EPD) and fixed points

Apply a LS smoother to the EPD to get a robust esti-
mate of g. Our goal is a fixed point where the estimate
obtained is the same as that used to construct the EPD

An algorithm:

• Start with initial ĝ0.

• Repeat:

1. Form EPD: ỹi = ĝJ(xi) + η(yi − ĝJ(xi))/2

2. ĝJ+1 LS smoother based on ỹ
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Comments

• If the algorithm converges it will give the robust es-
timator!

• In the smoothing step 2 one can also use Cross vali-
dation to choose the smoothing parameter.

• One need not use a spline type smoother any penal-
ized LS smoother can work.
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Wavelets

Choose a multiresolution basis: members are similiar
shape but different sizes of supports at different loca-
tions.
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A simple shrinkage estimate

Usually the wavelet basis is orthogonal, locations eqaully
spaced.

W Ty = θ∗

These are the empirical coefficents for g. (i.e. y = Wθ∗)

Now shrink and decimate

For some C > 0

θ̂k = sign(θ∗k)(|θ
∗
k| − C)+

(u)+ = u if u > 0 and 0 if u ≤ 0
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So what about penalized LS?
For orthogonal wavelets. W TW = I.

min
θ

n∑
i=1

(yi − [Wθ]i)
2 + λ

n∑
i=1

|θi|
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So what about penalized LS?
For orthogonal wavelets. W TW = I.

min
θ

n∑
i=1

(yi − [Wθ]i)
2 + λ

n∑
i=1

|θi|

min
θ

‖(y −Wθ‖2 + λ
n∑
i=1

|θi|

min
θ

‖θ∗ − θ‖2 + λ
n∑
i=1

|θi|
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So what about penalized LS?
For orthogonal wavelets. W TW = I.

min
θ

n∑
i=1

(yi − [Wθ]i)
2 + λ

n∑
i=1

|θi|

min
θ

‖(y −Wθ‖2 + λ
n∑
i=1

|θi|

min
θ

‖θ∗ − θ‖2 + λ
n∑
i=1

|θi|

min
θ

n∑
i=1

(θ∗i − θi)
2 + λ

n∑
i=1

|θi|
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So what about penalized LS?
For orthogonal wavelets. W TW = I.

min
θ

n∑
i=1

(yi − [Wθ]i)
2 + λ

n∑
i=1

|θi|

min
θ

‖(y −Wθ‖2 + λ
n∑
i=1

|θi|

min
θ

‖θ∗ − θ‖2 + λ
n∑
i=1

|θi|

min
θ

n∑
i=1

(θ∗i − θi)
2 + λ

n∑
i=1

|θi|

For each i

min
θi

(θ∗i − θi)
2 + λ|θi|

We know how to do this! And it is the same as shrink-
age.
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A robust wavelet
Choose a multiresolution basis ....

min
θ

n∑
i=1

ρ(y − [Wθ]i) + λ
n∑
i=1

|θi|

The absolute value penalty really changes the estimator!
EPD also works here.
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John Lennon with outlier noise

LS denoising Robust version
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Summary

We have substituted a robust measure of fit for the sum of
squares to get a robust smoother.

There is some theory for the robust smoother based on
pseudo data.

Empirical pseudo data provides a computational algorithm
and a generalization to more exotic penalized estimators.
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