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Numerical experiments based on atmosphere–ocean general circulation models (AOGCMs) are one of the primary

tools in deriving projections for future climate change. Although each AOGCM has the same underlying partial

differential equations, modelling large scale effects, they have different small scale parameterisations and different

discretisations to solve the equations, resulting in different climate projections. This motivates climate projections

synthesized from results of several AOGCMs’ output. We combine present day observations, present day and

future climate projections in a single hierarchical Bayes model. The challenging aspect is the modeling of the

spatial processes on the sphere and the amount of data involved. We pursue a Bayesian hierarchical model that

separates the spatial response into a large scale climate change signal and an isotropic process representing small scale

variability among AOGCMs. Samples from the posterior distributions are obtained with computer-intensive MCMC

simulations. The novelty of our approach is that we use gridded, high resolution data within a spatial hierarchical

framework. The primary data source is provided by the Coupled Model Intercomparison Project (CMIP) and

consists of 9 AOGCMs on a 2.8 by 2.8 degree grid under several different emission scenarios. In this article we

consider mean seasonal surface temperature and precipitation as climate variables. Extensions for our model are

also discussed.
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1 Introduction

The influence of human activities on the Earth’s climate is by now largely undisputed and the potential
for even greater changes in this century confront us. A grand challenge facing the geosciences is to provide
accurate predictions of these changes along with quantifications of uncertainties. Because future climate
may be very different from the observational record a primary tool for assessing changes are large computer
models that simulate the Earth’s climate system under different circumstances. The results of such models
are complex spatial fields and the use of statistical analysis is particularly useful for synthesizing the
information from several models and providing statistical measures of uncertainty. The application of
conventional statistics here is interesting because the models themselves are deterministic computer codes
but the variation and biases among different models can fit into a probabilistic framework. Accordingly
we will refer to the model output as “data” even though it may not fit the conventional perception of a
statistical sample.

1.1 Climate change assessment

The impact of climate change can be persuasive from disrupting ecosystems to effecting economies to
influencing public health. Significantly, each of these areas requires the analysis of climate at a regional
spatial scale or at even smaller areas and part of the goal of current climate models is to provide such
information. Although small spatial scales are the most useful for determining specific impacts these are
precisely the scales where climate simulation is difficult and model biases increase. Thus, any approach
to interpret climate projections at regional scales should include a quantification of the uncertainty in the
estimated climate. The number of cutting edge climate system models is limited, however, and it is ironic
that despite the voluminous spatial output for a given model the sample size for comparison across different
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models is small. This work addresses this problem by spatial models that borrow strength across adjacent
spatial regions and provide a more statistically accurate assessment of model bias and variability. Based on
a statistical framework for the response of a suite of climate models it is possible to produce a synthesized
estimate of climate change at a regional scale along with a measure of the uncertainty.

Assessing probabilistic climate change is not a new topic. Recent work in determining probabilities of
global temperature change includes Allen et al. (2000), Schneider (2001), Wigley and Raper (2001), Forest
et al. (2002), Gregory et al. (2002) Knutti et al. (2002, 2003), Frame et al. (2005). Tebaldi et al. (2005)
evaluates probabilistic climate change on a regional level.

1.2 A random effects statistical model

As part of this introduction we give a overview of the main points of our statistical model for combining
climate model experiments. Given experiments from N climate models, for the ith model let Xi denote a
vector of average temperatures representing current climate at a grid of points on the surface of the Earth.
Let Yi be the corresponding averages simulated at a future period under a specific scenario of climate
change. Setting Di = Yi −Xi we are lead to the statistical model

Di = Mθi + εi,

where M is a matrix of spatial basis functions and θi are a vector of coefficients. We identify this regres-
sion function with the difference in the model’s climate between present and future conditions. The key
assumption is to interpret θi as a random effect that is different for each model but whose expected value
is the true difference in climate. The second term εi is assumed to be a mean zero spatial process. Besides
being a focused example on interpreting climate model output, the flexibility of this spatial random effects
models can have more general application. We believe that the representation of a spatial response into a
targeted set of basis function and a more generic stationary model for finer detail is an effective model and
is amenable to simple Markov Chain Monte Carlo techniques for an approximate Bayesian analysis.

1.3 Outline

This article is structured as follows. In the next section we discuss the model output, what we refer to as
“data”. Section 3 introduces a simple spatial model for climate change. Section 4 presents the results of
our analysis. Extensions to the model and a discussion are given in Sections 5 and 6.

2 Climate Model Data

The climate at a given location is the joint distribution of meteorological variables describing the atmosphere
averaged over a given period of time. In statistical language, given a stationary time series the climate is
simply the marginal or stationary distribution. A common working definition of climate is a twenty to thirty
year average around a particular time. The temporal variability of meteorology about a climatological mean
is termed weather and it is weather that is observed both in the real world and also what is simulated by
models. Thus, any analysis for differences in climate must account for the intrinsic variability of weather
and the fact that climate can not be determined exactly with a finite sample.

2.1 Climate System Models

Climate models attempt to simulate the Earth’s climate system including the complex interactions among
the ocean, atmosphere, sea ice, biogeochemistry and the land surface. Technically these coupled models are
referred as atmosphere–ocean general circulation models (AOGCMs). Large AOGCMs, such as the NCAR
Community Climate System Model, involve hundreds of man years of scientific research and software
engineering and require months of supercomputer time for numerical experiments. In these models the
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motion of the atmosphere and ocean is the result of discretizing the partial differential equations for fluid
dynamics. However, there are many geophysical processes that can not be resolved by the model but
have important feedbacks to larger scales. These processes are parameterized in the models and because
they are not derived directly from classical physics are potential sources of model bias. The AOGCMs are
advanced on a short time step, typically on the order of minutes and they simulate weather. Over time
they take as inputs a suite of variables that are considered external to the climate system. Some examples
include greenhouse gases produced by human activities, changes in the sun’s energy or changes in land use.
These variables that drive the climate are termed forcings. Analogous to observational data, the weather
produced by the model over a given period of simulation is then averaged to estimate the model’s climate.
This realized climate will be a function of the different magnitudes and sequences of forcings used in the
experiment and so provides a tool for determining the effect of different curbs on greenhouse gas emissions
on future climate. AOGCMs are also tested by using a sequence of external forcings that match the previous
century or present conditions. In this way the climate produced by an AOGCM can be compared to the
climate estimated from observations. However, it is well accepted that the bias of an AOGCM for present
climate may not have a strong relationship with the magnitude or sign of model bias for future projections.
The exact relationship between present and future model bias is still an open statistical problem.

2.2 Numerical Experiments

The different components of the AOGCMs generate a vast array of output. However, the most common
atmospheric variables used for assessing the impacts of a changed climate are surface temperatures, precipi-
tation, and to a lesser extent surface winds. These variables are often averaged to monthly or seasonal fields.
In this article we focus on average surface temperature and precipitation for the boreal winter (December,
January and February) and boreal summer (June, July and August).

We work with a set of 9 AOGCMs based on Coupled Model Intercomparison Project (CMIP) Meehl
et al. (2000); Covey et al. (2000), summarized in Table 1. At present there are approximately a dozen
research centers and universities supporting independent AOGCM development and these CMIP experi-
ments represent a subset of these different modeling groups. CMIP began in 1995 by collecting output
from model “control runs” in which climate forcing is held constant at present values. These experiments
are thus simulations of current climate. Later versions of CMIP have collected output from an idealized
scenario of global warming. Here, the atmospheric CO2 is increased from current levels at a steady rate
of 1% per year until it doubles at about year 70. The years 60–79 are averaged to estimate the climate at

Model Supporting research center

CCCM Canadian Climate Centre, Canada
CSIR Commonwealth Scientific and Industrial Research Organization, Australia
CSM National Center for Atmospheric Research, USA
ECHAM Deutsches Klimarechenzentrum, Germany
ECHO Max Planck Institut für Meteorologie, Germany
GFDL Geophysical Fluid Dynamics Laboratory, USA
HADCM United Kingdom Meteorological Office, England
MRI National Institute for Environmental Studies, Japan
PCM Los Alamos National Laboratory, the Naval Postgraduate School, the US Army Corps

of Engineers’ Cold Regions Research and Engineering Lab and the National Center for
Atmospheric Research, all USA

Table 1: Summary of CMIP AOGCM models used. A more detailed description of the models and key
references can be found at http://www-pcmdi.llnl.gov/projects/cmip/Table.php . See also (Houghton
et al., 2001).

http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/cccma_tbls.html
http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/csiro_tbls.html
http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/ncar_csm_tbls.html
http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/mpi_e3lsg_tbls.html
http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/echo-g_tbls.html
http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/gfdl_tbls.html
http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/ukmo_tbls.html
http://www-pcmdi.llnl.gov/projects/modeldoc/cmip/mri_tbls.html
http://www-pcmdi.llnl.gov/projects/cmip/Table.php
http://www-pcmdi.llnl.gov/projects/cmip/Table.php
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Figure 1: Winter temperature fields for control run (left panel) and transient minus control run (climate
change, right panel) for model CSM (Unit: ◦C).

Figure 2: Winter precipitation fields for control run (left panel) and transient minus control run (climate
change, right panel) for model CSM (Unit: mm/day).

the end of this period. This experiment is termed a transient run because the changing forcing (i.e. the
amount of CO2 is not constant). Hence, one would not expect the climate to be constant over time either.
However, taking an average of 20 years is the standard format for summarizing the climate around a given
time point. The different AOGCMs were run at a spatial resolution of 2.8 × 2.8 degrees at the equator.
This resolution is converted into a standard gridded output format of 128 × 64 equally spaced points in
longitude and latitude. Note that this griding convention for the output yields substantially smaller grid
cells in area near the poles.

As an example of the model output, Figures 1 and 2 show winter temperature and precipitation fields for
control run and transient minus control run (i.e. climate change) for model CSM. Compared to temperature
fields, the precipitation fields exhibit a different pattern. The spatial structures have smaller scales and the
fields are more heterogeneous. Exploratory data analysis suggests that a log transformation corrects for
both of these shortcomings. Some models have a few grid cells with zero precipitation and we modified the
data of these cells to 0.1mm/day precipitation, which can be justified by the climatological nature of the
data and the size of the area of the grid cells.

As a useful summary, Figures 3 and 4 show the mean and standard deviation over all considered CMIP
models of boreal winter climate change for the temperature and the log precipitation.

3 A Spatial Model for Climate Changes

In this section we present a spatial hierarchical model to synthesize the climate projections based on the
data described in the last section. Similar models in slightly different contexts are presented in Wikle et al.
(1998), Wikle and Cressie (1999) or Berliner et al. (2000). Banerjee et al. (2004) gives an excellent overview
of hierarchical modeling for spatial data.
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Figure 3: Mean and standard deviation of boreal winter temperature climate change (Unit: ◦C).

Figure 4: Mean and standard deviation of boreal winter log precipitation climate change (Unit: mm/day).

3.1 Simple Hierarchical Model

The temperature or transformed precipitation fields of the N = 9 models are stacked into vectors of length
n (total number of grid points), denoted as follows:

Xi = climatological field from control run of model i,

Yi = climatological field from transient run of model i.

The difference is given by

Di = Yi −Xi, i = 1, . . . , N,

which represents the climate change with respect to temperature or log precipitation. We use a standard
hierarchical Bayes approach based on the following three levels: data, process, and priors.

Data level : The data level models the quantity of interest Di, i = 1, . . . , N , as a spatial process. We
assume that the climate change is an additive decomposition of a large scale climate signal and small scale
signals consisting of model bias and internal model variability. The single run CIMP data is not sufficient
to model the small scale signals separately and we therefore represent both by a single spatial process. This
decomposition is consistent with the more traditional decomposition in spatial modelling (Cressie, 1993;
Banerjee et al., 2004) where the mean corresponds to global (first-order) behavior and the error captures
local (second-order) behavior. Based on these ideas:

Di = µi + εi, [Di | µi, φi ] iid∼ Nn(µi, φiΣ), φi > 0, i = 1, . . . , N, (1)

where |means “conditioned on” andNn is an n-dimensional normal density. In our approach, the correlation
matrix Σ is specified (see Section 3.3) and φi are scale parameters. Model (1) implies that the density of
the entire dataset, conditional on µi and φi, i = 1, . . . , N , is the product of N Gaussian density functions
dictated by Nn(µi, φiΣ).
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Process level : The second hierarchical level models the large scale climate signals µi, i = 1, . . . , N .
We use a dimension reduction technique and assume that µi = Mθi, where the given “design” matrix M
contains p basis functions with p� n. The choice of M is further discussed in Section 3.2. We denote the
“true” large scale climate change pattern as Mϑ and the θi are modelled as:

[θi | ϑ, ψi ] iid∼ Np(ϑ, ψiΩ), ψi > 0, i = 1, . . . , N.

Centering these coefficients vectors about the true climate one (ϑ) represents our assumption that the
sample of climate models do not exhibit systematic large scale errors. However, we do expect departures
between each model and the true climate and this variation is captured by the covariance term (ψiΩ). In
particular the variation of ψi across different models reflects different levels of bias and internal variability
for a given AOGCM. Although the correlation matrix Ω might have arbitrary structure, for orthogonal or
close to orthogonal basis functions we believe Ω = I is a reasonable choice.

Prior level : The last level puts priors on the process parameters.

[φi ] iid∼ IΓ(ξ1, ξ2), ξ1, ξ2 > 0, i = 1, . . . , N ;

[ψi ] iid∼ IΓ(ξ3, ξ4), ξ3, ξ4 > 0, i = 1, . . . , N ;

[ϑ ] ∼ Np(0, ξ5I), ξ5 > 0;

where IΓ denotes the inverse Gamma distribution and where ξ1, . . . , ξ5 are hyperparameters. If we include
more basis functions in M or if the climatological fields are smooth then we expect φi to be small. The
scaling parameters ψi are related to the internal variability of the model and should also be small. When
several model runs or ensembles are available, they can be used as prior information for the magnitude
of ψi. Since we do not have any independent information about the truth ϑ we choose a large value for ξ5,
reflecting an uninformative prior and justifying the identity as its correlation matrix.

3.2 Choice of Basis Functions

We now discuss the basis functions used to construct the design matrix M. These functions need to be
sufficiently flexible to represent the mean structure of the difference fields, and to achieve this goal we use
three different types.

Any real valued random field on a sphere that has finite variance and has realizations which are square
integrable over the surface of the sphere may be represented as an infinite series of spherical harmonics (e.g.
Jones, 1963). The spherical harmonics are a generalisation of a sin-cosine decomposition of a real valued
function to the sphere. It is therefore natural to assume that the large scale signal is a linear combination
of ps spherical harmonics. The spherical harmonics can be obtained with an iterative procedure and each
additional level has smaller scales. For a given level `, there are 2`+1 basis functions. For example, the first
spherical harmonics corresponds to the global mean (` = 0), level ` = 1 consists of three single sin/cosine
structures on the sphere and so on. Figure 5 gives four examples from the first, second, third and seventh
level.

Figure 5: Examples of spherical harmonics. The fields correspond to spherical harmonics from levels
` = 1, 2, 3, 7.

Temperature fields differ over ocean, land or sea ice and the AOGCM climate change fields echos
these patterns (see Figure 3). These patterns based on land forms are not easily represented by spherical
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harmonics. We therefore also introduce indicator basis functions linked to land forms and sea ice. Figure 6
gives four examples of these indicator functions. Incorporating these indicator functions results in the error
processes εi exhibiting more stationary and isotropic behavior, i.e. the covariance between two points
depends only on the great angle distance of the points and not on their location.

Figure 6: Examples of land indicator basis functions. From left to right Alaska, Greenland, Canadian arctic
ice and lower USA.

Finally, temperature or precipitation change is related to the respective field itself (e.g. Figure 4). We
therefore use a basis function consisting of present climate derived from observed data, provided from the
reanalysis of the National Centers for Environmental Prediction (NCEP) (Kalnay et al., 1996).

3.3 Models for Correlation Matrices on the Sphere

We will assume that the remaining small scale structure εi in equation (1) is an isotropic and station-
ary processes on the sphere. Although this is a strong assumption, it is supported on a global scale by
exploratory graphical analysis with εi (e.g. Cressie, 1993). However, locally a few models exhibit slight
non-stationary behaviour in different regions. In Figure 7 we show localized variograms (e.g. Cressie, 1993)
of the error processes εi of the model ECHAM for the temperature field and the log precipitation field.
The differences in the temperature variograms can be traced to localized variability of this AOGCM around
Greenland and in the Canadian arctic. For the log-precipitation the residuals in the Intertropical Conver-
gence Zone (ITCZ), a zone of trade wind convergence and excessive precipitation, boosts the variogram for
the equatorial zone (see also Figure 13 lower right panel)

Although the variogram is useful in identifying a functional form for the covariance function, the precise
specification of a covariance must be derived from considering families of functions that are positive definite
when restricted to a spherical domain. We discuss two approaches to the construction a such functions.
Further information can be found in Yaglom (1987), Weber and Talkner (1993), Gaspari and Cohn (1999),
and Gneiting (1999).

Schoenberg (1942) showed that a function belongs to the class of positive definite functions on the sphere
if and only if it can be represented as an infinite series of Legendre polynomials. This representation is only
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Figure 7: Localized empirical variograms of residual process εi for model ECHAM for three different latitude
bands (80 to 30 dotted, 30 to −30 solid, −30 to −80 dashed). We used the robust variogram estimator as
given by equation (2.4.13) in Cressie (1993).
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useful in practice if we can rewrite the expression in a low-order parameterized form. However, there are
only a few known closed form expressions where the infinite series can be summed. One, refereed to as the
Poisson kernel, is

c(θ; η) =
(1− η)2(1− η2)

(1 + η)(1− 2η cos(θ) + η2)−3/2
, η ∈ (0, 1), θ ∈ [0, π], (2)

where η is related to the range parameter, i.e. how quickly the correlation decays, and θ is the great circle
distance distance, i.e. the shortest angular distance between two points on the sphere.

A second more general approach is to restrict homogeneous and isotropic correlation functions on R3

to the sphere. In this case the Euclidean distance is replaced by 2R sin(θ/2) where R is the globe’s radius
and θ is the great circle distance. A simple example is the exponential correlation function

c(θ; τ) = exp
(
−2R sin(θ/2)/τ

)
, τ > 0, θ ∈ [0, π], (3)

where τ is the range parameter. This approach can be generalized to Matérn family (Matérn, 1986; Hand-
cock and Wallis, 1994), that allows parameterizing the smoothness of the process. We prefer this second
approach and the choice of the covariance function is discussed in Section 4.

In Section 3.1 we proposed a model with given correlation matrices Σ. This implies that the range
parameters η or τ are not modeled within the hierarchical model. However, the values of these parameters
can be chosen according to an “empirical Bayes” approach or with restricted maximum likelihood techniques
(REML). Both approaches consider the data model as a linear regression with correlated errors and estimate
the error parameters with an iterative procedure as follows. To begin the algorithm assume an initial
covariance matrix Σ, then one estimates the mean structures, i.e. the vector θi, via weighted least squares
(WLS). Given the estimate θ̂∗i of the mean, Di −Mθ̂∗i is used to estimate the covariance structure φiΣ∗

with a REML or a method-of-moments approach. Now θ̂∗i is updated using WLS with the covariance matrix
φ̂∗i Σ

∗ and we obtain a second estimate θ̂∗i . These two steps are repeated until both θ̂∗i and φ̂∗i Σ
∗ converged

according to some criterion. Given the similarity of both approaches it is no surprise that the estimates are
also very similar.

3.4 Implementing a Gibbs Sampler

The goal of our hierarchical modelling approach is to obtain the posterior distribution of Mϑ given the
model observations Di, i.e. [Mϑ | D1, . . . ,DN ]. The posterior density can be derived via Bayes’ theorem
(e.g. Bernardo and Smith, 1994), synthesized as

[ process | data, parameters ] ∝ [ data | process, parameters ] · [ process | parameters ] · [ parameters ] .

The densities on the right-hand side are, of course, given by the three levels of the hierarchical model. The
joint posterior is often a complicated distribution that has no closed form or from which it is impossible
to draw directly. However, the posterior can be sampled using a Markov chain Monte Carlo (MCMC)
procedure known as the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). The essence
of the MCMC approach is to simulate complex joint probability distributions by sampling from a Markov
chain with a stationary, ergodic distribution that is identical to the posterior distribution (see also Gilks
et al., 1998; Robert and Casella, 1999).

Essentially the Gibbs sampler works as follows. For each parameter in the model its distribution con-
ditional on all the other random quantities in the model is identified. Such distributions are called full
conditionals because only the parameter of interest is allowed to be random and the entire remaining part
of the model is fixed (or conditioned upon). The Monte Carlo algorithm cycles among the parameters by
simulating a new value for each parameter based on the full conditional distribution and the current values
of the other parameters. Under weak assumptions the sequence converges to the intended distribution.

Since the hierarchical model is based on multivariate normal and inverse gamma distributions, it is
possible to derive the full conditionals in a closed from. To do so we use the property that if a random
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variable X has a density proportional to exp
(
−1/2(xTAx − 2xTb)

)
, for a positive definite symmetric

matrix A and a vector b, then X has a multivariate normal distribution with mean A−1b and variance
A−1. Starting from the joint density

[
ϑ, {θi}, {φi}, {ψi}, {Di} | ξ1, . . . , ξ5

]
, the full conditionals are:

[ϑ | . . . ] ∼ Np(A−1b,A−1), A =
1
ξ5

I +
N∑

i=1

1
ψi

I, b =
N∑

i=1

1
ψi

θi;

i = 1, . . . , N : [θi | . . . ] ∼ Np(A−1b,A−1), A =
1
ψ i

I +
1
φ i

MTΣ−1M, b =
1
ψ i

ϑ +
1
φ i

MTΣ−1Di;

i = 1, . . . , N : [φi | . . . ] ∼ IΓ
(
ξ1 +

n

2
, ξ2 +

1
2
(Di −Mθi)TΣ−1(Di −Mθi)

)
;

i = 1, . . . , N : [ψi | . . . ] ∼ IΓ
(
ξ3 +

p

2
, ξ4 +

1
2
(θi − ϑ)T(θi − ϑ)

)
,

where the ‘. . . ’ at the right of the conditioning sign refers to all the random quantities in the model, apart
from the parameter to be drawn, and the data. Given the closed form of all the full conditionals, it is
straightforward to implement a Gibbs sampler in any numerical software program.

We programmed the Gibbs sampler with the freely available computer software R (Ihaka and Gentleman,
1996; R Development Core Team, 2004). R (“GNU S”) is similar to the S system, which was developed at
Bell Laboratories by John Chambers and coauthors. It provides a wide variety of statistical and graphical
techniques (linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering,
etc.), as well as a fully functional programming environment. For the numerical experiments presented
here, we run the sampler for a total of 20,000 iterations discarding the first half of the simulated values
to obtain convergence and saving only every 20th draw. Thus, we base our conclusions on a total of 500
values for each parameter, representing a sample from its posterior distribution. On a reasonable desktop
PC this task can be performed within a few hours.

The parameter space of the entire model is (N +1)×p+2N roughly of the order of 1000. It is therefore
not possible to perform formal tests of simultaneous convergence of the sampled chains. However, looking
at trace plots, correlation plots, we strongly believe that the posterior samples are stationary and reached
convergence.

4 Results

In this section we present the results concerning surface temperature and log precipitation output fields
from the 9 AOGCM models.

The original CMIP 2.8× 2.8 degree resolution is too large to be handled in a direct way and we also do
not expect significant agreement in the models at this resolution. We use a simple bilinear interpolator to
reduce the climate fields to a 5×5 degree resolution. Although we work on the sphere, our results are much
more stable if we do not include the poles. Therefore we only consider the fields from −80 to 80 degree
latitude.

Table 2 summarizes the simulation parameters and hyperparameters for the simulations. The most
critical parameter is the number of basis functions. We found that the key choices are the number of
spherical harmonics functions, inclusion of indicator functions for land forms and sea ice, and the field of
present climate derived from observed data. The correlation range τ for εi was found to be directly related
to the number of basis functions. If we include more basis functions in M the resulting processes εi has a
smaller spatial range. This result is not unexpected because a richer basis will remove more structure in
the field leaving less for the small scale component. Based on empirical variograms we were lead to model
the covariance using the exponential form in (3). In addition, simulations showed that the correlation
matrix based on (3) yielded slightly more stable results compared to (2). This is probably due to the linear
behavior of the exponential covariance function at the origin. However, we added a small nugget effect to
the covariance with fixed signal-to-noise ratio. The choice of hyperparameters does not appear to be crucial
to the results.



10 FURRER ET AL.

Simulation parameters Hyperparameters

p (ps) range τ s/n ratio ξ1 ξ2 ξ3 ξ4 ξ5

Temperature
DJF 103(81) 0.15 19 2.1 0.11 2.1 0.11 1
JJA 103(81) 0.15 19 2.1 0.11 2.1 0.11 1

Precipitation
DJF 191(169) 0.1 9 2.1 0.11 2.1 0.11 1
JJA 191(169) 0.1 9 2.1 0.11 2.1 0.11 1

Table 2: Parameter and hyperparameter specifictions for the Gibbs sampler. An inverse gamma distribution
with ξ1 = 2.1, ξ2 = 0.11 has mean 0.1 and variance 0.1.

Mean

0 100 300 500

NCEP obs.

Spher. har. 2

0 100 300 500

Alaska

Spher. har. 6

0 100 300 500

Greenland

Spher. har. 10

0 100 300 500

Can. Arctic Ice

Spher. har. 54

0 100 300 500

Lower USA

Figure 8: Trace plots for the mean, the spherical harmonics given in Figure 5 (top row), the NCEP climate
observation and the land indicator fields given in Figure 6 (bottom row) of the parameter ϑ for the DJF
temperature change. The horizontal line represents zero.

Figure 8 and 9 depict trace plots and kernel estimates of the posterior densities for the mean, the
spherical harmonics, the NCEP climate observations and the land indicator fields given in Figure 5 and 6
of the parameter ϑ.
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Figure 9: Kernel estimates of the posterior densities for the mean, the spherical harmonics given in Figure 5
(top row), the NCEP climate observation and the land indicator fields given in Figure 6 (bottom row) of
the parameter ϑ for the DJF temperature change.
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4.1 Analysis of Surface Temperature and Precipitation Fields

Surface temperature is a rather smooth field and only about 100 basis functions (` = 8) are required to
obtain a good fit of the model. Here, we judge adequacy of the fit by assessing whether the small scale
residual field is consistent with our assumption on isotropy. Figure 10 gives the temperature change that
occurs with at least 80% probability in 70 years with 1% CO2 increase. Figure 11 shows the probability
that the temperature change exceeds 2◦C. The numbers 80% and 2◦C are arbitrary but this particular
format was found to be useful in presenting results to a general scientific audience.

Figure 10: The DJF (left panel) and JJA (right panel) temperature change (degree Celsius) that occurs
with at least 80% probability in 70 years with 1% CO2 increase.

Figure 11: Probability that DJF (left panel) and JJA (right panel) temperature change exceeds 2◦C.

The statistical model was also applied to smaller regions than the full globe with the goal of making
inferences at a regional scale. The hierarchical model still works well at these small scales, but for very
small regions (100 grid cells or less) the results are more sensitive to the number of basis functions.

Log precipitation fields have more small scale variability than temperature and are highly non-stationary,
therefore we were lead to use more basis functions compared to temperature (` = 12). As example for the
analysis of the precipitation fields, Figure 12 gives the median precipitation change that occurs in 70 years
with 1% CO2 increase.

Figure 12: The median DJF (left panel) and median JJA (right panel) log precipitation change (mm/day)
that occurs in 70 years with 1% CO2 increase.
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4.2 Model Checking

Although the posterior fields for each model, [Mθi | D1, . . . ,DN ], are not directly interesting we believe
that they can nevertheless be useful for diagnostic purposes. Samples from these posterior fields should
resemble the observed fields. Figure 13 shows posterior draws from the ECHAM model, where the lower
right panel depicts the CMIP data. Overall the realizations from the posterior look qualitatively similar
to the actual model output. This agreement confirms the adequacy of our modeling approach. Since the
data panel exhibit a smoother behaviour in the arctic sea, slight improvements would probably be achieved
if we generalize the errors εi to anisotropic, non-homogeneous spatial processes. The resulting covariance
should have smaller scales and larger ranges in high latitudes compared to the equatorial zone.

Figure 13: Posterior fields of precipitation climate change for the ECHAM model. The lower right panel
gives the AOGCM result (Unit: mm/day).

5 Extensions

This paper has focused on the simplest model for comparing climate model output, assuming single realiza-
tions from each AOGCM and differenced (future minus present) climate fields. Although this presentation
emphasizes the basic spatial elements of this problem, there are several important extensions to consider
to make this analysis appropriate for application in current IPCC activities.

The presented model can be extended in three intuitive ways: we could 1) include the the covariance
parameters of Σ as part of the hierarchical model, 2) include several different runs of the same AOGCM
and 3) model the control and transient runs separately.
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5.1 Parameterization of the Covariance Structure

A natural way to parametrize the covariance is to model the range parameter and the signal to noise ratio
in the Gibbs sampler. With correlation model (3), the exponential covariance matrix Σ(φ) would be based
on

c(θ;φ) = φ1I{θ=0} + φ2 exp
(
−2R sin(θ/2)/φ3

)
, φi > 0, θ ∈ [0, π],

where I is the indicator function. The resulting full conditionals for the parameters φi do not have a
closed form and hence it would be necessary to include Metropolis–Hastings steps in the Gibbs sampler
(e.g. Banerjee et al., 2004). Simulations suggested that this additional computational burden does not offer
significant improvements in the performance of the model.

5.2 Different Ensemble Runs from Each AOGCM

The new generation of model data for the forth assessment report (AR4) of the IPCC has several runs for
different models. These are termed ensembles of runs and can be interpreted as multiple realizations of
weather from the same climate. The hierarchical approach can be extended by

Xi,j = climatological field from control run j of model i,

Yi,j = climatological field from transient run j of model i,

and modelling the difference Di,j = Yi,j −Xi,j . Here, the variability between separate runs in an ensemble
is due to the internal variability of the model and not due to differences in simulated climate. In this case,
we would have the possibility to estimate the internal variability of each model (e.g. φi).

5.3 Separate Control and Transient Run Modelling

The data level of the presented hierarchical model addresses the climate change directly. Another approach
is modelling the control and transient fields individually and linking them via a correlation structure. Again,
we use a large scale and small scale separation for the control and transient runs:

Xi = MXθi + σi , Yi = MYηi + νi ,

where the errors satisfy

[σi | Σi ] iid∼ Nn(0,Σi),

νi = ωi + ρiσi with [ ωi | Ωi ] iid∼ Nn(0,Ωi) and ωi ⊥ σi .

If ρi = 0, then νi ⊥ σi and if ρi = 1, then σi ⊥ (νi − σi). The data level in this approach can be
written as a 2n-dimensional normal model. The advantage of using this conditional approach compared to
a direct 2n-dimensional normal model is the simple way of parameterizing the correlation structure without
constraints on ρi. An important advantage of this separation is the ability to use the observed climate as
an additional hierarchical component. For example, let X0 denote the NCEP observation field, then we
also include

X0 = Mϑ + σi.

in the statistical modeling approach. This model is a spatial extension of Tebaldi et al. (2005). The process
level and prior level are similar to what has been discussed in Section 3.1. Note that model (1) is a special
case of this more general approach if Σi = φXi

Σ, Ωi = φYi
Σ and MX = MY.
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6 Discussion

A key feature of this work is not only an assessment of the difference in the spatial fields but also a measure
of the uncertainty of this difference based on the posterior distributions. From the analysis of the climate
model experiments, there is considerable warming over the landmasses and some warming over the oceans.
These inferences are illustrated in Figures 10 and 11, where potential temperature shifts are related to
differences that have high posterior probability. Precipitation change is harder to interpret. However, most
of the sub-tropical areas have a decreased mean precipitation and in tropical areas and in the high latitudes
the mean precipitation increases (Figure 12). Again, the posterior distribution is useful in characterizing
the uncertainty of these results.

Although the presented analysis has used the CMIP experiment an important direction for future work
is to apply the same statistical approach to a comprehensive set of AOGCM experiments prepared for
the next IPCC report (AR4). Part of the computational challenge of this work will be to implement the
statistical models for the full resolution of the climate models.

Even though our presentation has included many details specific to climate model output we have
illustrated a general methodology that can be used in other contexts. The basic ingredient is to separate
the spatial response into significant features represented by a small number of basis functions and a small
scale process that has little structure. Although this separation may appear difficult to achieve, we should
note that variogram analysis of the residuals and the posterior distribution provides detailed diagnostics and
implied in our case the adequacy of the model. It is particularly efficient to use a hierarchical statistical
model to implement these ideas. Moreover, for a Bayesian analysis many components of the model are
easy to handle using a Gibbs sampler. Although we have chosen to estimate some parts of the model
using maximum likelihood there is always the option to include a richer Bayesian model that accounts for
these parameters. The extensions of our model outlined in Section 5 involve a more complicated MCMC
algorithm but also include important features not accounted for by a simple approach.

We conclude by noting one outstanding problem that is an area of future statistical research. The choice
of basis functions was done in a subjective manner based on the scientific background and diagnostic of the
fit. However, it would be useful to have the model selection included as part of the Bayesian analysis. In this
way an important component, the basis functions choice, is included in the overall uncertainty encapsulated
by the posterior distribution.
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