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[1] Many geophysical problems are characterized by high-dimensional, nonlinear systems
and pose difficult challenges for real-time data assimilation (updating) and forecasting.
The present work builds on the ensemble Kalman filter (EnsKF), with the goal of
producing ensemble filtering techniques applicable to non-Gaussian densities and high-
dimensional systems. Three filtering algorithms, based on representing the prior density as
a Gaussian mixture, are presented. The first, referred to as a mixture ensemble Kalman
filter (XEnsF), models local covariance structures adaptively using nearest neighbors. The
XEnsF is effective in a three-dimensional system, but the required ensemble grows rapidly
with the dimension and, even in a 40-dimensional system, we find the XEnsF to be
unstable and inferior to the EnsKF for all computationally feasible ensemble sizes. A
second algorithm, the local-local ensemble filter (LLEnsF), combines localizations in
physical as well as phase space, allowing the update step in high-dimensional systems to
be decomposed into a sequence of lower-dimensional updates tractable by the XEnsF.
Given the same prior forecasts in a 40-dimensional system, the LLEnsF update produces
more accurate state estimates than the EnsKF if the forecast distributions are sufficiently
non-Gaussian. Cycling the LLEnsF for long times, however, produces results inferior to
the EnsKF because the LLEnsF ignores spatial continuity or smoothness between local
state estimates. To address this weakness of the LLEnsF, we consider ways of enforcing
spatial smoothness by conditioning the local updates on the prior estimates outside the
localization in physical space. These considerations yield a third algorithm, which is a
hybrid of the LLEnsF and the EnsKF. The hybrid uses information from the EnsKF to
ensure spatial continuity of local updates and outperforms the EnsKF by 5.7% in RMS
error in the 40-dimensional system. INDEX TERMS: 3220 Mathematical Geophysics: Nonlinear

dynamics; 3260 Mathematical Geophysics: Inverse theory; 3299 Mathematical Geophysics: General or

miscellaneous; KEYWORDS: nonlinear filtering, data assimilation, Bayesian filtering, particle filtering,

ensemble Kalman filter, numerical weather prediction
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1. Introduction

[2] Data assimilation for the ocean and atmosphere are
important cases of estimating the state of a system given a
sequence of observations and (some) knowledge of the
evolution of the system. Because the observations and the
forecast model are inexact (and because the evolution of
the state depends sensitively on initial conditions), the true
state of the system can never be determined precisely. The
most complete summary of our knowledge of the system
state is therefore given by the probability density function
( pdf ) of the state conditional on the observations [Epstein,
1969]. In a geophysical context, both forecasting this pdf
forward in time and updating the forecast pdf given new
observations have formidable obstacles: The dimension of

the state vector in most oceanic and atmospheric models is
extremely high, often exceeding 106 components, and the
systems are significantly nonlinear, leading to the potential
for non-Gaussian pdfs.
[3] The present article focuses on ensemble or Monte

Carlo techniques for the forecasting and updating of the pdf.
One promising approach for high-dimensional geophysical
problems is the ensemble Kalman filter (EnsKF) [Evensen,
1994; Houtekamer and Mitchell, 1998]. The EnsKF update,
however, depends only on the first and second moments of
the ensemble and is thus suboptimal for non-Gaussian pdfs.
Our goal here is to build on the EnsKF to produce ensemble
techniques applicable to non-Gaussian pdfs, and to be
generally useful, these techniques should have the potential
to extend to high-dimensional systems.
[4] The algorithms we present approximate the forecast

distribution by mixtures of Gaussian distributions. The use
of Gaussian mixtures allows (in principle) arbitrary, non-
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Gaussian pdfs to be handled and reduces updating the pdf
given observations to updating each individual Gaussian in
the mixture along with its mixing probability [Alspach and
Sorenson, 1972]. Gaussian mixtures have been used before
as the basis for ensemble assimilation techniques [Anderson
and Anderson, 1999; Chen and Liu, 2000], but these
existing techniques are problematic in high-dimensional
systems.
[5] The difficulties with such existing techniques arise in

part because the methods used to resample from the
posterior pdf are computationally intensive. At a more
fundamental level, however, the difficulties are intertwined
with the well-known difficulty of estimating pdfs in high
dimensions [Silverman, 1986]. Simple estimates suggest
that the sample size required to estimate a multivariate pdf
with a given accuracy increases exponentially with dimen-
sion. For systems with 106–108 variables, such as global
atmospheric forecast models, the huge sample sizes required
clearly rule out direct, brute-force attempts to estimate non-
Gaussian pdfs. Mixture estimates suffer from the same
limitations. In ensemble techniques, these limitations result
in extremely large sampling variability and the collapse of
the mixture onto a single ensemble member. To make non-
Gaussian updating feasible in high dimensions, we suggest
three enhancements of these existing techniques.
[6] 1. The covariance for each Gaussian in the mixture is

based on the sample covariance of a subset of ensemble
members that are close in phase space to each center. This
makes the mixture adaptive as the estimate of the pdf
depends on the structure of the sample in phase space and
helps to capture lower-dimensional ‘‘sheets’’ that are typical
of chaotic dynamics.
[7] 2. We generalize the implicit sampling scheme of

EnsKF, which avoids manipulation of large matrices and is
feasible in high dimensions, to mixtures of Gaussian dis-
tributions. The extension is straightforward but is not
available in the literature.
[8] 3. The algorithms allow each observation to influ-

ence only state variables that are nearby in physical space
in order to reduce the effective dimensionality of the
update. This physically local updating is a common feature
of geophysical assimilation schemes, including both opti-
mal interpolation [Schlatter et al., 1976] and the EnsKF
[Houtekamer and Mitchell, 1998], but as local non-Gaussian
updates at different physical locations must be smoothly
blended, its application is novel and nontrivial.
[9] We will show that these three ideas, together with

information from the EnsKF, yield a hybrid technique that
can outperform the EnsKF in a 40-dimensional system.
While the improvement relative to the EnsKF is not yet
overwhelming, the hybrid technique demonstrates the
potential for ensemble-based, non-Gaussian state estimation
outside of very low dimensional systems.
[10] The paper proceeds as follows. Section 2 presents

additional background and notation. This includes an intro-
duction to the atmospheric and oceanic assimilation prob-
lem, together with background on the Kalman filter, the
EnsKF, and the update for a Gaussian mixture. Readers
familiar with these topics may wish to proceed directly to
section 3, which outlines three filtering algorithms. The first
two of these we term the mixture ensemble filter and the
local-local ensemble filter. The local-local filter is then used

in conjunction with the EnsKF to give a hybrid filter that
incorporates each of the three enhancements discussed
above. Section 4 tests the algorithms on two dynamical
systems: the classic Lorenz system [Lorenz, 1963] and a
40-dimensional system mimicking flow around a latitude
circle [Lorenz, 1996]. Although the 40-dimensional system
is small compared to numerical weather prediction models,
it is easily large enough to challenge existing non-Gaussian
techniques. Indeed, our tests with this system identify
important weaknesses in both the mixture filter and the
local-local ensemble filter; for computationally feasible
ensemble sizes, neither scheme can outperform the EnsKF.
The hybrid filter is then developed to address those weak-
nesses. Section 5 summarizes both the techniques devel-
oped and the experimental results.

2. Background and Notation

2.1. Update//Forecast Cycle

[11] We will focus on the data assimilation and forecast-
ing problem associated with numerical weather prediction.
In this problem the goal is to modify the forecast pdf for the
system once new data is available. The modified pdf is then
propagated forward using knowledge of the system dynam-
ics to give a new forecast and is subsequently updated again
when new observations become available. This process,
which we will refer to as a filtering algorithm, consists of
two distinct steps: an update or data-assimilation step and a
forecast step. As mentioned, both the update and forecast
steps are challenging to implement in a geophysical context.
[12] In the update step a forecast pdf is updated given a

new set of observations via Bayes’s theorem. The best
known filtering algorithm is in the context of Gaussian
distributions and linear system dynamics, where the update
pdf is described by the Kalman filter recursion [Kalman,
1960]. Unfortunately, analytic solutions to the update step
can only be derived for a few special cases, and working
explicitly with the state pdf is therefore not practical. As an
alternative, various computational techniques have been
developed in the last 2 decades to address more complex
problems [see, e.g., Gilks et al., 1996]. However, as the
computational requirements increase rapidly with dimen-
sion, calculation of the update pdf can only be envisioned
for systems with a small number of degrees of freedom.
Furthermore, for problems involving sequential estimation
(and propagation), these methods have proven to be ineffi-
cient [Doucet et al., 2001].
[13] In the forecast step a probabilistic forecast is made by

evolving the updated pdf forward in time. This is done using
known or approximate dynamical laws, typically specified
by stochastic differential equations. A statistician may view
the forecast step as a transformation-of-variables problem:
Given a pdf for (the random variable) X and a transforma-
tion G(�), representing the time evolution of a dynamic
system, find the pdf of the transformation G(X). Not
surprisingly, analytic solutions in the forecast step are rarely
available, and direct calculation of the forecast pdf in many
dimensions is computationally prohibitive.
[14] Some of the difficulties of implementation described

above can be surmounted by approximating the pdf with a
discrete sample, which we will refer to throughout this
paper as an ensemble. Given an ensemble sampled from the
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updated pdf, the forecast ensemble is derived by propagat-
ing each ensemble member using G(�) [Leith, 1971]. By
elementary probability rules, this yields a sample from the
forecast pdf. In this article we will assume that G is known
perfectly, although some model errors could be represented
by a stochastic process and incorporated into this frame-
work [Jazwinski, 1970]. Updating the forecast ensemble
given observations (that is, constructing a sample from the
updated pdf ) is considerably more complex, especially for
non-Gaussian pdfs, and is the focus of this article. The
update step for the EnsKF is reviewed in section 2.4, while
section 3 presents our algorithms for non-Gaussian pdfs
based on Gaussian mixtures.
[15] Outside the geosciences, there is also a rich statistical

literature on particle filters (PF) and their variants [Doucet et
al., 2001]. PF are a set of Monte Carlo techniques for
approximating the fully nonlinear, Bayesian update. In their
simplest form they represent the forecast pdf with an
ensemble but may also carry importance weights attached
to each member, or ‘‘particle.’’ The algorithms we consider,
in contrast, use ensembles of equally weighted members
that can be manipulated as if they were a random sample.
PF applications have focused on low-dimensional systems
and system dynamics that have a random component. In this
paper we consider deterministic but chaotic systems, a
reasonable framework for problems associated with atmo-
spheric and oceanic data assimilation.

2.2. Notation and the Kalman Filter

[16] To set notation, let xt denote the state vector of the
system at time t, and let yt be a new vector of observations.
Initial knowledge of the system is given by the conditional
forecast distribution p(xtjYt�1), where Yt�1 denotes all past
data up to and including time t � 1. The update step
combines the forecast distribution and the new data, giving
the posterior distribution p(xtjYt). Calculation of p(xt|Yt) is
an application of Bayes’s theorem.
[17] We now outline the standard Kalman filter update

since it forms the basis for all subsequent techniques here.
Suppose that a linear observation operator, Ht, relates the
unobserved state, xt, to the data, yt:

yt ¼ Htxt þ et; ð1Þ

where et � N(0, R). Without loss of generality, R may be
assumed diagonal; one can always transform equation (1) to
an observation equation with independent and identically
distributed errors by multiplying through by R�1/2.
[18] If we assume that p(xtjYt�1) � N(Mt

f, Pt
f), then a

straightforward application of Bayes’s theorem yields

p xtjYtð Þ ¼ N Mu
t ;P

u
t

� �
; ð2Þ

where

Mu
t ¼ M

f
t þKt yt �HtM

f
t

� �
ð3Þ

and

Pu
t ¼ I�KtHtð ÞP f

t : ð4Þ

Here, Kt denotes the Kalman gain matrix and is given by

Kt ¼ P
f
t H

0
t HtP

f
t H

0
t þ R

� ��1

; ð5Þ

where a prime superscript denotes matrix transpose.
[19] For completeness, we note here that if the system

dynamics are linear, then the forecast distribution will again
be multivariate normal, and the covariance and mean have
simple closed forms. However, this aspect will not be used
in our discussion as in all subsequent methods we approx-
imate the forecast distribution through the propagation of an
ensemble. The creation of the ensemble in the update step is
described in section 2.3.

2.3. Ensemble Kalman Filter Update

[20] The EnsKF, which has been recently advanced in the
geosciences [Evensen, 1994; Houtekamer and Mitchell,
1998], is a Monte Carlo-based approach to forecasting
and data assimilation. The continuous forecast and update
distributions are approximated by a discrete distribution of
ensemble members, where each member is a point mass
assigned equal probability. (The EnsKF may thus be con-
sidered a special case of a particle filter.)
[21] To anchor our extensions to the EnsKF, we first

describe one of its standard implementations. Let {x
f
t;i} for

1 
 i 
 m denote an m-member ensemble representing
the distribution p(xtjYt�1). The update step consists of
applying an approximate form of the Kalman filter update
of equation (2) to each member. Specifically, the algorithm
estimates an approximate gain matrix, ~Kt, using sample
covariances based on the ensemble

P
f
t H

0
t � m� 1ð Þ�1

Xm
i¼1

x
f
t;i � �xt

� �
Ht x

f
t;i � �xt

� �h i0
ð6Þ

HtP
f
t H

0
t � m� 1ð Þ�1

Xm
i¼1

Ht x
f
t;i � �xt

� �h i
Ht x

f
t;i � �xt

� �h i0
; ð7Þ

where �xt denotes the forecast ensemble mean. Each member
is then updated according to

xut;i ¼ x
f
t;i þ ~Kt yt þ �t;i �Htx

f
t;i

� �
; ð8Þ

where {�t,i} for 1 
 i 
 m is a sample from N(0, R). If {x
f
t;i}

was sampled from N(Mt
f,Pt

f), then the EnsKF update
converges to that of the KF for large m, and linear algebra
can be used to verify that xut;i is a sample from the update
distribution given in equation (2) [Houtekamer and
Mitchell, 1998; Burgers et al., 1998].
[22] Although there are other standard ways to sample

from the posterior distribution of equation (2), the scheme in
equation (8) is applicable in high dimensions since it does
not require the explicit (and computationally expensive)
covariance recursion defined in equation (4) or other direct
manipulation of the covariance matrices. Instead, the algo-
rithm relies on being able to multiply the Kalman gain
matrix by arbitrary vectors, and in this way, the large
matrices are never explicitly constructed or stored.
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[23] One further assumption is necessary to make the
EnsKF feasible and effective in high-dimensional prob-
lems. When the domain of interest encompasses many
characteristic spatial scales of the physical system, it is
often the case that the covariance of two elements of the
state vector will be nearly zero when the physical locations
corresponding to those elements are separated by a suffi-
cient distance. Many or most of the elements of the sample
covariance matrix are then expected to be small. In most
implementations of the EnsKF, covariances at sufficient
separation are therefore assumed to decrease smoothly to
zero at a certain distance; this increases the computational
efficiency of the update and decreases the effects of
random error arising from working with a sample covari-
ance [Houtekamer and Mitchell, 2001; Hamill et al.,
2001]. We refer to this method as tapering the sample
covariance matrix. Statisticians can understand this modi-
fication as a specific way of shrinking the sample covari-
ance matrix elements toward zero for large separation
distances while still retaining the positive definite character
of the matrix. Delineating the statistical properties that are
produced through tapering remains an open question.

2.4. Updating a Gaussian Mixture

[24] The Kalman filter update is easily extended to a
mixture of Gaussian distributions [Alspach and Sorensen,
1972]. Suppose that p(xtjYt�1) is a mixture of L multivariate
normal distributions:

XL
l¼1

p f
t;lN M

f
t;l ;P

f
t;l

� �
:

With the observation equation (1) as defined in section 2.2,
the updated distribution is again a mixture of L multivariate
normal distributions:

p xt jYtð Þ ¼
XL
l¼1

pu
t;lN Mu

t;l;P
u
t;l

� �
; ð9Þ

where the mean and covariance matrix of each component
of the mixture are updated in an analogous manner, as in the
single Gaussian case. Specifically, one determines Mt,l

u and
Pt,l
u by substituting Mt,l

f for Mt
f and Pt,l

f for Pt
f in equations (3)

and (4). The mixing probabilities are updated by calculating

pu
t;l ¼

p f
t;lwlPL

k¼1 p
f
t;kwk

; ð10Þ

with wl given by

HtP
f
t;lH

0
t þ R

� �			 			�:5

exp � 1=2ð Þ yt �HtM
f
t;l

� �0
HtP

f
t;lH

0
t þ R

� ��1



� yt �HtM
f
t;l

� ��
:

3. Ensemble Mixture Filters

[25] This section presents a series of three non-Gaussian
algorithms for the update step. Like the EnsKF, each begins

with an ensemble that is a sample from the prior forecast
distribution and updates that ensemble to produce (approx-
imately) a sample from the posterior distribution given
observations. (The forecast step, as discussed in section 2,
would consist of simply propagating each ensemble mem-
ber to the next observation time using the forecast model.)
Unlike the EnsKF, these algorithms are based on Gaussian
mixtures.
[26] The first scheme below chooses the mixture centers

randomly from the forecast ensemble and then estimates
the covariance for each component of the mixture using
ensemble members that are ‘‘close’’ in the state-space to
the mixture centers. We find this scheme to be effective
only in very low dimensions for computationally feasible
ensemble sizes. The second scheme reduces the computa-
tions required in high-dimensional systems by updating
only the portion of the state vector that is physically local
to the observation location. Beginning from forecast
ensembles produced by the EnsKF, this update produces
state estimates with smaller RMS error than the EnsKF.
When this scheme is cycled, however, the result is inferior
to the EnsKF due to the lack of spatial smoothness from
one local update to the next and the use of fewer
observations in the update at any location. The third
scheme combines local updating with information from
the EnsKF that ensures spatial smoothness. We show in
section 4 that such a hybrid scheme can improve on the
EnsKF in a 40-variable system.

3.1. Mixture Covariances Based on Local
State-Space Information

[27] We first extend the EnsKF to a mixture filter for low-
dimensional systems. The basic idea is to update each
component of the mixture using ‘‘local’’ sample statistics,
i.e., from ensemble members that are close in the state-space
to the mixture center. This filter will be termed the mixture
ensemble filter, or XEnsF.
[28] The update begins with a forecast ensemble {x

f
t;i,

i = 1, . . ., m}. To derive a mixture from this ensemble,
we choose at random L ensemble members to be the
centers of the mixture components; the first L members
may be taken as centers for convenience since there is no
preferred order among the ensemble members. Next, we
identify from the ensemble the N nearest neighbors to
each center. (All our calculations use the Euclidean norm
to define distance in the state-space, though other norms
could be employed.) The covariance associated with each
center x

f
t;i is then given by Pt,i

f , the sample covariance for
the N nearest neighbors of x

f
t;i. Finally, the algorithm

must produce an updated ensemble that is consistent with
the update of the continuous mixture through equation (9).
Denoting by Kt,i the Kalman gain matrix, with Pt,i

f sub-
stituted for Pt

f, the complete update step is as follows
(XensF). Given {x

f
t;i, i = 1,. . ., m}:

1. Update the mixing probabilities. For l in [1, L],
� find N nearest neighbors to xt,l

f in state-space;

� calculate pl
u from equation (10) using Pt,l

f based on

� the nearest neighbors.
2. Update the ensemble. For j in [1, m],
� choose a random index I 2 [1, L], where P(I = i) = pi

u;

� choose one of N nearest neighbors of xt,I
f , each with

� probability 1/N;
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� update according to equation (8) using nearest

� neighbors:

xut;j ¼ x
f
t;i þKt;I yt þ ej �Htx

f
t;I

� �
;

where ej is drawn from N(0, R).
[29] While we have not explored tuning these parameters,

the XEnsF requires the choice of the ensemble size m, the
number of nearest neighbors N, and the number of centers L.
For future reference we will refer to this dependence as
XEnsF (m, N, L).
[30] Note that the sampling from the updated mixture

distribution in the XEnsF is a modest elaboration from the
EnsKF. To draw a sample from equation (9), the algorithm
first samples an integer from 1 to L from the multinomial
distribution, with probabilities given by pt,l

u . Denoting this
random index by I, the algorithm then samples from the Ith
component of the mixture using equation (8) and the nearest
neighbors of x

f
t;i. It is straightforward to extend the arguments

ofHoutekamer and Mitchell [1998] and Burgers et al. [1998]
to show that this produces a sample from equation (9) for
m!1. The use of this sampling scheme, which, as noted in
section 2.3, does not require the manipulation of large
covariance matrices, is one crucial step toward implementing
mixture filters in high dimensions.
[31] Simulation results in section 3.2 will demonstrate

that the XEnsF outperforms the EnsKF for a three-dimen-
sional nonlinear system when the forecast distributions are
significantly non-Gaussian. Although successful in very
low-dimensional systems, we have found the XEnsF to
break down when applied to high-dimensional systems
due to the inherent difficulties of estimating pdfs in high-
dimensional systems. This difficulty is manifest in our
experiments by the tendency for the XEnsF update to
weight a single center heavily so that the ensemble collapses
onto a single solution after a few forecast-update cycles.

3.2. Local-Local Ensemble Filter

[32] In order to address the problems of the XEnsF in
high dimensions, we assume that observations only influ-
ence the update of state variables that are nearby in physical
space. This allows the update step to be decomposed into a
sequence of lower-dimensional updates that are tractable
with the XEnsF. The resulting algorithm then consists of
repeated applications of the XEnsF to physically local
subsets of the state vector.
[33] To set the stage, we first note a well-known sequen-

tial property associated with the update step. If observations
are independent conditional on the state vector, then the
posterior can be updated sequentially, taking each observa-
tion in turn. This sequential process will yield the same
posterior pdf as one would obtain using a single and
simultaneous update of the full observation vector and, of
course, will not depend on the order that observations are
used. This result is a consequence of the factoring of the
joint distribution of observations based on conditional
independence and does not require the assumption that the
pdf be Gaussian or a mixture of Gaussians.
[34] We will assume that each component of the state

vector is associated with a location and that covariances
among the components of x are localized in the sense that
they are close to zero when components are separated by

large distances. In addition, we assume that the observations
are also localized, by which we mean that each row ofHt has
a limited number of nonzero elements and those elements
correspond to state variables in some region of limited spatial
extent. Examining the form of the Kalman gain when the
observation is a scalar one notes that a component of x

f
t;i will

only be changed by a new observation if the corresponding
row of Pt,i

f Ht is nonzero. This leads to the intuition that the
update of the state vector based on a single new observation
should only affect a subspace of x. We will refer to this
portion of the state vector as the observation neighborhood.
Because of our assumption that covariances (and Ht) are
localized, the observation neighborhood will be of low
dimension. We then propose to update using the XEnsF
within this observation neighborhood.
[35] The resulting algorithm combines the use of local

state-space information in the XEnsF with localization in
physical space and will be denoted the local-local ensemble
filter, or LLEnsF. As mentioned above, one can choose to
update observations sequentially, and so the LLEnsF will
have an added outer loop over observations. For the kth
observation, let x[k] denote a reduced state vector consisting
of only those components ofx contained in the kth observation
neighborhood. With this notation, and recalling the depen-
dence of the XEnsF on the tuning parametersm,N, and L, the
update step of the LLEnsF may be summarized as follows.
[36] 1. Given {x

f
t;i, i = 1,. . ., m}.

[37] 2. Loop over observations. For k in [1, n], apply
XEnsF(m, N, L) to update elements of x[k]. Note that the size
of the observation neighborhood (its radius, for example)
must be chosen for the LLEnsF in addition to m, N, and L.
[38] This algorithm has two important features. First, the

mixture filter suitable for non-Gaussian distributions is
applied repeatedly to low-dimensional components of the
state vector. In particular, it avoids a single high-dimensional
update, which typically leads to the collapse onto a single
mixture component (or particle, in the case of PFs). Secondly,
LLEnsF includes the standard ensemble Kalman filter as a
special case. This will happen when L = 1, N = m, and the
observation neighborhood includes all components of the
state vector.
[39] Although the LLEnsF provides a non-Gaussian

update in a spatially local neighborhood, the posterior
sample states may be disjointed between observation neigh-
borhoods. To address this issue, we next explain how to
create a smooth update of the complete state vector.

3.3. Smoothness Considerations and the Hybrid Filter

[40] We shall sample state variables inside and outside the
observation neighborhood differently in order to guarantee
that the LLEnsF samples adjoining neighborhoods in a
manner that respects the prior relationships among state
variables. To simplify notation, we drop all superscripts
and subscripts as these are clear from the context. It is further
convenient to split the state vector into two parts, x = [xL

0 xG
0 ]0,

where xL corresponds to x[k] and xG corresponds to state
variables outside the observation neighborhood. Now, con-
sider the equality

p xjYð Þ ¼ p xLjxG;Yð Þp xGjYð Þ; ð11Þ

where the joint distribution of the state vector is split into
two parts. To obtain an estimate of p(xjY), the above
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equality suggests first sampling state variables outside of the
observation neighborhood xG,i

u � p(xGjY) and then drawing
zL,i
u � p(xLjxG, Y) by setting xG = xG,i

u . The full result is a
random draw, where zL,i

u and xG,i
u represent a smooth state

vector. As ( presumably) dimension(xG) > dimension(xL),
this sample scheme will be referred to as global-to-local
adjustment.
[41] To implement the sequential sample scheme, we

suggest combining outputs from EnsKF and LLEnsF using
equation (11). Specifically, we use output from EnsKF to
represent p(xGjY), while p(xLjxG, Y) will be based on
output from the inner (observation) loop of LLEnsF. With
xi
u = [(xL,i

u )0(xG,i
u )0]0 obtained by the sampling algorithm of

equation (8), let

�L �LG

�GL �G


 �
¼

cov xuL;i

� �
cov xuL;i; x

u
G;i

� �
cov xuG;i; x

u
L;i

� �
cov xuG;i

� �
2
4

3
5: ð12Þ

Then, using the sample draws zi
u from the LLEnsF along

with xG,i
u , calculate

zuL;i
xuG;i


 �
¼ �LG�

�1
G xuG;i � xuG

� �
þ A zui � �zu

� �
xuG;i

" #
þ �zu

0


 �
; ð13Þ

where �G and �L are as defined in equation (12) and zu =
m�1�i zi

u and xG
u = m�1�ixG,i

u are sample means. The first
term defining zL,i

u predicts state components inside the
observation neighborhood given state components outside
the neighborhood, while the second term adds scaled

posterior perturbations taken from LLensF. The posterior
distribution p(xjY) is thus given through equation (13), and
A should be chosen so that the posterior distribution is as
‘‘close’’ as possible to the true non-Gaussian filtering density.
In practice, the choice of Awill depend on how informative
{zi

u} and {xi
u} are relative to the true filtering distribution,

and for the systems of interest here a reasonable starting
choice is given by A = (�L � �LG�G

�1�GL)
1/2cov(zi

u)�1/2,
setting cov(zL,i

u ) = �L. (For systems where trace {cov(zi
u)}�

trace{�L} a local-to-global adjustment (described in Ap-
pendix B) may be preferable.)
[42] Note that by the sampling scheme of LLensF, zi

u and
xG,i
u are independent, and it follows that the covariance of zL,i

u

and xG,i
u will equal �GL. Thus equation (13) produces

samples with exactly the same statistical smoothness prop-
erties as EnsKF. In section 4.2 we use the global-to-local
adjustment when applying the LLEnsF to a 40-dimensional
dynamical system.

4. Simulations

[43] We evaluate the filter methods described in section 3
on two nonlinear dynamical systems. Both are sensitive to
initial conditions, leading to aperiodic, chaotic solutions and
rapid error growth. The first system, here denoted L3, is the
classic three-dimensional system of Lorenz [1963]. The
second system, denoted L40, consists of 40 state variables
that correspond to locations on a latitude circle, so that the
spatial localizations discussed previously can be applied,
and includes quadratic nonlinearity designed to mimic
advection [Lorenz, 1996]. Equations defining the two sys-

Figure 1. The Lorenz attractor. Non-Gaussian structures appear quickly in this system: 400 points in the
upper left-hand corner are sampled from a Gaussian distribution and have been propagated in 0.1, 0.25,
and 0.5 time units, respectively.
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tems are given in Appendix A. The XEnsF algorithm is
evaluated on L3, and both the LLEnsF and hybrid filters are
evaluated on L40.

4.1. Simulations For L3

[44] L3 has been studied extensively in the context of data
assimilation [see, e.g., Miller et al., 1994; Evensen, 1997;
Anderson and Anderson, 1999]. As can be seen in Figure 1,
the system attractor has two lobes, or orbits, connected near
the origin. The trajectories of the system in this saddle region
are particularly sensitive to perturbations. Hence slight
perturbations can alter the subsequent path from one lobe
to the other. Figure 1 also depicts the error growth exhibited
in the system. As sample ensemble points pass through the
saddle, they rapidly disperse across the two attractor lobes.
Thus even on fairly short timescales, the dynamics of this
system lead to distinctly non-Gaussian forecast distributions.
Although L3 is not a high-dimensional system, the experi-
ments with the XEnsF that follow allow us to confirm the
benefits of a fully non-Gaussian scheme and provide a
reference for the performance of the spatially local, non-
Gaussian updates in L40.
[45] To evaluate the effects of the nonlinear dynamics on

filter performance, forecast lead time, dt, is varied across
four levels: dt = 0.1, 0.25, 0.5, 1. These lead times provide a
range of conditions from approximately linear to fully
nonlinear dynamics of the forecast errors. The numerical
experiments also vary the number of mixture components
(L = 10, 40) and ensemble members (m = 60, 90, 110, 140),
while the number of nearest neighbors was fixed at N = 25.
The observation operator is taken to be the identity matrix,
i.e., Ht = I, and the observation errors are independent and
normally distributed with a variance of 4 (Rjj = 4). Thus an
informative baseline for the root (posterior) mean squared
prediction error is 2

ffiffiffiffiffi
Rjj

p� �
, the error incurred simply by

using the observation vector as a naive update of the state.
[46] Table 1 reports simulation results for assimilating

observations over 10,000 assimilation cycles, each separated
by a time interval of dt, using the XEnsF and standard
EnsKF. At each observation time the root mean square error
(RMSE) between the sample posterior mean and the true
state of the system is calculated for each filter. The prediction
error is measured as the median RMSE across all time points.
As can be seen from Table 1, the mixture EnsKF performs
better than the single Gaussian EnsKF for forecast lead
times greater than dt > .1, with an overall improvement
of approximately 20–30% in median RMSE. The improve-
ment is more marked for larger forecast lead times,
consistent with the expected increase of nonlinearity and
non-Gaussian as dt increases.
[47] The median RMSEs reported in Table 1 are a sum-

mary of filter performance across the whole attractor. As an
example of the effects of non-Gaussian forecasts on filter

performance, we took the 250 assimilated states from the
EnsKF that were located closest to the saddle region of the
attractor. We then performed one forecast cycle with dt = .5
and used both the XEnsF as well as the EnsKF to
assimilate new data. The median RMSE for the XEnsF
with L = 100 and m = 500 was .73, while the EnsKF with
m = 400 yielded a median RMSE of 1.64 for a resulting
improvement of over 50%. Thus for forecasts that are
distinctly non-Gaussian the XEnsF significantly outper-
forms the EnsKF.

4.2. Simulations for L40

[48] Simulations for L40 use forecasts of length dt = 0.4
and take observations of every other state variable. Thus at
each assimilation cycle we have available the following set
of observations: { y1 = x1 + �1, y2 = x3 + �2, . . ., y20 = x39 +
�20}. The observational errors are independent and normally
distributed with variance 0.5. These settings are chosen to
produce non-Gaussian behavior in the forecast ensembles.
[49] As a baseline of performance, the EnsKF was applied

with an ensemble size of m = 400. A tapering function that
down-weighted the sample covariances between spatially
distant state components was used at each assimilation step.
The tapering function was defined by equation (4.10) of
Gaspari and Cohn [1999], with their parameter c chosen such
that the covariance of state variables separated by 20 index
points or more (e.g., x1 and x21) is set to zero. Each of the
20 observations were assimilated serially at every time step.
On the basis of posterior mean estimates at every assimilation
cycle, the EnsKF produced a time-averaged RMSE of
0.972 across 2000 assimilation steps. The sample variance
of the RMSE was s2 = 0.125, and the median RMSE was
0.882. The forecast distributions produced by the EnsKF
appear to be noticeably non-Gaussian, so there is clearly
some potential to improve on the EnsKF.
[50] To provide some quantification and evidence of the

non-Gaussian structure of the forecasts produced by the
EnsKF, we will focus on a three-dimensional subset of
the state vector involving variables {x1, x2, x3}. (Since L40
is invariant to translation, any three adjacent state variables
will have the same dynamical properties.) Letting zi,t denote
the deviation of the ith ensemble member from the mean at
time t in the space of {x1, x2, x3}, we calculate di,t = z0i,t�̂

�1zi,t
for i=1, 2, . . .,m.Here, �̂denotes the sample covariance of zi,t
(with respect to the subscript i). If the ensembles of {x1, x2, x3}
follow a multivariate normal distribution, then di,t will
approximately follow a chi-square distribution with three
degrees of freedom. Applying the Kolmogorov-Smirnov
(KS) test [Hogg and Tanis, 1993] at each assimilation cycle,
i.e., for t = 1, 2, . . ., 2000, the hypothesis of normality was
rejected in 1896 cases at the 0.05 critical level. The mean of
the KS test statistic was 0.139, well above the 0.001 level
of significance of 0.094. Hence there is strong evidence of

Table 1. Simulation Results for the L3 System in Terms of Median RMS Error for the Posterior Meana

dt

XEnsF EnsKF

L = 10, m = 60 L = 10, m = 110 L = 40, m = 90 L = 40, m = 140 m = 40 m = 120

0.1 0.59 0.60 0.48 0.47 0.38 0.37
0.25 0.72 0.71 0.49 0.52 0.72 0.69
0.5 0.93 0.90 0.69 0.69 1.05 1.05
1 1.19 1.14 0.93 0.90 1.37 1.37

aResults are estimated for 10,000 assimilation cycles.
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frequent departures from multivariate normality. To provide
a visual example of the structure of the non-Gaussian
ensembles at a given time point, Figure 2 depicts bivariate
plots of {x1, x2, x3}. The lower right plot of Figure 2 shows
a histogram of the KS test statistics calculated from the
2000 forecasts produced by the EnsKF.
[51] As can be seen in Figure 2, the relationship between

the ensemble members of x1 and x2 follows a nonlinear
pattern, and the joint distribution of {x1, x2} is distinctively
non-Gaussian. To quantify the degree of nonlinearity
between x1 and x2, we performed an F test of linearity by
regressing the ensembles of x2 on those of x1 for the 2000
forecasts. At a 0.05 critical level, the F test rejects the
hypothesis of linearity between x1 and x2 in 83.5% of the
2000 cases. Clearly, the relationship between x1 and x2 is
decidedly nonlinear in a majority of forecast ensembles.
[52] Before applying the LLEnsF as described in section 3

to L40, we performed an intermediate experiment to gauge
the potential for improvement relative to the EnsKF given the
non-Gaussian properties of the ensembles. Using the output
(i.e., the state, observations, and forecast ensembles) from the
baseline EnsKF example, the XEnsF was applied to the
subvector {x1, x2, x3} to assimilate y1 and y2 at each
assimilation time. The quality of the update produced by
the XEnsF was then compared to that of the EnsKF. (Note
that the results of XEnsF were not used to modify the
ensemble used in the subsequent forecast and update step.)
[53] The posterior mean RMSE for the EnsKF across the

2000 assimilation points was 0.827 (s2 = 0.383). On the

basis of L = 400, N = 40, and m = 400, the XEnsF improved
this by roughly 8%, yielding an RMSE of 0.768 (s2 =
0.352). The improvement is statistically significant ( p <
0.001). Thus the XEnsF provides, albeit locally and instan-
taneously, a better estimate of the true state of the system.
[54] Next, we apply the LLEnsF to the same sequence of

states and observations as in the baseline EnsKF example
and define the observation neighborhoods to consist of three
adjoining state variables. Thus at each assimilation cycle the
scalar observation yj updates the observation neighborhood
x[k] = (xk�1 mod 40, xk, xk+1 mod 40), where k = 2j � 1. Using
these observation neighborhoods, the LLEnsF was found to
be a stable filter; that is, the posterior ensemble mean did
not diverge from the true state during any prolonged
assimilation sequences. However, LLEnsF did not perform
as well as EnsKF, with an approximate 33% increase in
RMSE over the 2000 assimilation cycles.
[55] There are two reasons why the LLEnsF does not

perform as well as the EnsKF in these simulations. The first
is that, by assumption, observations affect the update of
only three state variables in the LLEnsF, while in the
EnsKF, each scalar observation can provide information
about the entire state vector. Hence, although the LLEnsF
produces an improved estimate of the state when only
spatially local information is used, the EnsKF allows the
entire data vector to impact the estimate of the state. The
second reason is that samples in adjoining neighborhoods
may not be smooth. For example, posterior samples pro-
duced in the observation neighborhood x[1] by assimilating

Figure 2. Forecast ensemble members for {x1, x2, x3} at a given assimilation time. Bivariate scatterplots
depict local non-Gaussian behavior. The ensemble shown produced a Kolmogorov-Smirnov (KS) statistic
of 0.134 ( p < 0.001), while a test of linearity between x1 and x2 produced an F statistic of 249.1 ( p <
0.001). The lower right plot is a histogram of the KS test statistics over 2000 assimilation cycles. See
color version of this figure in the HTML.
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y1 may be not be ‘‘smooth’’ with those produced in the
observation neighborhood x[3] by assimilation of y2.
[56] As discussed in section 3.3, these limitations suggest

a hybrid ensemble filter that combines aspects of the
LLEnsF and EnsKF. Like both the LLEnsF and the EnsKF,
this hybrid processes observations sequentially, but for each
observation it calculates two updated ensembles, one from
the LLEnsF and another from the EnsKF. In each observa-
tion loop of LLEnsF (with observation neighborhoods as
previously defined) we draw zi

u from XEnsF(400, 400, 40)
and xG,i

u from EnsKF. The two ensembles {zi
u} and {xG,i

u }
are then combined using equation (13) to produce posterior
samples. With B = �L � �LG�G

�1�GL, we apply two
versions of the hybrid filter by setting A = B1/2{cov
(zi

u)}�1/2 and A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace Bð Þ=trace cov zuið Þf g

p
I‘, where I‘ rep-

resents the identity matrix of size ‘ = dimension(xL).
[57] The first choice of A yields posterior samples with

equivalent second moment statistics to EnsKF. For this
choice ofA the two updated ensembles will here be combined
in a simple way: Within the LLEnsF observation neighbor-
hood the EnsKF ensemble is adjusted so that its mean
matches the sample mean from the LLEnsF update. In
essence, the hybrid ensemble takes its mean from the LLEnsF
where that is available (since we know that the LLEnsF
update produces smaller RMSE within the observation
neighborhood) and uses the EnsKF ensemble otherwise,
including outside the LLEnsF observation neighborhood.
The second choice of A directly uses zi

u from LLEnsF but
rescales the sample {zi

u} so that trace{cov(zL,i
u )} = trace(�L)

at every data assimilation. Alternatively, one may consider
the hybrid filters to be extensions of the EnsKF. This is a
reasonable interpretation, but it ignores the additional gener-
ality provided by equation (13).
[58] Table 2 summarizes the results from the hybrid filter

using the same states and observations from the baseline
EnsKF simulation example. For both choices of A the
improvement in the posterior mean estimate compared to
that produced by the EnsKF is statistically significant ( p <
.001, p < .01) and corresponds to a 5.7% and 3.2% overall
error decrease, respectively.
[59] The results demonstrate the potential of developing

non-Gaussian filtering techniques for strongly nonlinear,
high-dimensional systems. Clearly, however, work remains
to extend the positive results from the L40 experiment to
atmospheric systems of realistic dimension. Nevertheless, the
key concepts of the hybrid scheme, i.e., the local update of the
LLEnsF and the global-to-local adjustment of section 3.3,
provide an important foundation for filtering high-dimen-
sional dynamical systems.

5. Summary

[60] This paper has presented a hierarchy of nonlinear
ensemble filters, each of which employs mixtures of

Gaussian distributions in its update step. These filters
range from the XEnsF, which uses a general representation
of the prior distribution but is computationally feasible
only for systems of very low dimension, to the LLEnsF, in
which the XEnsF update is applied only in a spatially local
neighborhood of each observation and which suffers from
a lack of spatial smoothness between the observation
neighborhoods, to a hybrid of the LLEnsF and the
ensemble Kalman filter.
[61] A crucial feature of the XEnsF is the use of local

covariances based on nearest neighbors. The local cova-
riances adapt to local linear properties of the attractor and
so provide a more accurate representation of the forecast
distribution, including error estimates. Accurate represen-
tation of error statistics produces a stable filter that does
not diverge as t increases, a common problem when
devising sequential Bayesian update procedures with fixed
sample sizes [Künsch, 2001]. Previous work [Anderson
and Anderson, 1999] used scaled versions of the full
ensemble covariance around each center in the mixture
and so cannot adapt as easily to local structure in the
forecast distribution. One important issue in the mixture
approach is the number of nearest neighbors and the
localization of the covariance about the mixture center:
A large number of nearest neighbors may give a more
stable estimate of the covariance but may be too spread
out to reflect salient local features.
[62] The LLEnsF and hybrid filters extend the XEnsF

beyond low-dimensional systems by restricting the update
step to spatially local subspaces of the state vector; conse-
quently, it is not subject to the problems of reweighting
mixture components ( particles) associated with high-
dimensional distributions. The numerical results in this work
confirm that there are three-dimensional subspaces where
the mixture takes advantage of non-Gaussian structures.
However, a straightforward implementation of LLEnsF is
inferior to the EnsKF because it does not adequately blend
the updates in the observation neighborhood with compo-
nents of the state vector that are unchanged. By letting more
state variables be affected by an observation, the global-to-
local adjustment presented in section 3.3 provides smooth
updates (from the EnsKF) of larger portions of the state
vector yet allows for spatially restricted non-Gaussian
updates. This global-to-local adjustment forms the basis
for the hybrid of the LLEnsF and the EnsKF. In the
40-variable model of Lorenz [1996], whose dimension is
sufficiently large that the XEnsF is not feasible, the hybrid
method outperforms both the LLEnsF and the EnsKF.
[63] We emphasize that the hierarchy of filtering schemes

given here was fundamentally necessitated by computational
limitations. It is likely that, given a sufficiently large
ensemble, the XEnsF would be effective for L40 or higher
dimensional systems as it treats the full Bayesian update in
the most general and unapproximated way. Nevertheless,
our experience shows, and simple arguments [Silverman,
1986] suggest, that the ensemble size required by the XEnsF
will grow rapidly, perhaps exponentially, with the system
dimension. The additional approximations in the hierarchy
from the XEnsF to the LLEnsF and then to the hybrid filter
are thus necessary to allow the update to proceed with
feasible ensemble sizes without being overly contaminated
by sampling errors.

Table 2. Simulation Results for Hybrid Filters Applied to L40a

A mean(RMSE) var(RMSE) median(RMSE)

B1/2{cov(zi
u)}�1/2 0.917 s2 = 0.100 0.848ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trace Bð Þ=trace cov zuið Þf g
p

I‘ 0.941 s2 = 0.142 0.854

aThe time-averaged RMSE, var(RMSE), and median RMSE for 2000
assimilation cycles are shown. The corresponding results for the EnsKF
were 0.972, 0.125, and 0.882, respectively.
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[64] It is further worth noting that our evaluation of the
various schemes has considered only the quality of the
first moment in terms of ensemble mean error. While this
is a natural starting point, future work should evaluate the
additional information in the ensemble concerning higher
moments and other features of the forecast distribution.
Although the EnsKF is not explicitly designed to capture
higher moments, some information on these is implicitly
carried through the update step as the forecast ensemble is
only subjected to a linear transformation. Our results, in
which the hybrid filter performs best yet inherits its higher
moments from the EnsKF, suggest that the EnsKF does
provide robust information on higher moments when
compared to the non-Gaussian scheme outside of very
low dimensional systems.
[65] Further refinements of the schemes presented here

are clearly necessary in order to realize more substantial
improvements over the EnsKF. In our view, the ideas of
sequential, spatially local updating and the global-to-local
adjustment provide a basis for such refinements. Together,
these ideas provide a framework for combining potentially
more accurate non-Gaussian update procedures with more
robust schemes such as the EnsKF that are based on the
Gaussian update. A more sophisticated filter will likely
rely on efficient, sequential identification of low-dimen-
sional subspaces where non-Gaussian densities can be
accurately represented and filtered using finite ensemble
sizes.

Appendix A

[66] The L3 model [Lorenz, 1963] is defined by three
differential equations:

_x ¼ �s xt þ ytð Þ;

_y ¼ rxt � yt � xtyt;

_z ¼ xtyt � bzt ;

where the dot represents derivative with respect to time.
The model parameters are set as follows: s = 10, r = 28, and
b = 8/3.
[67] The L40 model [Lorenz, 1996] is defined by the

differential equations

_xt;i ¼ xt; iþ1 mod kð Þ � xt; i�2 mod kð Þ
� �

xt; i�1 mod kð Þ � xt;i þ F:

Here, k = 40 and F = 8.
[68] Both systems are propagated using a first-order Euler

method with a time step of 0.001. This simple numerical
scheme facilitates rapid propagation of a large number of
ensembles.

Appendix B

[69] By reversing the order of the conditioning, i.e.,
switching the roles of xL and xG in equation (11), a local-

to-global adjustment can be devised, resulting in the fol-
lowing specific sampling scheme:

zuL;i
xuG;i


 �
¼

zui

xG þ �LG�
�1
L A zui � zu

� �
� xuL;i � xuL

� �n o" #
þ 0

�D


 �
;

ðB1Þ

where A and �D must be chosen appropriately. Selecting A =
�L

1/2{cov(zi
u)}�1/2 yields cov(zL,i

u , xG,i
u ) = �LG.
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