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Outline

• Filling in between observations

• A model

• The covariance is everything

• Don’t obsess about the covariance

• Things to do.



An example: Daily ozone pollution

Here are the 8-hour average ozone measurements (in PPB) for June 19,1987.
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What can we say about ozone at (-88,41)?



Use local information to predict unobserved values

One reasonable method is to predict the location using a linear regression
based on close by observations.

zk = β1 + lonkβ2 + latkβ3

find β̂ by least squares

ẑ = β̂1 + -88β̂2 + 41β̂3 = w0 +
∑
k=1,n

wkzk



Problems with local regression

How large should the neighborhood be?

What is the uncertainty of the prediction?

How much does the surface depart from a plane?

Spatial models deal with these problems by adding a model for the under-
lying surface.



A normal world

Supposez(x) is the ozone concentration at locationx,

We assume thatz(x) is a Gaussian process,E(z(x)) = 0

k(x,x′) = COV (z(x), z(x′))

Being a Gaussian process has the practical consequence thatanydiscrete
subset of the fields has a multivariate normal distribution.

If we knowk we know how to make a prediction atx∗!

ẑ = E[z(x∗)|data]

i.e. Just use the conditional multivariate normal distribution.



A review of the conditional normal

z ∼ N(0,Σ)

z =

(
z1

z2

)
Σ =

(
Σ11,Σ12

Σ21,Σ22

)

[z2|z1] = N(Σ2,1Σ
−1
1,1z1, Σ2,2 − Σ2,1Σ

−1
1,1Σ1,2)

Thinking ofz2 as unobserved locations andz1 as the observations.



The Kriging weights

Conditional distribution ofz∗ given the dataz is Gaussian.

Conditional mean

ẑ∗ = COV (z∗, z) [COV (z, z)]−1 z =
∑
k=1,n

ωkzk = ωTz

ω are the Kriging weights.

Note: COV (z, z) is anN ×N matrix,COV (z∗, z) anN row vector.

Conditional variance

V AR(z∗, z∗)− COV (z∗, z) [COV (z, z)]−1COV (z, z∗)



My geostatistics/BLUE overhead

For any covariance and any set of weights (not justω) we can easily derive
the prediction variance forz∗.

Minimize

E
[
(z∗ − ẑ∗)2

]
= V AR(z∗, z∗)− 2COV (z∗, z)w + wTCOV (z, z)w

over allw.

The answerThe Kriging weights ... or what we would do if we used the
Gaussian process and the conditional distribution.

Folklore and intuition The spatial estimates are not very sensitive if one
uses suboptimal weights, especially if the observations contain some mea-
surement error.
It does matter for finds measures of uncertainty.



Surfaces

The conditional normal tell us how to predict onto an entire grid given the
observations. (z2 = grid ,z1 = obs.)

Recall:
[z2|z1] = N(Σ2,1Σ

−1
1,1z1, Σ2,2 − Σ2,1Σ

−1
1,1Σ1,2)

• The estimated surface has the equivalent form:
ẑ(x) =

∑
k=1,n ckk(x,xk)

k the covariance kernel andc are estimated from the data.

• We have the full distribution for the surface on the grid and can sample
from it. E.g. a realization of the ozone surface given the observed data.

• With some measurement error (Σ1,1 replaced byΣ1,1 + σ2I ) the con-
ditional mean is a smoother ... but not exactly a kernel estimator or a
local linear regression.



Covariance? The variogram.

The preceding discussion is useless without estimating the covariance
function (k).

We have to make some assumptions onk to use just one field.
Assume thatz(x) is stationary and isotropic.

k(x,x′) = φ(||x− x′||)

||.|| great circle distance and we identifyφ using EDA.

The key is the variogram:

E
[
1/2(z(x)− z(x′))2

]
= φ(0)− φ(||x− x′||)

At last! A form we can estimate directly from the observations.



The matern class of covariances

Not any oldφ will give a valid covariance function. A useful family has
four parameters:

φ(d) = σ(1− α ∗ ψν(d/θ))
ψν is an exponential forν = 1/2 asν →∞ Gaussian.
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Same models but as variograms
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The smoothness properties of the spatial field depend on how smoothly
the variogram approaches zero asd→ 0.



Variogram for ozone data – Day 16
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What a mess!



Binning the variogram

Boxplots of squared values in bins with mean added.
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Fitting the variogram

Assume an exponential covariance
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In this caseθ = 1200 , σ = 49.8 andα = .11 (I don’t believe these)



Using the temporal information

In many cases spatial processes also have a temporal component. Here we
take the 89 days over the ”ozone season” and just find sample correlations
among stations.
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Mean and SD surfaces
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Covariance model:k(x,x′) = σ(x)σ(x′)exp(−||x− x′||/θ)

Mean model:E(z(x)) = µ(x)

whereµ is also a Gaussian spatial process.



The data for day 16 and the conditional mean surface
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Five samples from the posterior
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Beyond the covariance

The covariance is rarely of interest on its own.

Some other issues related to finding reasonable posterior distributions of
the field

• Handle large numbers of observations

• Nongaussian distributions, robust methods.

• Include temporal as well as spatial dependence.

• Propagate uncertainty inall components of the model to uncertainty
in field



Examples of useful directions

Dependence over time:z(x, t) = ρ(x)z(x, t) + u(x, t)

Whereu(x, t) are spatial processes uncorrelated in time.

Design: If the EPA had to reduce the ozone monitoring network by half
how should the stations be thinned?



Conclusions

A primary activity in spatial statistics is to develop a (stochastic) model
for the unknown surface.

Inferring covariance models from data can be difficult especially when
only a single field is available.

The covariance function is an important part of the model but usually not
an end in itself.


