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SUMMARY: Pedotransfer functions are classes of models used to estimate soil water

holding characteristics based on commonly measured soil composition data as well as other

soil characteristics. These models are important on their own but are particularly useful in

modelling agricultural crop yields across a region where only soil composition is known. In

this paper, an additive, multivariate spatial model is introduced that offers the flexibility

to capture the complex structure typical of the relationship between soil composition and

water holding characteristics. A new form of pedotransfer function is devloped that models

the entire soil water profile. Further, the uncertainty in the soil water characteristics is

quantified in a manner to simulate ensembles of soil water profiles. Finally, using this

capability, a small study is conducted with the CERES maize crop model to examine the

sources of variation in the yields of maize. Here it is shown that the interannual variability

of weather is a more significant source of variation in crop yield than the uncertainty in

the pedotransfer function for specific soil textures.
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1 Introduction

Soil scientists have long been interested in pedotransfer functions that are used to estimate

soil water holding characteristics from commonly measured soil composition data. These

water holding characteristics are necessary, along with other inputs such as weather, for

use with crop models such as the Crop Environment Resources Synthesis (CERES) models

that predict yields of maize, wheat, etc. Although crop yields are of interest in their

own right, our interest is in using these models to assess the impacts of the interannual

variability in climate as well as climate change. Crop yields are a useful integration of

the weather during a growing season and provide a meaningful summary measure of the

meteorology at a specific location. Considering the difference in the average yields predicted

by the crop models under weather simulated from present and a possible future climate is a

metric for climate change with agricultural and economic import. However, the uncertainty

and variation in the predicted yields are also of vital concern to scientists, researchers,

policy makers, etc. In particular, it is important to quantify how variation in the soil

characteristics influence the crop models. Developing an understanding of the uncertainty

in the soil characteristics as well as other inputs to the crop models will lead to further

understanding of the uncertainty in the predicted crop yields and the impact of climate

and climate change.

The water holding characteristics of a soil are generally characterized by measurements

of the drained upper limit (DUL) and wilting point or lower limit (LL). The DUL is defined

as the amount of water that a particular soil can hold after drainage is virtually complete.

The LL is defined as the smallest amount of water that plants can extract from a particular

soil. These values are often measured at different depths at a single location, yielding an

entire profile of water holding characteristics.

A key component of most pedotransfer functions is soil composition information which

typically consists of measurements of the percentages of clay, sand, and silt. Other variables

are also at times incorporated into pedotransfer functions. These include, for example, bulk

density (the weight of dry soil per unit volume of soil) and the amount of organic carbon
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in the soil.

A number of different approaches to the development of pedotransfer functions have

appeared in the literature. Multiple regression, nonlinear regression (e.g. neural networks),

and nonparametric methods such as nearest-neighbor regression have been used along with

methods based on established physical relationships and differential equations. Several re-

views have appeared in the literature discussing the various forms of pedotransfer functions

including Rawls et al. (1991), Timlin et al. (1996), Minasny et al. (1999), Pachepsky et

al. (1999), and Gijsman et al. (2002). However, there are still issues in applying modern

statistical models to this problem and, just as important, in characterizing the uncertainty

of the estimated pedotransfer function.

We propose a flexible procedure based on an additive, multivariate spatial model that

simultaneously models the entire soil water profile of LL and DUL. While accounting for

the spatial dependence in the LL and DUL as a function of depth, this model also allows for

smooth contributions of important covariates related to the soil composition as well as the

inclusion of additional covariates. Using such a model, the uncertainty in the predicted LL

and DUL can be easily characterized. Further, this procedure gives a framework for gener-

ating random realizations of soil water profiles for particular collections of soil composition

characteristics. These realizations can be interpreted as random samples from the posterior

distribution of the soil water profiles given the data, which in this case is a database of

observed soil water profiles. Of course, the variation in these random samples reflects the

uncertainty in the soil water profiles and the subsequent variation in crop yields.

The following section gives details about the data used in this work and Section 3

outlines the construction of the model as well as estimation. Section 4 presents the results

of the model fitting, a discussion of the prediction error in the model, the generation of soil

water profiles, and an application utilizing the CERES maize crop model to examine the

behavior of the predicted crop yields for different soil types.
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2 Soil Data

The soil database used in this work consists of 272 individual measurements on 63 soil

samples selected by Gijsman et al. (2002) from a national field study of Ratliff et al. (1983)

and Ritchie et al. (1987). See also Jagtap et al. (2003). To our knowledge, this is one of

the most extensive soil databases for use in the development and validation of pedotransfer

functions.

Individual measurements from the original study that were beyond the reach of the

roots were excluded as well as samples in the top layers of soil that dry out much more

than the rest of the soil. The data set includes information on depth, soil composition and

texture (percentages of clay, sand, and silt), bulk density, and organic matter, as well as

water holding capacity (field measured values of LL and DUL).

2.1 Soil Composition

The soils in the study represent a broad range of soil textures of interest in agriculture. A

scatterplot of the soil composition data is given in Figure 1 transformed to the standard

soil-texture triangle. The plot character size in the scatterplot is related to the measured

value of the LL. A point in the center of the triangle represents equal amounts of clay,

sand, and silt. A point nearer one of the three labelled corners in the triangle represents a

soil that is dominated by that component.

The percentages of clay, sand, and silt for each soil are constrained to sum to 100 (or,

equivalently, the proportions sum to one). Thus, knowledge of any two of the composition

percentages completely defines the third. So there are not three distinct variables in the

soil composition, rather the measurements inhabit a lower-dimensional structure. Aitchison

(1987) suggests transforming such data using the additive log-ratio transform. Consider

constructing two new variables defined as

X1 = log

(
Silt

Clay

)
X2 = log

(
Sand

Clay

)
.

A scatterplot of X1 and X2 is also shown in Figure 1. The choice of which variable to use
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Figure 1: Scatterplot of soil compositional data in the standard soil-texture triangle (left
frame) as well as a scatterplot of the transformed compositional data (right frame). The
size of the plot character is related to the measured value of the LL.

in the denominator is somewhat arbitrary, and, for these data, the clay component is used

since that choice yields the smallest correlation among the transformed variables X1 and

X2.

2.2 Soil Water Profiles

The data exhibit a nested structure in that each of the 63 different soil samples have

measurements of soil composition, LL, DUL, etc. taken at different depths. For a particular

soil, this collection of LL and DUL measurements at different depths make up the soil water

profile. Examples of the LL and DUL profiles for four particular soil texture types are

displayed in Figure 2. The soil texture classification is based on the relative percentages of

clay, sand, and silt. The data set includes soils with the following soil textures: silty loam

(SIL), silty clay loam (SICL), loam (L), clay loam (CL), sand (S), silty clay (SIC), sandy

loam (SL), sandy clay loam (SCL), clay (C) and loamy sand (LS).

As is shown by Figure 2, the LL and DUL measurements are constrained in the sense
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Figure 2: Examples of soil water holding profiles for four soil textures: silty loam (SIL),
silty clay loam (SICL), clay loam (CL), and sand (S). Dashed (red) lines indicate the lower
limit (LL) while dotted (blue) lines represent the drained upper limit (DUL).

that 0 < LL < DUL < 1. Since DUL is typically much less than 1, this suggests the

transformation

Y1 = log(LL) Y2 = log(∆)

where ∆ = DUL − LL. Given the measurements, the statistical problem now is to accu-

rately reproduce the profile structure in the Y1 and Y2 as a function of depth and across

the range of possible soil compositions and texture classes.

3 A Flexible Multivariate Model

It is assumed that the data has the form (Yi,Xi, {Zki}p
k=1, Si, Di) for i = 1, . . . , n. The Si

indicate the soil sample from which the measurements are taken, while the Di record the
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particular depth. The p-vector Yi is composed of the log LL and log ∆ measurements for

soil Si and at depth Di. The q-vector Xi is composed of the bivariate (transformed) soil

composition data, also for soil Si and at depth Di. The soil composition data contained

in the Xi is assumed to be common to all of the measurements in Yi while the {Zki} are

qk-vectors of additional covariates specific to the kth measurement in Yi.

3.1 Multivariate Regression Models

Ignoring the nested structure of the data, depth, and the additional covariates {Zki} for

a moment and constructing the n × p matrix Y = [Y1 . . .Yn]′ and the n × q matrix

X = [X1 . . .Xn]′, the traditional approach to multivariate response regression suggests a

model of the form

Y = Xβ + ε (1)

where β is a q × p matrix of regression coefficients and ε = [ε1 . . . εn]′ is a n × p matrix

of errors. The standard assumptions on the error terms posit that, for each i = 1, . . . , n,

E[εi] = 0 and Var[εi] = Σ. Also, the rows of ε are assumed to be independent. Then the

least-squares estimates of β are equivalent to performing p individual regressions on the

columns of Y.

A second formulation of the multivariate response regression model in (1) can be con-

structed by stacking the columns of Y, yielding

vecY = (Ip ⊗X)vecβ + vecε, (2)

where vecY is now a np × 1 vector given by

vecY = [Y11 · · ·Y1nY21 · · ·Y2n]′ ,

and Y1i and Y2i represent the measurements of log LL and log ∆, respectively. Also, ⊗ is

the Kronecker product, vecβ is a qp×1 vector of regression coefficients, and vecε is a np×1

vector of errors. This formulation changes the behavior of the error structure somewhat.

For example, although E[vecε] = 0, Var[vecε] = Σ ⊗ In. In the following, we will drop
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the vec notation and simply consider, for example, Y as a np × 1 vector while retaining

the knowledge that the first n elements of Y refer to the first response variable, that the

second set of n elements refer to the second response variable, etc.

3.2 An Extended Multivariate Model

Preliminary analysis as well as a close examination of the data in Figure 2 suggest that a

model such as those in (1) and (2) would be inappropriate. These models fail because the

response is not linear and the covariance structure does not follow the simple Kronecker

form. We seek to generalize these simple models in several ways. First, through a type of

additive model, flexibility will be incorporated into the regression function, in particular, to

model the relationship between the transformed soil composition data and the transformed

soil water variables. Secondly, additional covariates, including those specific to just LL

and ∆ will be included. Finally, there is a certain smoothness in the profiles in Figure

2 suggesting that the measurements are correlated with depth. Hence, the model should

be able to account for dependence not only within measurements for each observation

(e.g. between LL and ∆ at the same depth for a particular soil) but also possible spatial

dependence between the observations (e.g. across LL and ∆ measurements at different

depths for a particular soil).

Consider expanding the multivariate response regression model as

Yi = P ({Zki}p
k=1,Xi) + h(Xi) + εSi

(Di), (3)

where P is a fixed polynomial function, h is a random function of the transformed soil

composition, and εSi
is a random error process accounting for both the variation between

measurements for a particular soil at some fixed depth and the spatial dependence across

measurements for a particular soil at different depths.

Assuming that the errors have a normal distribution, the model in (3) implies that Y

is multivariate normal with

E[Y] = Tβ Var[Y] = Σh + Σε. (4)
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The regression matrix T is a block diagonal matrix with p blocks. The kth block has

the form [1 X Zk]. Here, 1 is a n-vector of 1’s (intercept), X is the n × q matrix of

variables common to all response variables and Zk is the n × qk matrix of explanatory

variables specific to the kth response variable. This structure implies that T and β have

p + nq +
∑

k qk columns and elements, respectively.

3.3 Covariance Structure

The covariance matrix Σh is associated with h(X) while Σε is the covariance associated

with the error process. These covariance matrices have the form

Σh = diag(ρ1, . . . , ρp) ⊗K Σε = W ⊗B, (5)

where diag indicates a diagonal matrix. We assume that h is a stationary process and so

the matrix K contains elements of the form Kij = Cov[h(Xi), h(Xj)] = C(||Xi −Xj||) for

i, j = 1, . . . , n. A flexible class of covariance functions is the Matern family (Stein, 1999)

given by

C(d) = σ2 2(θd/2)νKν(θd)

Γ(ν)
(6)

where d = ||Xi − Xj||, σ2 is a scale parameter, θ represents the range, ν controls the

smoothness, and Kν is a modified Bessel function of order ν. We use this family for

modelling the regression function relating soil parameters to composition.

The matrices W and B represent the within observation covariance (fixed depth) and

the across observation covariance (across depths), respectively. The p × p matrix W has

elements wij = Cov[εki, εkj] for all k = 1, . . . , n and i, j = 1, . . . , p. The matrix B is a n×n

matrix whose structure is more complex as it reflects the nested structure in the data,

i.e. the effect that measurements within a particular soil water profile are related across

depth. The elements of B are given by

bij =

{
Cov[εik, εjk] = C(||Di −Dj||) Si = Sj

0 otherwise,
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for all k = 1, . . . , p and i, j = 1, . . . , n where again we assume that the process modelling

dependence on depth is stationary. The covariance function used here is the exponential

covariance given by

C(d) = exp(−(d/θ)2),

where d = ||Di −Dj||. Note that that the exponential covariance function is in the Matern

family where ν = 0.5. Typically, the observations will be grouped by soil sample, indicated

by the Si. Hence, B will have a block diagonal structure and all of the off-diagonal elements

will be zero reflecting the independence of measurements from different soil samples.

3.4 Estimating Model Components

Smoothing is accomplished by finding the appropriate balance between the respective com-

ponents of the overall covariance matrix. However, it is also desirable to allow different

amounts of smoothing across the different variables. Formally, the overall covariance matrix

can be written as

Σh + Σε = diag(ρ1, . . . , ρp) ⊗K + W ⊗B

= w11 [diag(η1, . . . , ηp) ⊗K + V ⊗B]

= w11Ω,

where ηi = ρi/w11 and the elements of V are of the form vij = wij/w11. Assuming that V,

B, and K are known, then smoothing can be accomplished by choosing the appropriate

values of η1, . . . , ηp.

Given covariances for h and εS in (3), a standard estimator is the best linear unbiased

method (commonly known as universal kriging) and has the form

Ŷ = Tβ̂ + (diag(η1, . . . , ηp) ⊗K)δ̂. (7)

The estimator is fit iteratively as follows, which can be characterized as a variation on

backfitting:
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0. Initialize: Compute K and set W = Ip and B = In.

1. Using the restricted maximum likelihood (REML) outlined in Nychka (2000), esti-

mate η1, . . . , ηp. Given, the QR decomposition of T as

T = [Q1 Q2]

[
R
0

]
,

where the matrix R is upper-triangular and Q = [Q1 Q2] is an orthogonal matrix

with Q1 having columns that span the column space of T and Q2 having columns that

span the space orthogonal to T. Then Q′
2Y has zero mean and covariance matrix

given by Q′
2(Σh + Σε)Q2. Because the matrices K, W, and B are fixed at this

stage, profiling the likelihood with respect to w11 leaves the likelihood as a function

of only the η1, . . . , ηp. Estimates of the ηi are then found through a simple grid search,

yielding an estimate of Ω, denoted by Ω̂.

2. Estimate β̂ and δ̂ via

β̂ = (T′Ω̂
−1

T)−1T′Ω̂
−1

Y

δ̂ = Ω̂
−1

(Y −Tβ̂).

3. Compute residuals and estimate W. Denote the column-stacked vector of residuals

as R = Y − Ŷ where Ŷ is given in (7). Then by “unstacking” R and creating an

n × p matrix of residuals, W is then estimated by the standard sample covariance

matrix.

4. Using the estimate of W, the residuals are transformed to have an identity covari-

ance matrix. The covariance matrix B is then estimated from fitting an exponential

covariance to the variogram.

5. Repeat items 1-4 until convergence.

For our application, we believe that the variogram is a reasonable approximation to the

maximum likelihood estimator due to the sufficient size of the data. We also conjecture
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that, at convergence, the algorithm produces approximate maximum likelihood estimators

of covariance parameters. Furthermore, following standard practice, the estimator β̂ and

the best linear unbiased predictor δ̂ are conditional on these estimators.

4 Soil Water Profiles

The algorithm presented in Section 3 was used to fit the model in (3) and (7). The matrix

X contains the transformed composition data, which are common to both log LL and

log ∆. Additional covariates for log LL included a measure of organic matter in the soil

(Zi1, i = 1, . . . , n). The profiles in Figure 2 suggest that ∆ is smaller for deeper soils.

Hence, both linear and quadratic terms were included as additional covariates for log ∆ by

setting Zi2 = [(Di − 70) (Di − 70)2]′ for i = 1, . . . , n where the midpoint of the values of

depth in the data is 70. Approximately five iterations of the algorithm were required for

fitting the model and convergence was monitored by examining parameter estimates and

predicted values.

4.1 Results

The partial regression functions for the transformed composition data and log LL and

log ∆ are given Figures 3 and 4. Also shown in these two figures are the partial regression

functions after back transforming the composition data and displaying the fits on the

standard soil-texture triangle. In general, more sandy soils have the lowest log LL and the

silty clay soils have the highest log LL. Sandy soils also had lower log ∆ values, suggesting

that the LL and DUL are closer together. Interesting, the final regression fits for log ∆

seem to have two peaks, near more loamy soils and near silty clay soils. These results

indicate that h plays a significant role in determining the composition beyond just a simple

polynomial relationship.

The contribution of organic matter to the log LL is shown in the left frame of Figure

5 along with two standard error bands (pointwise). There does not seem to be strong

evidence of a significant contribution of organic carbon to log LL. The contribution of
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Figure 3: The partial regression function for log LL as a function of the transformed com-
position data is shown in the left frame while the right frame shows the partial regression
function after transforming back to the soil-composition triangle.
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Figure 4: The partial regression function for log ∆ as a function of the transformed com-
position data is shown in the left frame while the right frame shows the partial regression
function after transforming back to the soil-composition triangle.
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Figure 5: The partial regression function for log LL as a function of the organic matter
in the soil is shown in the left frame while the right frame shows the partial regression
function for log ∆ as a function of depth. Dotted lines represent two standard error bands
(pointwise).

depth to the log ∆ is shown in the right frame of Figure 5, also with two standard error

bands (pointwise). Depth, on the other hand, does seem to have a significant impact on

log ∆ with LL and DUL getting closer together at greater depths.

The contour in Figure 6 represents the covariance matrix W and suggests a slight

negative correlation between log LL and log ∆ at a fixed depth. After estimating W, the

residuals are transformed to remove the correlation and then empirical covariagrams for the

residuals as a function of depth were examined. Both covariagrams for LL and ∆ generally

appeared very similar. Hence, a single covariagram was fit and applied to both models.

The final estimate is shown in Figure 7.

The final fitted covariance matrices are shown in Figure 8. For Σh, the matrix is block

diagonal with the two blocks representing the spatial covariance between the transformed

composition parameters. The blocks are identical except for the differences in scale resulting

from the different amounts of smoothing for the two variables. For Σε, the block structure

of the matrix due to the nested structure of the data is clear. The diagonal blocks represent

the spatial correlation with depth for each soil and the off-diagonal blocks represent the

correlation between log LL and log ∆ for a fixed depth. Again, the differences in scaling

due to the different amounts of smoothing are clear.
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Figure 6: Final estimate of covariance matrix W.
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Figure 7: Final estimate of covariance function for B. Empirical covariance function indi-
cated by the open circles (with two standard error bars).
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Figure 8: Final fitted covariance matrices Σh (left frame) and Σε (right frame)
.

4.2 Prediction Error and Conditional Simulation

Ultimately, the interest is in quantifying the uncertainty in the soil water holding char-

acteristics and generating simulated water profiles for soils with specific compositions and

depth profiles. Noting that the estimator in (7) is linear in Y, predicted values as well as

the prediction error are easily found. Let (X0i, {Z0ki}p
k=1, S0i, D0i) for i = 1, . . . , n0 denote

the data structure for a new soil where predictions of the water holding characteristics are

desired. Further, let X0 denote the n0 × q matrix of variables common to all the response

variables and {Z0k} the n0× qk matrix of explanatory variables specific to the kth response

variable. Predicted values are obtained via

Ŷ0 = T0β̂ + K0δ̂

= A0Y (8)

where the matrix T0 is given by

T0 =

[
1 X0 Z01 0

0 1 X0 Z02

]
,
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K0 is a n0×n matrix with elements Kij = C(||X0i−Xj||) and C is the covariance function

defined in (6). Letting

M = (T′Ω̂
−1

T)−1T′Ω̂
−1

,

then

A0 = T0M + K0Ω̂
−1

(I−M).

The prediction error is obtained via

Var(Y0 − Ŷ0) = Var(Y0 −A0Y)

= Var(Y0) + A0Var(Y)A′
0 − 2A0Cov(Y,Y0). (9)

The variance of Y is easily estimated by plugging in the parameter estimates for Σh and

Σε. Similarly, an estimate for the variance of Y0 can also be easily constructed. The

covariance between Y and Y0 is implied by the random function h in (3) and is obtained

via the covariance function based on the transformed compositional data.

Figure 9 shows ten simulated LL and DUL profiles for two soils of interest, silty loam

(SIL) and sand (S) based on the estimates obtained from the multivariate spatial model.

Realizations for the log LL and log ∆ were generated from a multivariate normal distri-

bution with mean and covariance based on the estimates of the parameters in (8) and

(9) obtained from the fits in the previous section. Predicted values for the mean are

based on an average soil composition profile, computed from the database, for SIL and

S soils where soil composition was assumed to be constant across all depths, in this case

D = 5, 15, 30, 45, 60, 90, 120, 150. Again, these simulated profiles represent a draw from the

distribution of soil water profiles based on information on the structure and uncertainty

gleaned from the data.

4.3 Application

To demonstrate the applicability of the capabilities to generate simulated soil water pro-

files, a simple study using the CERES maize crop model was conducted. One hundred

17
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Figure 9: Simulated LL and DUL profiles for SIL and S soils.

realizations of soil water profiles for SIL and S soils were generated and each was used as

input to the CERES maize crop model utilizing the same twenty years of weather taken

from a station in North Carolina, U.S.A. from 1960 to 1979. The results of the simulation

experiment are summarized in Figure 10. In both the top and bottom frames, bands are

displayed indicated the average yield for each year using the SIL (red) and S (blue) soils.

The width of the bands at each year represents two standard errors in average yield for

that year. Also displayed are a representation of the total precipitation (top frame) and

average temperature (bottom frame) for each year.

In general, results for both soils seem to track the weather characteristics. Further,

yields are typically higher for SIL soils than that for S soils. There appears to be large

differences in yield between broad classes of soil textures. However, the year-to-year varia-

tion in yields attributable to the weather dominates the within-year variation the variation

inherited from the soils.

One other feature of note appears in the results. In year 17, a dramatic difference

between the yields for the two soils appears, with S soils having substantially larger average

yields. On closer inspection, 57 of the 100 model runs for SIL failed to produce crops. This

year is characterized by low temperatures and low precipitation. Because the SIL requires
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Figure 10: Output of 100 runs of the CERES maize crop model based on 100 simulated
soil water profiles for SIL and S soils. SIL soils are shown in red and S soils are shown
in blue. The width of the line for each year represents two standard errors in the average
yield. Solid line in the top line represents total yearly precipitation while in the bottom
plot the solid line represents average temperature.

a greater amount of water in the soil (refer to Figures 2 and 9), the lack of precipitation

leads to decreases in yields and more frequent failed crops.

5 Concluding Remarks

An additive, multivariate regression model is introduced that includes smooth contributions

of the explanatory variables common to all of the response variables as well as traditional

linear contributions of additional covariates specific to each response variable. It should

be noted that variations on this basic structure are easily accommodated. Additionally,

the model is also able to account for complex error structures, including spatial and other
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forms of dependence.

The model presented here shares a connection with thin-plate smoothing splines (de

Boor, 1978; Wahba, 1990a; and Green and Silverman, 1994) and spatial models including

universal kriging (Cressie, 1991). This model also offers an alternative to the semiparamet-

ric smoothing approach of Ruppert et al. (2003). On the surface, these regression techniques

are quite different and are motivated from different perspectives. However, there has been

much effort on establishing the clear connection between the spline smoothing and spatial

models (Wahba, 1990b; Cressie, 1990; Kent and Mardia, 1994; and Nychka, 2000). This

connection lies in the additive structure of these models that includes fixed, polynomial

components as well as random components whose correlations structure effectively controls

the amount of smoothing.

The model is used to develop a new type of pedotransfer function for estimating soil

water holding characteristics based on soil composition data as well as other covariates.

This model is unique in that the entire soil water profile as a function of depth is estimated.

Of perhaps more importance is that the model offers the ability to capture the uncertainty

in the soil characteristics as well as the ability to simulate complete soil water profiles.

Using this model, a small simulation study was conducted in which soil water profiles

were simulated for two soil texture classes and yields computed using the CERES maize

crop model. This initial study suggests that there are differences in yields between soil

texture classes (based on composition), but that variation in yields due to the variation in

weather dominate that due to variation in soils.

Finally, this work represents a preliminary result that is a part of a larger collabora-

tion between statisticians and scientists who are studying global climate change by using

statistical models to assess the sources of uncertainly in large, complicated and typically

deterministic models used to describe natural phenomenon.
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