Boulder guide to statistics
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e Distributions and densities
e Conditional distributions, Bayes theorem
e Bivariate normal

e Spatial statistics

Conditional probability, random sample

Supported by the National Science Foundation DMS




Overview

As a specific example we will use average July maximum temperatures for an

area around Boulder over the period 1895-1997.
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Use the spatial prediction problem to illustrate the concepts of conditional
distributions and Bayes theorem.

Some local stations with elevations
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Densities

A probability density function (pdf) is an idealized histogram. It is used to

describe probabilities for a random quantity. X = average July temperature
for Boulder

f(x) pdf:
Probability that X is in the small interval [x, x + A] is approximately f(z)A
Boulder July temps with a normal distribution superimposed:

(u=10654,0=1.6)
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“You can see alot just by looking ...” (Yogi Berra)
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[ am going to ignore any time trends!



More notes
There are many exotic distributions, gamma, t, nonparametric, etc.

Gaussian: ,

fla) e T 1)

2072
the classic bell-curve shape density, @ and o are parameters that control the
spread and location.

Discrete distribution A finite set of points that are each assigned a proba-
bility. Drawing a random sample from a pdf is often a good approximation to
the continuous “theoretical” distribution. Here the random sample defines a
discrete distribution.
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Boulder data ( n=103) each point is assigned probability 1/103.



Discrete verses continuous distributions
The continuous normal distribution, a random sample (n=100) drawn from it
and the histogram summary.
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Statisticians have their moments!

A distribution and a sample both have a mean and a wvartance . But they
appear to be defined differently and have different interpretations!
Sample mean and variance:
p=—YnX;=3 X;(1/n)
n j=1 j=1
=S (- )
o°- = P
n—1,="" a
Mean and vartance for a pdf :
p= / rf(x)dx
0 = [(a— n)?f()da
The connection:  If the sample is thought as a discrete distribution where

the probability of taking on each data is 1/n then the two definitions agree.

The Ensemble Kalman filter uses a discrete distribution at the heart of its

statistical algorithm.



Sampling variability
Same thing several times to show the sampling distribution of the histogram
and sample mean.
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Some other simple remarks:

Mean verses a realization The mean describes the center of the distribution.
If X is not known the mean is the best prediction of X in terms of making the
error small.

However, the mean not look like a real X value!

e.g. the mean of Boulder July temps ( 65.38) is not equal to any year’s value.

Transforming a distribution If X has some pdf and we consider a function
of it say g(z) what is the distribution of g(X)? e.g. if X is normal then X2 is
2 with 1 degree of freedom.

If X1, Xs, ..., X, isarandom sample from the distribution them g(X1), g(Xs), ..., 9(X,,)
is a random sample from the transformed distribution. This is a very useful

way to approximate distributions when you need to do a complicated transfor-
mation.

For the ensemble Kalman filter g is the forward step of the model, a non-
linear function with no closed form.



Multivariate distributions

OK this is really where things get interesting.
A scatterplot of Boulder and Fraser mean July temps
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Multivariate distributions

f(z,y) The joint pdf, f(x,y), is defined so that probability of both X and
Y being in a small box with sides [z, 2z + A and [y, y + 4A] is approximately

flz,y)/ A%

Brwariate normal distribution: — Completely described by five parameters:

mean(X ), mean(Y’), VAR( X) , VAR( Y) and COV( X, Y)

COV(X,Y) = /(95 — px)(x — py) f(x, y)dzdy

Covariance matriz:  The VARs and COVs are organized in a matrix:

o _ [ VAR(X) COV(X.Y)
N (COV(X,Y) VAR(Y) )



Multivariate normal density fit to the Boulder/Fraser data
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Conditional distributions

A key step in DA is to determine the distribution of the state of the system
given the observed data. The term given signals a conditional distribution.

What is the distribution of Fraser temps given that the Boulder temp 1s
64.5 or say 67.57

This distribution is different from:
e the joint distribution of both Boulder and Fraser

e the climatological distribution of Fraser (if Fraser and Boulder are not in-
dependent).



Motivation using the observed data

Take slices at 65.5 and 68.5, only consider the data in a neighborhood around

each value.
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A more formal definition of Conditional Probability

A and B two events
eg. A=X <65, B=Y >60

P(A), P(B) denote their probabilities and P(AB) is the probability of both
events happening together

Shaded area is P(AB) the conditional probability of B occurring given A occurs
13

P(AB)
P(A)

P(B|A) =

The vertical bar is read as given.



Conditional densities

f(z,y) the joint pdf for (X, Y )and suppose that g(x) is the pdf just for X.
flz,y)
g9(x)

Here X is observed ( fixed) and we have a distribution for Y.
A useful property of Multivariate normals is that the conditional distributions

fylz) =

are also normal.

Some useful notation for pdfs:
e [Y] the pdf for the random variable Y (Fraser temp in this case)
e [ X, Y] pdf for joint distribution of X and Y
e [Y|X] conditional pdf for Y given X
So the formula for the conditional is:
YIX] = [X, V)/[X
Also note that [ X, Y] = [Y|X][X]



Bayes Theorem

Bayes Theorem gives a way of inverting the conditional information. In bracket
notation it is just

_ XYY

The proof follows by definitions:

X,Y]  [XY]Y]
=5 T

Note that [Y|X] is simply proportional to the joint density where the normal-
ization depends on the values of X. (But in many cases the normalization is
difficult to find.)



Conditional densities for the Boulder/Fraser joint pdf
Slicing the surface
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Conditional densities for the Boulder/Fraser joint pdf
(Y is Fraser temps and X is Boulder)
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Notes on example

Connection with Least Squares (LS) If we use the sample statistics the
conditional mean for Frasier is identical to

e Fitting a linear regression to the observed data.
e Using the LS line to predict a new temperature.

Connection with forecast skill The variance of the distribution gives a mea-
sure of the uncertainty in the prediction.

Analysis is only as good as the statistical assumptions!



Infilled Fraser means based on Boulder
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Three members of an ensemble for Fraser

All infills have the same conditional mean and the variability will reproduce the
climatology:.



Spatial Statistics

The notorious “data product ” What does the temperature field look like
on a grid based on the observed data?

The model
T are the field values (e.g. temperatures) on a large, regular 2-d grid (and
stacked as a vector). This is our universe.

T is multivariate normal with mean g and covariance matrix: ¥ = COV (T)
usually X is related to the distance between locations

The data
Y is the data taken at irregular locations

Y=HT+e

e is measurement error, H is a known matrix that relates what we measure, on
the average, to the true temperature field. In our case H is just an indicator
matrix of ones and zeroes.



Kriging solution
T =pu+COV(T,Y)COV(Y) {Y — Hp)
and the covariance of the estimate is
P =COV(T)—COV(T,Y)COV(Y)COV(Y,T)

Bayestan solution

likelihood:  data "given” temperature field = [Y'|T]
prior:  distribution of temperature field = [T
Using Bayes Theorem

posterior:  the conditional distribution of the temperatures ”given” the data
Y|T[T]
Y]

Posterior temperature field given the data is multivariate normal with mean

Y] =

vector T and covariance matrix P!



Temperature fields for the Front Range

Estimating the means, variances and and correlations

w1 and X for T are estimated from what data we have.
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Spatial correlation of temperature
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Dependence of correlation on distance

Caorrelation
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Note that the correlation is not zero close to zero distance! This may be due to

measurement error.




Ezxample of a posterior mean
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Ensemble of fields for July 1993
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Summary

e pdf can be approximated by samples
e conditional distributions can be predictive

e spatial prediction with observation error is an application of Bayes theorem.



