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Overview

Data Assimilation (DA):

Combining predictions made by a numerical model with observed data to

estimate the state of a system, x. This is also called a filter.

The statistical foundation is Bayes Theorem and the uncertainty in the state

of the system is represented by a probability distribution.

PRIOR for x + observations → POSTERIOR for x

Usually the assimilation is done at many consecutive time points and the prac-

tical implementation involves many shortcuts to approximate a posterior dis-

tribution.
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Why are we doing this?

• Forecast the weather

• Assimilating data for a given geophysical model may be one of the few ways

to test it.

Some key ideas:

• Represent a continuous distribution by a random sample.

• Only update state variables ”local” to the observations

• Use local regression to update the state variables

Contribution:

A Local-Local filter to handle non-Gaussian data assimilation problems.
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Atmospheric models and forecasting
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Atmospheric models 101

• A deterministic numerical model that describes the circulation of the at-

mosphere.

• State of system defined on a 3-d grid of the the atmosphere.

Community climate system model (CCSM2) 128×64×30 boxes (200km)

Rapid Update Cycle Model (RUC) is run on part of the earth but on a

40km grid.

• Evolution of the model is governed by a discretizing the nonlinear equations

of motion derived from fluid dynamics, usually deterministic.

xt+1 = g(xt)

g is nonlinear, complicated and fairly expensive to evaluate

Making a deterministic Forecast:

Given x̂t, x̂t+1 = g(x̂t)
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40-Dimensional Lorenz System (Lorenz, 1996)

• Atmospheric system describing k values of an atmospheric variable at k

longitudes: x1, . . . , x40. (Subscript denotes spatial location.)

• Equations: for j = 1, . . . , 40,

ẋj = xj−1(xj+1 − xj−2)− xj + F,

where F represents forcing.

• The equations contain quadratic nonlinearities mimicking advection:

u̇i ∝ ui
∂ui
∂x ≈ ui(ui′ − ui?)/δ.

• F is chosen so that phase space is bounded and the system exhibits chaotic

behavior.

• ’observe’ z2, z4, . . . , z40: yj = zj + εj, εj ∼ N(0, 4) and δt = .40.

6



Observational network and forecasting

Rapid Update Cycle (RUC) model:

• rawinsondes (balloons) and special dropwinsondes

• commercial aircraft

• wind profilers

• surface reporting stations and buoys

• Radio Acoustic Sounding System - experimental

• various satellite data ...
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The Bayes cycle

p(xt), yt
Bayes−→ p(xt|yt)

g(.)−→ p(xt+1|yt) = p(xt+1), yt+1

Yesterday’s posterior becomes today’s prior!
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Standard Kalman Filter/ conditional multivariate normal distri-
butions

This is easy in closed form if everything is multivariate normal and linear.

Observation Model

y = Hxt + e

with

e ∼MN(0, R)

Prior

xt ∼MN(µt,Σ)

Kalman update for state

x̂t = E(xt|y) = µt + HT (HΣHT + R)−1(y −Hµt)

Kalman update for covariance

V AR(xt|y) = P t
a = Σ−HT (HΣHT + R)−1H
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Forecast mean:

Assume that g is linear

x̂t+1 = Gx̂t

Forecast covariance:

P t+1
f,t = GP t

aG
t

A qualifier problem:

These are just results based on the conditional distributions for the multi-

variate normal because everything is assumed to be Gaussian or a linear trans-

formation.
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Problems

• x ≈ 106 − 107 and y ≈ 105 − 106

So even with closed form expressions the computations may not be feasible

because the linear systems are huge.

• Finding

p(xt+1|yt) = p(g(xt)|yt)

from

p(xt|yt)

is the mother of all change of variable problems!

• Pf can not be stored or directly propagated.
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Ensembles

Each distribution is represented by a random sample of the states called an

ensemble.

In place of

π(xt|yt)→ π(g(xt)|yt)

propagate each ensemble member.

xt,1
xt,2

...

xt,M

g →

g(xt,1) = xt+1,1

g(xt,2) = xt+1,2
...

g(xt,M) = xt+1,M

By elementary probability:

{xt,j} is a random sample from p(xt|yt) implies {xt+1,j} will be a random

sample from p(xt+1|yt)
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Ensemble Kalman filter (EKF)

• If the observations have independent errors, the observations can be assim-

ilated sequentially to get the same result.

• Wherever a covariance matrix or mean vector appears replace these by the

sample quantities from the ensemble. The covariance matrix is tapered to

be a better estimate and inflated to make the filter stable.

• Sampling to get the new ensemble for posterior is computed in a very similar

way as the standard update ( perturbed observation method).
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Ensemble Kalman filter (EKF) (continued)

The first point suggests a double loop algorithm:

Assimilating at a given time:

Loop over observations {y1, y2, ...yn}
Loop over ensemble members: {x1,x2, ...,xM}

Update each ensemble member xi based on yj

A key aspect is that the observation only changes part of the state vector that

is ”close” to it due to the covariance tapering.

Given an observation at RDU, update a Greensboro,NC grid point ...

but a grid point near Moscow is unchanged.

It is an open question how the approximations and tuning parameters in the

EKF change its statistical performance. Also given that g is nonlinear one can

not expect Gaussian distributions.
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How an Ensemble Filter Works

Theory: Impact of observations can be handled sequentially
Impact of observation on each state variable can be handled
sequentially

B. Observed value
and observational error
distribution from observing

H

H

H

D. (Step 1) Find
increments for
prior estimate of
observation.

E. (Step 2) Use linear
regression to compute
corresponding increments
for each state variable.

A. Integrate model
ensemble to time
at which observation
becomes available.

system.

C. Get prior ensemble
sample of observation
by applying H to each
member of ensemble.
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Same idea on a 3 dimensional system
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Non-Gaussian distributions

Represent the prior distributions as mixtures of multivariate normals

p(xt) =
∑k

i=1 piMN(µi,Pi)

The posterior distribution is also a mixture:

p(xt|yt) =
∑k

i=1 p
?
iMN(µ?i ,P

?
i )

Ensembles as a mixture distribution:

Each ensemble member is the center of a mixture where the covariance is the

sample covariance of its nearest neighbors.

From the form for the posterior mean using ensembles the posterior probabilities

look like weights based on a normal kernel. The use of neighborhoods to finds

the covariance results in a local linear regression.

Thus in some strange way we have reinvented LOESS, local linear regression!
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A non-Gaussian update as a local regression

Observe X2 with error and wish to update X1 and X3.
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A non-Gaussian example

19



Local-local filter

Curse of dimensionality:

40 dimensions is too large a state space to apply the mixture ensemble filter

directly.

In 40 dimensions every state vector is far away from every other!

Basic idea is to only use the mixture model for components of the state vector

close to the observations. Otherwise use the usual EKF for updating compo-

nents.
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Summary

Results

• We have some evidence that the practical version of the EKF actually

handles nonGaussian distributions better than an exact Kalman filter.

• The Local-Local filter clearly out performs the EKF in a simple 3-d system

especially in places where g is very nonlinear.

• A version of the L-L filter also performs better than EKF with about 5%

improvement (without any extensive tuning) for the 40 variable model.

Some Future Work

• Adaptive estimates of tuning parameters

• Robust estimators

• Exploring more realistic test systems, e.g. primitive equation models for a

dry atmosphere.
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