
Boulder guide to statistics

Doug Nychka

National Center for Atmospheric Research

• Distributions and densities

• Conditional distributions, Bayes theorem

• Bivariate normal

• Spatial statistics

Conditional probability, random sample

Supported by the National Science Foundation DMS

1



Overview

As a specific example we will use average July maximum temperatures for an

area around Boulder over the period 1895-1997.
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Use the spatial prediction problem to illustrate the concepts of conditional

distributions and Bayes theorem.
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Densities

A probability density function (pdf) is an idealized histogram. It is used to

describe probabilities for a random quantity. X = average July temperature

for Boulder

f (x) pdf:

Probability that X is in the small interval [x, x + ∆] is approximately f (x)∆

Boulder July temps with a normal distribution superimposed:

(µ = 65.4, σ = 1.6)
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‘You can see alot just by looking ...’ (Yogi Berra)

I am going to ignore any time trends!
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More notes

There are many exotic distributions, gamma, t, nonparametric, etc.

Gaussian:

f (x) ∼ e−
(x− µ)2

2σ2

the classic bell-curve shape density, µ and σ are parameters that control the

spread and location.

Discrete distribution A finite set of points that are each assigned a proba-

bility. Drawing a random sample from a pdf is often a good approximation to

the continuous “theoretical” distribution. Here the random sample defines a

discrete distribution.

Boulder data ( n=103) each point is assigned probability 1/103.
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Discrete verses continuous distributions

The continuous normal distribution, a random sample (n=100) drawn from it

and the histogram summary.
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Statisticians have their moments!

A distribution and a sample both have a mean and a variance . But they

appear to be defined differently and have different interpretations!

Sample mean and variance:

µ̂ =
1

n

∑
j=1

nXj =
n∑

j=1
Xj(1/n)

σ̂2 =
1

n− 1

n∑
j=1

(Xj − µ̂)2

Mean and variance for a pdf :

µ =
∫

xf (x)dx

σ2 =
∫
(x− µ)2f (x)dx

The connection: If the sample is thought as a discrete distribution where

the probability of taking on each data is 1/n then the two definitions agree.

The Ensemble Kalman filter uses a discrete distribution at the heart of its

statistical algorithm.
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Sampling variability

Same thing several times to show the sampling distribution of the histogram

and sample mean.
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Some other simple remarks:

Mean verses a realization The mean describes the center of the distribution.

If X is not known the mean is the best prediction of X in terms of making the

error small.

However, the mean not look like a real X value!

e.g. the mean of Boulder July temps ( 65.38) is not equal to any year’s value.

Transforming a distribution If X has some pdf and we consider a function

of it say g(x) what is the distribution of g(X)? e.g. if X is normal then X2 is

χ2 with 1 degree of freedom.

If X1, X2, ..., Xn is a random sample from the distribution them g(X1), g(X2), ..., g(Xn)

is a random sample from the transformed distribution. This is a very useful

way to approximate distributions when you need to do a complicated transfor-

mation.

For the ensemble Kalman filter g is the forward step of the model, a non-

linear function with no closed form.
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Multivariate distributions

OK this is really where things get interesting.

A scatterplot of Boulder and Fraser mean July temps
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Multivariate distributions

f (x, y) The joint pdf, f (x, y), is defined so that probability of both X and

Y being in a small box with sides [x, x + ∆] and [y, y + ∆] is approximately

f (x, y)/∆2.

Bivariate normal distribution: Completely described by five parameters:

mean(X), mean(Y ), VAR( X) , VAR( Y ) and COV( X , Y )

COV(X, Y ) =
∫
(x− µX)(x− µY )f (x, y)dxdy

Covariance matrix: The VARs and COVs are organized in a matrix:

Σ =

 VAR(X) COV(X, Y )

COV(X, Y ) VAR(Y )


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Multivariate normal density fit to the Boulder/Fraser data
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Conditional distributions

A key step in DA is to determine the distribution of the state of the system

given the observed data. The term given signals a conditional distribution.

What is the distribution of Fraser temps given that the Boulder temp is

64.5 or say 67.5?

This distribution is different from:

• the joint distribution of both Boulder and Fraser

• the climatological distribution of Fraser (if Fraser and Boulder are not in-

dependent).
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Motivation using the observed data

Take slices at 65.5 and 68.5, only consider the data in a neighborhood around

each value.
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A more formal definition of Conditional Probability

A and B two events

e.g. A ≡ X ≤ 65 , B ≡ Y ≥ 60

P (A), P (B) denote their probabilities and P (AB) is the probability of both

events happening together

Shaded area is P (AB) the conditional probability of B occurring given A occurs

is

P (B|A) =
P (AB)

P (A)

The vertical bar is read as given.
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Conditional densities

f (x, y) the joint pdf for (X, Y )and suppose that g(x) is the pdf just for X .

f (y|x) =
f (x, y)

g(x)

Here X is observed ( fixed) and we have a distribution for Y .

A useful property of Multivariate normals is that the conditional distributions

are also normal.

Some useful notation for pdfs:

• [Y ] the pdf for the random variable Y (Fraser temp in this case)

• [X, Y ] pdf for joint distribution of X and Y

• [Y |X ] conditional pdf for Y given X

So the formula for the conditional is:

[Y |X ] = [X, Y ]/[X ]

Also note that [X, Y ] = [Y |X ][X ]
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Bayes Theorem

Bayes Theorem gives a way of inverting the conditional information. In bracket

notation it is just

[Y |X ] =
[X|Y ][Y ]

[X ]

The proof follows by definitions:

[Y |X ] =
[X, Y ]

[X ]
=

[X|Y ][Y ]

[X ]

Note that [Y |X ] is simply proportional to the joint density where the normal-

ization depends on the values of X . (But in many cases the normalization is

difficult to find.)
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Conditional densities for the Boulder/Fraser joint pdf

Slicing the surface
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Conditional densities for the Boulder/Fraser joint pdf

(Y is Fraser temps and X is Boulder)
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Notes on example

Connection with Least Squares (LS) If we use the sample statistics the

conditional mean for Frasier is identical to

• Fitting a linear regression to the observed data.

• Using the LS line to predict a new temperature.

Connection with forecast skill The variance of the distribution gives a mea-

sure of the uncertainty in the prediction.

Analysis is only as good as the statistical assumptions!
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Infilled Fraser means based on Boulder
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Three members of an ensemble for Fraser

All infills have the same conditional mean and the variability will reproduce the

climatology.
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Spatial Statistics

The notorious “data product ” What does the temperature field look like

on a grid based on the observed data?

The model

T are the field values (e.g. temperatures) on a large, regular 2-d grid (and

stacked as a vector). This is our universe.

T is multivariate normal with mean µ and covariance matrix: Σ = COV (T)

usually Σ is related to the distance between locations

The data

Y is the data taken at irregular locations

Y = HT + e

e is measurement error, H is a known matrix that relates what we measure, on

the average, to the true temperature field. In our case H is just an indicator

matrix of ones and zeroes.
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Kriging solution

T̂ = µ + COV (T,Y)COV (Y)−1(Y −Hµ)

and the covariance of the estimate is

P = COV (T)− COV (T,Y)COV (Y)COV (Y,T)

Bayesian solution

likelihood: data ”given” temperature field = [Y |T ]

prior: distribution of temperature field = [T ]

Using Bayes Theorem

posterior: the conditional distribution of the temperatures ”given” the data

[T |Y ] =
[Y |T ][T ]

[Y ]

Posterior temperature field given the data is multivariate normal with mean

vector T̂ and covariance matrix P !

25



Temperature fields for the Front Range

Estimating the means, variances and and correlations

µ and Σ for T are estimated from what data we have.
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Spatial correlation of temperature
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Dependence of correlation on distance

Note that the correlation is not zero close to zero distance! This may be due to

measurement error.
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Example of a posterior mean
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Ensemble of fields for July 1993
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Summary

• pdf can be approximated by samples

• conditional distributions can be predictive

• spatial prediction with observation error is an application of Bayes theorem.
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