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T he additive model

Given n pairs of observations (z;,vy;), i=1,...,n

yi = g(x;) + €

€;'’S are random errors.

Assume that g is a smooth function or a realization of
a Gaussian process and e are symmetric but potentially
heavy tailed.

Being tied to local averages makes it difficult to think about
a robust method.

What is the model for the unknown function?



A univariate robust estimate as a minimization
problem

Recall that .
ming »_(yi — a)?
=1
IS a complicated way to characterize y

Let p(¢) be a convex function symmetric about O.
p is like t? close to 0 but grows like |t| when t is large

ming Y p(yi — a)
=1

will give a robust estimator that down weights the effect
of large values of ~.



An example of p and its derviative
Transition is at —2 and 2.
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A smoother version is p(t) = log(cosh(t)) ...



A reasonable penalized smoother

Just replace the sum of squares with a robust measure
of fit.

Recall

) = S Gutnl()
(=1

i Y p(y — [W6],) + \6' B
1=1

This is now a nonlinear problem to find 6

But in some sense we are done ...



Some details of actually finding g(x)

For convenience parametrize this as f =W6 W-1f =20

min S oy — £) + AFTWTBW L f
1=1

Differentiate, set equal to zero and Solve for f.

n=p and R=W-1BW-1
n(y; — f:) — AMRfli=0



GCV function
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Adding an outlier to the ozone
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Some examples of robust smooths

df= 75 df =110
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Analysis of the robust estimator based on
pseudo-data

This i1s theory — not yet practical. Create alternative
observations: pseudo-data

uley
2

y; = g(x;) +

Recall that » = p and n(¢;) will be bounded.

Use a least squares type smoother applied to the pseudo data



Theoretical Result for pseudo data

Consider smoothers that are based on a reproducing
kernel (i.e. spatial statistics type estimates )

g robust estimate

g LS estimate of g based on pseudo data.

117 = (1/n) i, f(2:)? and Cn, = E||g — glI7

19 — glln/V(Crn) — O

dS n — o0.

Under several assumptions , e.g. on X\, A()\)



Empirical pseudo data

Use an estimate in place of g.
g = g(x:) +n(y: — g(xs)) /2

Empirical pseudo data (EPD) and fixed points

Apply a LS smoother to the EPD to get a robust esti-
mate of g. Our goal is a fixed point where the estimate
obtained is the same as that used to construct the EPD

An algorithm:

e Start with initial g°.
e Repeat:

1. Form EPD: §; = g/(x:) + n(y: — 97 (x:)) /2
2. g/t LS smoother based on ¥



Comments

e If the algorithim converges it will give the robust es-
timator!

e In the smoothing step 2 one can also use Cross vali-
dation to choose the smoothing parameter.

e One need not use a spline type smoother any penal-
ized LS smoother can work.



Wavelets

Choose a multiresolution basis: members are similiar
shape but different sizes of supports at different loca-
tions.
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A simple shrinkage estimate

Usually the wavelet basis is orthogonal, locations eqaully
spaced.

Why = 0*
These are the empirical coefficents for g. (i.e. y = W@0")
Now shrink and decimate

For some C >0
0 = sign(07)(16}] — )+
(w)+ =uwifu>0and 0 iIf u <O



So what about penalized LS?
For orthogonal wavelets. WTW = J.

mgin > (y, — [WOl:)° + 1) _ |6
=il i=1



So what about penalized LS?
For orthogonal wavelets. WTW = J.

mgin > (y, — [WOl:)° + 1) _ |6
=il i=1
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So what about penalized LS?
For orthogonal wavelets. WTW = J.

mgin > (y, — [WOl:)° + 1) _ |6
=il i=1
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So what about penalized LS?
For orthogonal wavelets. WTW = J.

mein > (y;, — [WOl:)° + 1) _ |6
=il i=1

mgin [(y — WO|>+ 2> 6]
=1
mein 10* — 0|]° + 2D 6]
=1

mein > (07 —0,)%+ 2> 6]
i=1 1=1

For each :

rréin(H;f —0,)* + )0

We know how to do this! And it is the same as shrink-
age.



A robust wavelet
Choose a multiresolution basis ....

min>_ p(y = (W6l) +23_ |64
=l =l

T he absolute value penalty really changes the estimator!
EPD also works here.



John Lennon with outlier noise




Summary

We have substituted a robust measure of fit for the sum of
squares to get a robust smoother.

There is some theory for the robust smoother based on
pseudo data.

Empirical pseudo data provides a computational algorithm
and a generalization to more exotic penalized estimators.



