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Summary. The objective is to estimate the period and the light curve (or periodic function) of
a variable star. Previously, several methods have been proposed to estimate the period of a
variable star, but they are inaccurate especially when a data set contains outliers. We use a
smoothing spline regression to estimate the light curve given a period and then find the period
which minimizes the generalized cross-validation (GCV). The GCV method works well, match-
ing an intensive visual examination of a few hundred stars, but the GCV score is still sensitive
to outliers. Handling outliers in an automatic way is important when this method is applied in a
‘data mining’ context to a vary large star survey. Therefore, we suggest a robust method which
minimizes a robust cross-validation criterion induced by a robust smoothing spline regression.
Once the period has been determined, a nonparametric method is used to estimate the light
curve. A real example and a simulation study suggest that the robust cross-validation and GCV
methods are superior to existing methods.

Keywords: Generalized cross-validation; Period; Periodic function; Robust spline regression;
Smoothing spline regression

1. Introduction

Variable stars are stars whose brightness changes over time. The class of periodic variable stars
are stars whose maxima and minima brightness recur at constant time intervals. The variability
of brightness allows for the classification of stars into different groups, according to information
on physical properties such as magnitude, the range of period and light curve shape—a plot of
the brightness variation of the star in time. It also provides important clues to the structure of
the galaxies and stellar evolution (Brown and Gilliland, 1994; Gautschy and Saio, 1995, 1996;
Hilditch, 2001). The primary statistical problem that is associated with classifying a variable
star is to estimate its period and its light curve.
Consider a time series {yi, ti},

yi = f.ti=p/ + "i, i = 1, . . . ,n, .1/

where yi is the ith brightness measurement, ti is the ith sampling time, "i is the ith measurement
error and f is a periodic function or light curve on [0,1] (f.t=p/ has period p). The observations
from a variable star are unequally spaced, because the data are collected only at certain times

Address for correspondence: Hee-Seok Oh, Department of Mathematical and Statistical Sciences, University
of Alberta, Edmonton, Alberta, T6G 2G1, Canada.
E-mail: heeseok@stat.ualberta.ca



16 H.-S. Oh, D. Nychka, T. Brown and P. Charbonneau

of night, sometimes with long interruptions. For this reason we expect that {ti} are unequally
spaced. The basic statistical problem is to estimate both f and p.
Several methods have been developed to estimate the period of a variable star. The period-

ogram and least squares are the two traditional methods for estimating the period by using a
simple cosine model (Deeming, 1975; Lomb, 1976; Scargle, 1982). Lafler and Kinman (1965)
found the period to minimize a measure of dispersion defined by the function LK.p/:

LK.p/ =
n∑
i=1

{yÅi+1.p/ − yÅi .p/}2,

where the yÅi are the response values sorted by phase (ti mod(p)). Dwortesky (1983) suggested
a string length method that depends on differences in phase as well as in response. The method
minimizes the string length given by

STR.p/ =
n∑
i=1
[{yÅi+1.p/ − yÅi .p/}2 + {φÅi+1.p/ − φÅi .p/}2]1=2,

where the φÅi .p/ are the ordered phase values. Stellingwerf (1978) proposed another method
based on a measure of dispersion, called phase dispersion minimization. In this method, the
period is chosen to minimize the residual sum of squares of the one-way analysis of variance,
after the phase interval has been divided into a number of bins and the mean response has been
calculated for each bin. This particular method has gained a wide use by astronomers. Recently,
Reimann (1994) suggested a nonparametric method to fit the brightness as a function of phase
at a given period, using SuperSmoother, a variable span local linear smoother developed by
Friedmann (1984). SuperSmoother performs three running line smooths of the data (phase and
brightness) with long,mediumand short span length. Cross-validation is then used to determine
the span length that gives the best fit at each phase value. This method finds the period that
minimizes the sum of absolute residuals obtained by SuperSmoother fitting, which is given by

AR.p/ = 1
n

n∑
i=1

|yi − ŷi.p/|,

where ŷi.p/ are the fitted values from SuperSmoother assuming a period p. Reimann (1994)
showed through a simulation study that the cosine method with least squares and the method
with SuperSmoother perform better than others. However, an obvious disadvantage with the
cosine method is that it does not work well when the true light curve is not sinusoidal. Finally it
is clear that any of the current methods are ineffective when the data have outliers. This lack of
robustness is a practical concern for mining large data bases accumulated for light curve anal-
ysis. As one contribution of this paper, empirical results through real and numerical examples
show that a properly constructed robust estimator retains high efficiency even when no outliers
are present.

1.1. Data
The data sets of variable stars that are used in this paper are a derived product from the project
‘Stellar astrophysics and researchon exoplanets’ (STARE).Theprimaryobjective of the STARE
project is to use precise photometry to search for extrasolar giant planets transiting their parent
stars (Charbonneau et al., 2000). An important by-product of the STARE project is a survey
of variable stars. For each of thousands of stars in a field, photometry data from the STARE
instrument can be used to produce a light curve. Most stars are essentially constant in bright-
ness, but about 10% of the stars are variable. Fig. 1(a) shows the brightness versus time (nights)
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(a)

(b)

Fig. 1. (a) Brightness of a variable star (an eclipsing binary star) measured in stellar magnitude R, where
R D �2:5 log.F / C C, F is the flux density from the star and C is a constant, and (b) brightness versus phase
with p D 0:8764 days as period

for a star classified as an eclipsing binary star. The data in Fig. 1(a) consist of 351 separate
measurements of the star’s brightness, taken on 13 nights contained in a 44-night interval. The
precision of each measurement is about 0.01 stellar magnitude. When two stars orbit each other
in the plane of the observer, the combined brightness decreases when one member of the pair
eclipses the other. However, as seen in Fig. 1(a), when the observations are unequally spaced
with very long interruptions, the periodicity of the variable star is not obvious. Because the
brightness depends on the phase (time mod(p)), if the brightness is periodic in time with period
p, then a plot of brightness versus phase will reveal the periodicity. Fig. 1(b) presents a plot
with a potential period in the phase domain. The light curve in Fig. 1(b) is produced by folding
data over the period of variability. The plot with p= 0:8764 (days) clearly reveals a distinct light
curve of the star. A light curve generated from the correct period will be useful for classifying
the star. For instance, note that fromFig. 1(b) the light curve appears to be flat between eclipses.
This feature is associated with the detached (Algol) type of eclipsing binary stars.
The data that are analysed in this paper can be obtained from

http://www.blackwellpublishing.com/rss

1.2. Outline
In the absence of outliers, we suggest the use of the generalized cross-validation (GCV) score to
estimate the period of a variable star. In Section 2, a nonparametric method based on smooth-
ing spline regression is proposed to determine the period of a variable star which minimizes the
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GCV score. However, with the recognition that a smoothing spline and thus the related GCV
score are affected by outliers, we suggest a robust modification. In the robust cross-validation
(RCV) method, we estimate the period to minimize the RCV score that is induced by a robust
smoothing spline regression. Once the period has been determined by either the GCV or the
RCV method, the light curve can be estimated by a nonparametric method such as smooth-
ing splines or SuperSmoother. Conceptually we have found it useful to separate the smoother
that is used to determine the period with that used to estimate the light curve once p has been
estimated. The theoretical background of the RCV method is briefly mentioned at the end. In
Section 3, we compare the GCV and the RCV methods with the existing methods by using real
brightness data and a simulation study. As a related topic, we discuss a method to estimate
multiple periodicity in Section 4. Some concluding remarks are made in Section 5.

2. Methodology

2.1. Estimation of period: the generalized cross-validation and the robust cross-
validation method
Given a period p, f̂ λ.t=p/, the periodic cubic spline, is the minimizer of

1
n

n∑
i=1

{yi − f.ti=p/}2 + λ

∫
[0,1]

f ′′.x/2 dx .2/

subject to
∫
f ′′.x/2 dx < ∞ and f.0/ = f.1/, f ′.0/ = f ′.1/ (Wahba, 1990).

The GCV score for estimating the period of a variable star is

GCV.p,λ/ =

n∑
i=1

{yi − f̂ λ.ti=p/}2

n[1− n−1 tr{A.p,λ/}]2 , .3/

where A.p,λ/ is the smoothing matrix that is associated with the spline estimate (Hastie and
Tibshirani, 1990). It is useful to letGCV(p) denote theminimumofGCV(p,λ) overλ ∈ [0,∞/ as

GCV.p/ = min
λ

{GCV.p,λ/}: .4/

Weminimize the GCV score in two steps: for each period p, GCV.p/ is computed and then the
periodpÅ is determinedbyminimizingGCV.p/ for allp.Applying thismethod to thedata shown
in Fig. 1(a), the estimated p is obtained as 0.8762 days. This is not far from 0.8764 days that were
obtained by a visual search method in Fig. 1(b). However, the GCV score (not shown) has some
local minima around the global minimum. As mentioned earlier, the smoothing spline regres-
sion is a linear estimate of the data and can be severely affected by outliers. The local minima
of the GCV score is apparently influenced by two outliers (determined visually) near nights 810
and 820 (Fig. 1(a)). If we compute GCV.p/ ignoring these two outliers, then the GCV score
(not shown) does not have any local minima.
Now consider a newmethod that adopts robust spline regression instead of the usual smooth-

ing spline. The robust smoothing spline can be defined, by replacing the sum of squared errors
in expression (2) by a different function of the errors, as follows: let f̂ λ.t=p/ be the minimizer of

1
n

n∑
i=1

ρ {yi − f.ti=p/} + λ

∫
[0,1]

f ′′.x/2 dx: .5/
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Here the function ρ.x/ is typically convex and increases slower than order x2 as x becomes large.
Huber’s favourite is

ρ.x/ =
{
x2 if |x| � C,
C.2|x| − C/ otherwise,

where C is a cut-off point that is usually determined from the data. For C, we follow Huber
(1981) and choose Ĉ = 1:345MAD which ensures 95% efficiency with respect to the normal
model in a location problem. On the basis of this characterization, we consider an idealized
RCV for the smoothing parameter of robust smoothing spline regression as

RCVÅ.λ/ = 1
n

n∑
i=1

ρ{yi − f̂ λ,−i.ti/}, .6/

where f̂ λ,−i.ti/ is the robust smoothing spline when the ith data point .ti,yi/ is omitted. The
implementation of RCVÅ.λ/ is not feasible, because the robust spline is a non-linear estimate
and so exhaustive leave-one-out cross-validation is usually not possible. An approximation to
RCVÅ.λ/ is needed and we propose a very effective scheme based on the concept of pseudodata.
The (unobservable) pseudodata z are defined as

z = ψ.y − f/=E.ψ′/ + f , .7/

where ψ = ρ′. The pseudodata can only be constructed with knowledge of the true function.
However, on the basis of this construction, Cox (1983) gave an interesting result: a robust
smoothing spline fit is asymptotically equivalent to a least squares smoothing spline fit based
on pseudodata. By using this fact, we suggest the approximation

RCV.λ/ = 1
n

n∑
i=1

ρ{yi − f̃ λ,−i.ti/}, .8/

where f̃ λ,−i.ti/ is the least squares smoothing spline with empirical pseudodata when the ith
data point .ti,yi/ is omitted. The empirical pseudodata are defined as

ẑ = ψ.y − f̂/=E.ψ′/ + f̂ , .9/

where f̂ is the robust spline applied to the full data. With our notation, the approximation for
the RCV score for the variable star problem can be expressed as

RCV.p,λ/ = 1
n

n∑
i=1

ρ{yi − f̃ λ,−i.ti=p/}, .10/

whereλ is the smoothing parameter for a periodp.DefineRCV(p) as theminimumofRCV(p,λ)
over λ ∈ [0,∞/ for fixed p:

RCV.p/ = min
λ

{RCV.p,λ/}: .11/

From the fact that smoothing spline regression can be severely affected by outliers, RCV.p/
might be much less sensitive than GCV.p/ of equation (4) with a least squares smoothing spline
when data are perturbed by outliers. The RCV.p/ score (not shown) for the data in Fig. 1(a)
has a global minimum at 0.8764. Unlike ordinary GCV, the minimum is unique and smooth.

2.2. Light curve estimation
Once the period has been determined by either the GCV or the RCV method, a nonparamet-
ric curve fitting method can be used to estimate the light curve in the phase domain. Fig. 2
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(a)

(b)

(c)

Fig. 2. Estimates of the light curve by various methods: (a) fits by SuperSmoother ( ) and the cosine
method (-- - - - - - ); (b) smoothing spline fit ( ) and robust smoothing spline fit in Section 2.1 (- - - - - - - );
(c) robust smoothing spline fit ( ) and robust LOESS fit (- - - - - - - )

shows the estimation of the light curve of the star in Fig. 1 after the period has been deter-
mined at 0.8764 by the RCV method. Fig. 2(a) shows the estimates of the light curve by using
SuperSmoother and the cosine method, Fig. 2(b) illustrates the fits by using a smoothing spline
and robust smoothing spline regression and for comparison Fig. 2(c) shows the fits based on
two other robust smoothing methods that are described in Section 3. All fitting methods have
been used with optimal values (smoothing parameter and order) for appropriate criteria. As
expected, the fit from a robust smoothing spline (the broken curve in Fig. 2(b)) provides a robust
estimate relative to the two outliers. The main differences between the estimated light curve by
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using SuperSmoother and the estimated light curves obtained by other smoothing methods
are

(a) the shape of the light curve such as the flatness between two eclipses and
(b) the difference of amplitude between the primary minimum and the secondary minimum.

The light curve (the full curve in Fig. 2(a)) by SuperSmoother has almost the same amplitudes
between two minima and is rounded between eclipses, whereas the light curves that were fitted
by the other smoothing methods have a different amplitude between two minima and are flat
between eclipses.
The goal of estimating a light curve is not only to fit the light curve but also to obtain useful

information to classify variable stars. If we classify a star as an eclipsing binary star on the basis
of its light curve, further classification into a contact binary (W Ursa Majoris) type (the light
curve by SuperSmoother) or a detached (Algol) type will depend on the relative amplitudes of
the minima. Because SuperSmoother typically underfits the true function, it is not well suited to
detect all the features of the light curve’s shape that are necessary to classify the stars. Instead, as
seen in Fig. 2, the smoothing spline regression captures the local structures of the true function
well. Especially when the data have outliers, robust smoothing spline regression appears to be
superior for this application. Note that the cosine method (the broken curve in Fig. 2(a)) can be
used for estimating the light curve, but thismethoddoes notworkwellwhen the true light curve is
not sinusoidal. These subjective observations are confirmed by the simulation study in Section 3.
As a topic related to estimating light curves, we suggest an approximate confidence interval

for f.ti=p/ with robust smoothing splines when the period p is fixed. To accomplish this we
first detail an explicit equivalence between robust splines and a least squares spline based on
empirical pseudodata. The robust smoothing spline fit that is described in Section 2.1 can be
obtained by coupling a least squares smoothing spline with empirical pseudodata in equation
(9). With empirical pseudodata ẑ, consider the least squares smoothing spline problem for a
fixed period p which minimizes

n∑
i=1

{ẑi − f.ti=p/}2 + λfTRf , .12/

whereR is a specific covariancematrix. The solution of problem (12) solves the normal equation
−2.ẑ − f/ + 2λRf = 0 and is equivalent to the normal equation of a robust smoothing spline
−ψ.y − f/ + 2λRf = 0 when f ≡ f̂ and E{ψ′."/} = 2. Hence, the fit f̂ is a robust smoothing.
Therefore, applying empirical pseudodata ẑ to a least squares smoothing spline produces robust
smoothing. To construct a confidence interval, we apply the pseudodata concept to the con-
fidence intervals that were proposed by Wahba (1983). The connection between a smoothing
spline and a posterior mean suggests a 100.1− α/% confidence interval for f.ti=p/ with a fixed
period p as follows:

f̂ .ti=p/ ± Zα=2
√
σ̂2{A.λ̂/}ii, .13/

where

σ̂2 = ‖{I − A.λ̂/}ẑ‖2
tr{A.λ̂/} :

Fig. 3 shows a 95% confidence interval for the light curve of star 306 constructed by expression
(13).
A reviewer raised some justifiable questions about whether this confidence procedure can

be trusted in view of the underlying distributions being non-Gaussian. First we note that the
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Fig. 3. 95% pointwise confidence interval

confidence interval procedure is being applied to the estimator that is derived from the empir-
ical pseudodata and not the data in the original outlier scale. The empirical and theoretical
pseudodata will always have finite moments due to the boundedness of the transformation.
Thus, formulae based on first and second moments are not unreasonable. It is an open area
of research for us to prove the validity of these intervals; however, we can provide some evi-
dence based on technical results and collateral theory about why one might trust this procedure.
But we should emphasize that the following discussion is far from a rigorous outline or even
a sketch of a proof. The main point in our argument is to assume that the estimator based
on empirical pseudodata and RCV of equation (8) approximates (i.e. is asymptotically equiva-
lent) to the estimator using theoretical pseudodata of equation (7) and the optimal smoothing
parameter.We note that Cox’s results give some evidence for an asymptotic equivalence between
equations (7) and (9) and the work of Hall and Jones (1990) suggests that cross-validation can
provide a consistent estimate of the optimal bandwidth in the context of robust smoothing.
Given the theoretical pseudodata estimator evaluated at the optimal smoothing parameter one
would expect Wahba’s confidence intervals to be reliable. Here we appeal to Wahba’s work in
this area and the fact that the spline is a special case of a geostatistics or kriging estimator.
Indeed, Wahba’s intervals are based on the prediction standard errors under the assumption of
a particular generalized covariance. Such kriging standard errors do not depend on normality:
only finite moments. In summary, although we do not have a rigorous justification of these
intervals we feel that there are enough suggestions in the available theory to make them use-
ful measures of uncertainty for the estimated function. As in any procedure that depends on
underlying assumptions, care should be taken when drawing inferences. But we feel that these
companion confidence intervals are much better than simply reporting an estimate without any
quantification of its uncertainty.

2.3. Theoretical motivation for RCV(λ)
When robust smoothing spline regression is performed for estimating a light curve, the smooth-
ing parameter λ must be selected automatically. As a selection method for λ, we believe that
RCV(λ) may be useful. Note that RCVÅ.λ/ mentioned here is the idealized, leave-one-out
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version defined as, for a fixed p,

RCVÅ.λ/ = 1
n

n∑
i=1

ρ{yi − f̂ λ,−i.ti=p/}:

This is different from our approximation defined in equations (8) and (10).
Given a period p, we conjecture that the minimizer of RCVÅ.λ/ also minimizes in asymptotic

mean-squared error between the estimate of the robust smoothing spline regression and the
truth. Denote the mean-squared error as

MSE.f̂ ,f/ = 1
n

n∑
i=1

E.fi − f̂ i/
2:

A robust extension to the result of Craven and Wahba (1979) gives the following. Given a fixed
p, if λÅ is the minimizer of E{RCVÅ.λ/} over [λn,Λn], then

MSE.f̂ λÅ ,f /

minλ{MSE.f̂ λ,f /}
→ 1, as n → ∞: .14/

We now include a sketch of the proof for property (14). More theoretical results for RCVÅ and
rigorous proofs of result (14) are in progress and will appear elsewhere. Let f̃ λ be a least square
smoothing spline fit with pseudodata in equation (7). By a Taylor series expansion of RCVÅ,
E{RCVÅ.λ/} is asymptotically equivalent to E{CV.λ/} based on pseudodata

E{RCVÅ.λ/} ≈ 1
n

n∑
i=1

E.fi − f̃ λ,−i/
2 + constant:

Thus, by using the result of Craven and Wahba (1979), it can be shown that E{RCVÅ.λ/} ≈
MSE.f̃ λ,f/ + constant. Finally, with Cox’s (1983) result, f̂ λ inherits the same asymptotics as
f̃ λ, and we conclude that

E{RCVÅ.λ/} ≈MSE.f̂ λ,f / + constant:
In comparison with these results, Hall and Jones (1990) discussed kernelM-estimates of the

regression functionbyusingHuber’sρ-function.They showed that least squares cross-validation
results in optimal bandwidth selection (and determining C) with respect to the mean-squared
error. However, we have found that it is difficult to extend their results to spline-type estimates
based on pseudodata.

3. A comparison of methods

Here we report the results of our analysis of several variable stars and one numerical experi-
ment. These experiments are designed for comparing the practical performances of the proposed
approaches with some existing methods. To assess the performance of the proposed method
RCV when the data are perturbed by outliers, we use two robust smoothing approaches. One
is a robust LOESS method based on the assumption of symmetric errors instead of Gaussian
errors. Therefore, the robust LOESS estimate is not adversely affected if the errors have a long-
tailed distribution (Chambers and Hastie, 1993). The other is a robust fit of a smoothing spline
by using the L1-norm. The algorithm is an iterative reweighted smooth spline algorithm which
performs a least squares smoothing spline at each step with the weights w equal to the inverse
of the absolute value of the residuals for the last iteration step. Note that this robust smoothing
spline is different from the robust smoothing spline fit based on the empirical pseudodata in
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Section 2.1. Both robust smoothing methods are applied to find the period that minimizes the
sum of square residuals obtained from fitting.
For two experiments, the following eight methods are compared:

(a) rcv, the RCV method that was proposed in Section 2.1 as the target;
(b) gcv, the GCV method that was described in Section 2.1;
(c) lk, the measure-of-dispersion procedure of Lafler and Kinman (1965);
(d) pdm, the phase dispersion minimization procedure;
(e) Fourier, the cosine method with least squares;
(f) sm, the smoothing procedure by SuperSmoother;
(g) rloess, the robust smoothing procedure by robust LOESS;
(h) rss, the robust smoothing procedure by robust smoothing splines.

All the smoothing methods were performed with some forms of smoothing parameter selection
and the order for Fourier has been selected by Akaike’s information criterion.

3.1. Analysis of data on variable stars
In this section, for several real variable stars, we compare the eight methods cited above. For
the real eclipsing binary star (306) data shown in Fig. 1, based on the global minima from an
exhaustive search, the period is estimated as 0.8762 and 0.8764 under the GCV and the RCV
methods respectively. Existing methods result in almost the same period as the RCV method
(Table 1). However, as shown in Table 1, we find that the estimated periods vary with different
procedures for some variable stars. Fig. 4 displays light curves produced by folding data over
the estimated period determined through the rcv method.
To estimate the error of the period estimate, we simply use a bootstrap method (Efron, 1979).

The procedure is performed as follows: B training sets yÅb, b= 1, 2, . . . ,B .= 100/, are drawn

Table 1. Estimated period and its (bootstrap) standard deviation σB , given in parenthe-
ses, for several variable stars according to different methods

Method Estimated periods (days) and standard deviations for the following stars:

306 969 1164 1744 4699 4865 5954

rcv 0.8764 2.2124 1.4630 1.3328 3.2316 2.3250 0.9808
(0.0001) (0.0030) (0.0004) (0.0015) (0.0295) (0.0016) (0.0003)

gcv 0.8762 2.2134 1.4634 1.3328 3.2858 2.3256 0.9806
(0.0003) (0.0028) (0.0010) (0.0020) (0.0168) (0.0024) (0.0004)

lk 0.8764 2.2148 1.4632 1.3320 3.2220 2.3240 0.9804
(0.0001) (0.0022) (0.0006) (0.0013) (0.0332) (0.0014) (0.0003)

pdm 0.8764 2.2182 1.4592 1.3316 3.2966 2.3196 0.9798
(0.0001) (0.0020) (0.0003) (0.0019) (0.0322) (0.0018) (0.0003)

Fourier 0.8762 2.2144 1.4626 1.3322 3.2894 2.3210 0.9804
(0.0002) (0.0034) (0.0007) (0.0011) (0.0190) (0.0021) (0.0003)

sm 0.8762 2.2116 1.4626 1.3316 3.2896 2.3278 0.9802
(0.0003) (0.0023) (0.0014) (0.0009) (0.0322) (0.0030) (0.0003)

rloess 0.8760 2.2134 1.4632 1.3328 3.2888 2.3278 0.9804
(0.0004) (0.0021) (0.0006) (0.0009) (0.019) (0.0028) (0.0003)

rss 0.8766 2.2142 1.4632 1.3334 3.2878 2.3262 0.9808
(0.0003) (0.0018) (0.0003) (0.0043) (0.0313) (0.0011) (0.0003)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Brightness versus phase with period estimates by the RCV method: (a) star 969; (b) star 1164; (c)
star 1744; (d) star 4699; (e) star 4865; (f) star 5954

with replacement from the original data set y. Each sample has the same size as the original
data set. The period pÅb is estimated from each bootstrap training set, and then we compute its
standard deviation to assess the accuracy of the period estimate:

σB =
√{

1
B − 1

B∑
b=1

.pÅb − p̄Å/2
}
,

where p̄Å = ΣB
b=1 p

Åb=B. The errors of the period estimate, σB, for several real variable stars
are given in parentheses in Table 1.
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3.2. Simulation study
In this experiment the proposed RCV method is compared with existing methods through a
simulation study based on two test functions and three noise levels. In summary, this is a three-
factor experiment with two test functions, three levels of noise and eight methods of estimating
the period. We use the two test functions that are plotted in Fig. 5. The first function is a sinu-
soidal signal, fi = 0:1 sin.2πti=3/, that is a curve resembling the shape for an eclipsing binary
star. The period, 3 days, is typical for stars in the data set and we also match the irregular time
sampling based on brightness data from observed data. For the noise models, we consider

(a) Gaussian errors, N.0, 0:04/,
(b) Student t noise with 3 degrees of freedom scaled by 0.05 and
(c) a mixture of 95% N.0, 0:04/ and 5% N.0, 0:3/ at a random location.

Noise model (a) represents the case that outliers are not present, and models (b) and (c) are
considered for the case where outliers are present. The noise level, 0.04, is consistent with the
estimated noise level for several real eclipsing binary stars.
For the second test function, the signal is a periodic function that is similar to the actual

Algol-type star as shown in Fig. 1(b). The test function has a geometric interpretation. Assume
two spheres with the same radius r that are orbiting each other. We calculate overlapping
and non-overlapping areas of the two spheres and equate non-overlapping areas to brightness.

(a) (b)

(c) (d)

Fig. 5. Simulated sinusoidal signals with noise: (a) true light curve with period 3 days; (b) irregularly sampled
brightness; (c) true light curve with period 1 day; (d) irregularly sampled brightness
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The test function that is obtained in this manner is

f.t/ =




α.πr/ + β, a � t < b,
α[πr − r2{θ − sin.θ/}]0�t<2π + β, b � t < c,
α[πr − r2{θ − sin.θ/}]2π�t<0 + β, c � t < d,
α.πr/ + β, d � t < e,
α[πr − r2{θ − sin.θ/}]0�t<2π + β, e � t < f ,
α[πr − r2{θ − sin.θ/}]2π�t<0 + β, f � t < g,

α = 0:07, β = −11:5 and radius r = 1 results in the ‘true’ light curve in Fig. 5(c). We select
a period g − a = 1 day. Irregular sampling provides the brightness that is shown in Fig. 5(d).
Finally, three noise scenarios are considered:

(a) Gaussian error N.0, 0:06/,
(b) Student t noise with 3 degrees of freedom scaled by 0.08 and
(c) a mixture of 95% N(0, 0.06) and 5% N(0, 0.8) at a random location.

The noise level 0.06 is a reasonable choice for an Algol-type star.
The box plots in Fig. 6 summarize the results of period estimates based on 100 replications.

From the simulation results, we have the following empirical observations:

(a) the rcv and gcv methods give nearly identical results for the Gaussian noise;
(b) for the first test function (sinusoidal) and Gaussian noise, the Fourier method provides

the best result with gcv and rcv;
(c) both robust procedures rcv and rloess outperform non-robust procedures when the error

is t.3/ and a mixture of two Gaussian distributions at random locations;
(d) the rcv method always outperforms the two other robust methods, rloess and rss for t.3/

and the mixture noise scenario.

4. Multiple periodicity

Here we discuss the estimation of multiple periodicity of a variable star. Consider a time series
{yi, ti} with fixed L periodicity,

yi =
L∑
l=1

fl.ti=pl/ + "i,

where fl is the lth period function with period pl. The statistical problem with the above addi-
tive model is to estimate fl and pl, l= 1, 2, . . . ,L. Since the RCV method in Section 2.1 is
induced by a smoothing technique (a robust smoothing spline), we can use a backfitting algo-
rithm which is well known in fitting nonparametric additive regression (Chambers and Hastie,
1993). The backfitting algorithm can be briefly described as follows. For simplicity, let L= 2,
i.e. yi = f1.ti=p1/ + f2.ti=p2/ + "i. Consider the system of two equations:

f1 = S1.y − · − f2/,

f2 = S2.y − f1 − ·/, .15/

where the dots in the equation are place holders showing the term that is missing in each row.
Here a vector fl denotes the function fl evaluated at the sampling time ti and period pl. Sl
represents the smoother operator matrix for smoothing against ti at the period pl. In this case,
we use robust smoothing splines in expression (5) as all the smoothers. Thus, this system solves
the problem
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Box plots of the period estimates with respect to two test functions and three noise scenarios (A,
Lafler and Kinman’s (1965) method; B, pdm method; C, Fourier method; D, SuperSmoother; E, rloess; F, rss;
G, gcv; H, rcv): (a) test function 1, normal noise; (b) test function 1, t .3/ noise; (c) test function 1, mixture
noise; (d) test function 2, normal noise; (e) test function 2, t .3/ noise; (f) test function 2, mixture noise

1
n

n∑
i=1

ρ[yi − {f1.ti=p1/ + f2.ti=p2/}]+
2∑
l=1

λl

∫
[0,1]

f ′′
l .t/

2 dt: .16/

To solve this system, the Gauss–Seidel iterative method loops through the equations, substi-
tuting the most updated versions of functions on the right-hand side with each iteration. For
estimating multiple periods, we use the algorithm based on backfitting as follows. Suppose that
we have an initial period estimate p̂1.

Step 1: obtain residuals by yi − f̂ 1.ti=p̂1/.
Step 2: estimate p̂2 by using the RCV method that is described in Section 2.1.
Step 3: take residuals by yi − f̂ 2.ti=p̂2/.
Step 4: estimate p̂1 by using the RCV method.
Step 5: repeat steps 1–4 until the estimates p̂1 and p̂2 converge.

Finally, we apply the algorithm to a real Delta Scuti type star (543) in the STARE database. The
algorithm converges to two periods, p̂1 = 0:03903 days and p̂2 = 0:04804 days after several
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(a)

(b)

(c)

Fig. 7. (a) Brightness of a variable star with multiple periodicity, (b) brightness versus phase with the first
period p D 0:03903 days and estimate of the light curve with 95% pointwise confidence interval and (c)
brightness versus phase with the second period p D 0:04804 days and estimate of the light curve with 95%
pointwise confidence interval

iterations. Fig. 7 shows the brightness of star 543 in the time domain and plots of brightness
versus phase with period estimates determined by the backfitting algorithm.

5. Conclusion

We have proposed two methods to estimate the period of a variable star from the irregularly
observed brightness. The GCV method is to minimize the GCV score that is generated by a
smoothing spline, whereas the RCV method is based on robust smoothing spline regression as
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a robust version to the outliers. On the basis of actual light curve data and a simulation study,
we have shown that the method proposed estimates the period more accurately than existing
methods. In case the signal is perturbed by a few outliers, the RCV method followed by the
robust smoothing spline regression is a useful tool for estimating the period. In general, the
robust smoothing spline that is proposed in this paper provides a resistant method to outliers
so the advantage of this approach might be important for the next phase of our group’s scien-
tific project. Currently, we are applying the RCV method to determine periods for a survey of
approximately 6000 stars.
As a future direction for statistical research,we also note that the pseudodata idea can be fruit-

fully applied to thin plate smoothing spline and wavelet shrinkage to obtain robust estimators.
It might also be interesting to apply the RCV method to other databases such as the ‘High
precision parallax collecting satellite’ and ‘Massive compact halo objects’ databases.
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