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• Statistical models

• GLM models

• Flexible regression

• Combining GLM and splines.
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Statistical tools for the analysis of Mortality
related to air pollution and temperature.

The goal of this talk is to give a gentle introduction
to the models used by Zeger, Dominici et al. SPH
Johns Hopkins for explaning mortality based on envi-
ronmental factors.

The Johns Hopkins group is focused on the effect of
high levels of particulates (PM10) on short term, non-
accidental mortality rates.

This leverages the National Morbidity, Mortality and
Air Pollution Study Database (NMMAPS). (Welty,
Peng and McDermott)
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Schematic of PM10 model:

Mortality in an urban center =
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Schematic of PM10 model:

Mortality in an urban center =

Calendar effects + Age categories

+ seasonal effects

+ particulates + temperature/humidity stress +

+ interaction of temperture with age

+ random component.

This work is a useful motivation for understanding

Poisson Regression

Flexible regression models
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Some data atributes:

• A response depends on other variables: (Mortality
depends ontemperature and PM.)

Yk = f (Xk) + noise

Here we interpret the noise as having a mean of
zero.

• The explanatory variables can be either
catgorical (age category, day-of-week)
or continuous (daily average temperature, PM)

• The response may be discrete or NonGaussian
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Issues for data analysis

How does one specify all of these components in a simple and
unambigous fashion?

How does one estimate a multivariate functional relationship?
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Formula’s

Some variables:

mort: Daily, nonaccidental mortality for three age cat-
gories.
time: Day

tmp: Daily average temperature
tmp3: Daily average temperature for past three days

PM: Daily Particulate (< 10µg)

AgeCat: Three age categories <65, 65-74, >75
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Formula for a linear regression of mortality on 3-day temper-
ature

mort ~ tmp3

3-day temperature and PM

mort ~ tmp + PM

Dependence on the age categories

mort ~ AgeCat + tmp + PM

These are additive models because the variables ap-
pear by themselves and the contribution of each can
be inferred from their individual values.
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Interactive dependence on the age categories

mort ~ AgeCat+ tmp+ AgeCat:tmp

or just
mort ~ AgeCat*tmp

Three different slopes and intercepts, the : is an in-
teraction. * includes all possible terms. There are
several conventions that make this not as transparent
in the fit.

This is more interpretable.

mort ~ AgeCat + AgeCat:tmp -1

Coefficients:

AgeCat1 AgeCat2 AgeCat3 tmp:AgeCat1 tmp:AgeCat2 tmp:AgeCat3

66.804 44.522 121.158 -0.156 -0.139 -0.473
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All models are wrong, but some are useful ...
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All models are wrong, but some are useful ...

but some models are more wrong than others!
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All models are wrong, but some are useful ...

but some models are more wrong than others!

Changing variance is missed.
Absolute residuals from 3 slopes model.
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Sublties of the temperature response are missed!
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A Generalized Linear Model (GLM)

Assume that mortality (Mt) is approximately Pois-
son distributed

Mean model with log link function

Mt ∼ Poisson(µt)

E(Mt) = µt

model the log of the mean.

log(µt) = f (covariates)
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Variance model with over-dispersion

The Poission distribution has a variance equal to the
mean:
V ar(Mt) = µt. This allows modeling of both the mean
and variance simultaneously.

Often the Poission does not include enough variability
so an additional parameter is included:

V ar(Mt) = φµt

φ the over-dispersion parameter.
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Example of a Poisson Response
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GLM fit to mortality

First consider the linear model but using the Pois-
sion regression. log(µt) has three different slopes as a
function of temperature based on the age categories.

In R-code:

glm( mort~ AgeCat*tmp3, family=quasipoisson)

Results in residuals that better fit model assumptions.
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Flexible Regression

Response of mortality is not linear, not clear what
functional form to choose.

One strategy is to represent the unknown function as
a linear combination of basis functions

f (temp) =
∑
j=1

Mψj(temp)βj

Splines: Local basis functions that allow one to con-
trol the flexibility of the shape of f.
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Three factors that control splines:

• number of knots

• location of knots (usually equally spaced)

• order of fit (usually cubic)

A cubic B-spline basis for temperature (6 knots)

Functions are piecewise cubic in between knots.
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Controlling the resolution

4 knots

12 knots
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Applying the spline model to temperature

The simplest model is now

log(µt) = AgeCat + f (tmp3) = AgeCat +
M∑
j=1

ψj(tmp3t)βj

where ψj are the B-splines.

No interaction here between age category and the
temperature response.

An extension is to have a distinct response to temper-
ature for each age category. This gives three seperate
B-spline curves with different coefficients.
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Results with 4 knots

Relative Risk estimates:
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Results with 6 knots

Relative Risk estimates:
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Issues of inference

Selecting the amount of curve flexibility
There are information criteria and cross-validation tech-
niques to do this.

Uncertainty in estimates
Parametric bootstrapping, fitting synthetic data sets
generated from the fitted model gives a useful mea-
sure of error.

Bayesian methods can also give an idea of the uncer-
tainty of the estimated relationships.
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This talk is ending too soon!

Standardized residuals against time:
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This talk is ending too soon!

Standardized residuals against time:

Use an additive model:

log(µt) = f1(tmp3t) + f2(t)

f1 and f2 are both modeled using B-splines
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Additive curves for time trends
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Remarks

• There are many new statistical tools to discern
structure in complex data sets.

• Inference can be formalized by Bayesian methods

• One challenge is to combine models across cities.
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