
Assumptions for Precipitation Infilling

1 Spatial Estimates of Mean

Let P (x, t) denote the precipitaiton at location x at time t and µ(x) = E[P (x, t)]. We assume

that µ(x) does not depend on t. Then, µ(x) = θ(x)2 + σ(x)2 where θ(x) = E[
√

P (x, t)] and

σ(x)2 = Var[
√

P (x, t)]. Moreover, setting

C(x) =
σ(x)2

θ(x)2 + σ(x)2

it follows that

θ(x) =
√

µ(x)(1− C(x))

σ(x) =
√

µ(x)C(x)

Thus once C(x) is known, estimates of θ and σ can be found using the relationships given

above and substituting µ̂ from the PRISM analysis for µ.

We prefer this route because the function C, related to a coefficient of variation, exhibits

less spatial dependence than the individual means and variances. We further found that C(x)

does not depend strongly on elevation. By constructing the estimates of θ and σ in this way

the implied estimate of µ will be µ̂, the PRISM mean. The function C(x) was estimated by

smoothing the sample statistics with a kernel estimator. The bandwidths were determined by

minimizing the mean squared error for a subset of 400 stations reserved for cross-validation.

The resulting bandwidths for each of the 12 months were small, followed a seasonal cycle

and ranged from approximately 25 to 35 miles (.4 to .6 degrees of longitude/latitude).
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2 Time Independence

We assumed that the monthly observations are independent in time (conditional on nuisance

parameters).
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Figure 1: Fisher-transforms of correlation of (Data - Infill)i with Datai−1. The conditional

correlations are generally small and suggest that in the presence of spatial informaton from

the current time period, there is little predictive ability of the previous time period.
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3 Spatial Estimate of α

We assumed that α, the degrees of freedom in the inverse-Wishart model, depended on

location. We used leave-one-out prediction on the special subset of stations to obtain RMSE

curves on the 400 stations in 4. Principle Components and smoothing was then used to

estimate RMSE curves for all stations. Minima of these curves are shown in Figure 2.
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Figure 2: The degrees of freedom (α) estimated by Cross-validation and spatial smoothing.
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4 Special Subset

We chose a subset of the stations and used data from these stations to 1) estimate long-range

covariance and 2) approximate degrees of freedom over space. These 400 stations were chosen

from stations with at least 50 observations in such a way that the spacing is as uniform as

possible over the domain. Figure 4 shows the locations of these stations.
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Figure 3: The subset of 400 stations used for estimating the long-range correlation and the

degrees of freedom (see Section 3)
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5 Covariance function

k(xi,xj) = exp

{
−

(
d1(xi,xj)

η1

+
d2(xi,xj)

η2

)η3
}

where

d1(xi,xj) = east-west distance between points xi and xj

d2(xi,xj) = north-south distance between points xi and xj

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

η1 736 680 771 715 676 499 372 363 786 947 786 686

η2 618 566 624 588 577 425 300 308 661 908 723 614

η3 0.81 0.79 0.75 0.72 0.63 0.58 0.56 0.61 0.63 0.71 0.80 0.83
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