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• National Assessment and Climate Change

• Weather generators and hierarchical models

• General Circulation Models

• Regimes in the atmosphere

Data mining: Discerning empirical, possibly complex relationships from large
data sets.



National Center for Atmospheric Research

≈ 1000 people total, several hundred PH D (physical) scientists,
half the budget (≈ 60M) is a single grant from NSF-ATM

Research on nearly every aspect related to the atmosphere

Climate, Weather, the Sun, Ocean/atmosphere, Ecosystems, Economic impacts,
Air quality, Instrumentation, Scientific computing and ...

Statistical methods for the geosciences



Motivation
Climate is the average of ”weather” over long time scales.

Climate(x) = E[weather(x)]

Premise:Global warming ( climate change) is occurring ... and most scientists
attribute some of the warming to increasing levels of greenhouse gases.

Problem: Translate geophysical predictions of climate change into terms of
daily weather. How do (sometimes subtle) changes in weather effect society,
the economy and the environment.

Strategy:Build weather generators from observational data and climate change
scenarios. Feed generated weather to numerical,impactmodels to assess the
effects of a changing climate.

In this work: Corn yields for the Southeast US.



Schematic of approach

Current Climate → WGEN → Crop model yields

ModifiedClimate → ModifiedWGEN → Crop modelyields

yield differences



The observational weather record
A large data set (> 15M = 3× 30× 365× 500) , with

• irregular spatial locations ( for SE US≈ 500 stations)

• irregular observation periods

• weirdness: outliers, min temp> max temp



CERES corn model

Average yield (Kg/Ha) using observed daily weather 1965-1984
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Spatial sequence of yields: CERES corn model (1960-1984)
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Weather generators

WGEN Richardson (1981), Parlange and Katz (1999)
SetZt to be the daily weather variables. Essentially a multivariate time series
model for

• Precipitation: occurrence, amount

• Solar Radiation

• Daily average temperature and range

• Humidity and Wind speed



The key is toseparate the model intodry andwet days.



Weather for first 200 days for station 1 conditioned by occurrence
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A model for precipitation occurrence

OccurrenceYt = ( 0 or 1) follows an observation driven model:

P (Yt = 1) = pt

wherept depends on past values ofY and seasonality.

LetU , be a uniform R.V. on[0, 1]:
if U > pt no rain, if U ≤ pt rain

Modeling Hierarchy:

logit transformation pt = eθt/(1 + eθt)

seasonality and memoryθt = xtβ + εt

means depend on pastεt = α(Yt−1, Yt−2) + δUt−1

innovations depend on pastUt−1 = (Yt−1 − pt−1)/
√
pt−1(1− pt−1)



Evaluate the occurrence model by checking the distribution of “wet spells”
against the observed station data. (black= model red= data)
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Generating Precip Amount, Solar radiation, temperature, etc.

Given that it has rained, the rain amounts are assumed to follow a Gamma
distribution where the gamma parameters vary over season.

Condition on occurrence, find (seasonal) transformations of the variables to
standard normals.ut = Γt(Zt).
Γ based on best fitting Gamma distribution followed by a (nonparametric)
spline transformation.

ut evolves according to a (seasonal) AR 1.

ut = Atut−1 + et



Adding spatial structure

Spatial dependence

How does one add stochastic structure that is coherent over space?

Precipitation occurrence (0,1) process:

P (Yt(x) = 1) = P (Ut(x) < pt) = P (Ωt(x) < F−1(pt))

with Ut(x) a correlated spatial process with marginals that are uniform.

We assume thatΩt(x) = F−1(Ut(x)) a Gaussian spatial processF ∼ N(0, 1).

AR 1 innovations:
Assume thatet(x) is a multivariate Gaussian spatial process.



Extrapolating/Smoothing WGEN parameters

Smooth or interpolate weather generator parameters over space, These include:

• Seasonality in means and standard deviations

• Transformations to Normality

• Autocorrelations

• Parameters of Precipitation occurrence models

Use functional data methods and spatial statistics (???).



Observed occurrences andpt for stations 1 and 2
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Observed occurrences andpt for stations 1 and 2
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Correlations among all stations against distance
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Summary
• The seemly straightforward exercise of building a weather generator poses

new statistical models.
e.g. functional data, NonGaussian, Space-time Processes

• Linking models over a region involves mining relationships among
WGEN’s for individual locations.



Finding different regimes in a climate model.
Many numerical models of geophysical systems provide very large and complex
data sets. The the model output has rich structure that is often not examined in
detail by modelers. It is an important opportunity for data mining tools to iden-
tify complicated model properties that are not obvious through simple summary
statistics.

General Circulation Models (GCM)
• GCM: A deterministic numerical model that describes the circulation of the

atmosphere. It is coupled to models for the ocean, ice , land etc. to model
the entire climate system.

• Conceptually based on grid boxes ( for the NCAR climate system model:
there are128 × 128 × 17 ) and the state of the atmosphere is the average
quantities for each box .



Different dynamic modes in a GCM
Scientific question:
Does the atmosphere simulated by a GCM have different regimes i.e multiple
equilibria?
If so, what are they and how long does the atmosphere spend in a particular
regime?
Statistical problem:
Given a multivariate, nonlinear time series

xt = A(xt−1) + et

findA and partition the state space into regions of similar dynamics.



GCM Data
{xt} is a 5 dimensional times series with 2M observations. Model output from
a run of CCM0

• CCM0 state of the art GCM in early ’80s

• No external forcing, ”perpetual January”, distinguishes between land and
ocean, simple convection process.

• Resolution on a7.5× 4.4 degree grid (R15)
model state vector is≈ 18K, 30 minute time step

• 5-dimensional summary:
coefficients of the first5 EOFs for 300mb stream function

• Data series sampled twice per day over 1 million days

300mb stream function is the nondivergent part of the horizontal wind field at
300mb. (The Laplacian of the stream function is the vorticity. It is a useful
summary of the flow in the Northern Hemisphere mid-latitudes



The five EOFs used to reduce the data

EOF1 EOF2

EOF3 EOF4

EOF5



Fitting an multivariate AR model to the state vector

A(x) is overwhelmingly linear ...
but with 2 ∗ 106 data points we can be picky!



Neural net estimation

Estimate a nonlinearA using the functional form

A(x) = β0 +

h∑
l=1

βlΦ

(
µl +

k∑
j=1

γljxij

)
where

Φ(x) =
1

1− e−x
(single hidden layer)
This is not quick ...
Training set: 600K observations
Computer time≈ 6 hours on a shared SGI Origin2000



“DELINEARISING” A(x)

Think of:
A(xt) ≡ Bxt + Ã(xt)

where

B = JA(0)

is the Jacobian of the mapA(.) computed at0 then:

Ã(xt) ≡ A(xt)− JA(0)xt



Looking at 2-d slices of the nonlinear map
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FINDING DYNAMICAL CLUSTERS
• Compute theJacobians

of the nonlinear component
at aregular gridof points in the phase space

• Clusterthem

• use the resultingclusters’ centersto cluster theentire set of observations

xt → Ã(xt)→

[
∂Ãi

∂xj

]
i=1,...5;j=1,...5

→ clustering



CLUSTERS AND SWIRLS AGREE!
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SOME ANALYSIS OF THE CLUSTERS

Classify each point in the time series and estimate the expected times of switch
from one cluster to another. Plotted are times to switch for state vectors in the
2-5 EOF plane
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Summary
• We haveestimated and quantified the nonlinear componentof the map

Xt−1 → Xt;

• Dynamics of CCM0 can be productively clustered into at least two distinct
regimes.


