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Interpolation of a spatially correlated random process is used in many areas. The best unbiased
linear predictor, often called kriging predictor in geostatistical science, requires the solution of a large
linear system based on the covariance matrix of the observations. In this article, we show that tapering
the correct covariance matrix with an appropriate compactly supported covariance function reduces the
computational burden significantly and still has an asymptotic optimal mean squared error. The effect
of tapering is to create a sparse approximate linear system that can then be solved using sparse matrix
algorithms. Extensive Monte Carlo simulations support the theoretical results. An application to a large
climatological precipitation dataset is presented as a concrete practical illustration.
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1 Introduction

Many applications of statistics in the geophysical and environmental sciences depend on estimating the
spatial and temporal extent of a physical process based on irregularly spaced observations. In many cases
the most interesting spatial problems are large and their analysis overwhelms traditional implementations
of spatial statistics. For example, in understanding recent climate change for the US it is useful to infer
monthly average temperature or precipitation fields for the past century. These surfaces are estimated
from the historical record of meteorological measurements taken at irregular station locations and the
complete surfaces facilitate direct comparison with numerical climate models1 and also can serve as inputs
to ecological and vegetation models. Estimating monthly precipitation fields for the US involves more
than 5,900 station locations at the peak network size and must be repeated over the more than 1,200
months of the historical record. In addition, each estimated field should be evaluated on a fine grid of size
approximately 1,000×1,000 (corresponding to a resolution of roughly 2.4 km latitude and 4 km longitude).

The size of this spatial problem for climate studies is not unusual and, in fact, geophysical datasets
several orders of magnitude larger can be expected based on satellite and other modern observing systems.
Because of the size of these problems it is well known that a naive implementation of spatial process predic-
tion, such as kriging, is not feasible. In addition, more complex approaches such as Bayesian hierarchical
space-time models often have a kriging like step as one of the full conditional distributions in a Gibbs
sampling scheme. Thus, these more flexible methods are also limited in their application to large spatial
problems without making the spatial prediction step more efficient.

In this work we propose an approximation to the standard linear spatial predictor that can be justified
by asymptotic theory and is both accurate and computationally efficient. Our basic idea is to taper
the spatial covariance function to zero beyond a certain range. This results in sparse systems of linear
equations that can be solved efficiently. Moreover, we show that the tapering can be done to give a linear

Reinhard Furrer is a postdoctoral researcher at Geophysical Statistics Project, National Center for Atmospheric Research,

Boulder, CO, 80307–3000, furrer@ucar.edu. Marc G. Genton is Associate Professor at North Carolina State University,

Raleigh, NC, 27695–8203, genton@stat.ncsu.edu. Douglas Nychka is Senior Scientist at Geophysical Statistics Project,

National Center for Atmospheric Research, Boulder, CO, 80307–3000, nychka@ucar.edu.
1Coupled atmosphere and ocean general circulation models

1



predictor that is nearly the same as the exact solution. The effect of tapering can be analyzed using
the infill asymptotic theory for a misspecified covariance and we find it interesting that in our case the
“misspecification” is deliberate and has computational benefits. In addition, we belive that many large
spatial datasets fit the assumptions made by infill asymptotic analysis.

1.1 Spatial Prediction

Assume that a spatial field Z(x ) is a process with covariance function K(x ,x ′) for x ,x ′ ∈ D ⊂ Rd, and is
observed at the n locations x 1, . . . ,xn. For the application in Section 4, Z is monthly average precipitation
for a particular month and D is the coterminous US. A common problem is to predict Z(x ∗) given the n

observations for an arbitrary x ∗ ∈ D. In geostatistics the standard approach is based on the principle of
minimum mean squared error, termed kriging (e.g. Cressie, 1990, 1993), and as motivation we start with
the simplest spatial model. Assume that Z(x ) has mean zero and is observed without any measurement
error. Then the best linear unbiased prediction (BLUP) at an (unobserved) location x ∗ is then

Ẑ(x ∗) = c∗TC−1Z, (1)

where Z =
(
Z(x 1), . . . , Z(xn)

)
T , Cij = K(x i,x j) and c∗i = K(x i,x

∗). Furthermore, if we assume that
Z is a Gaussian process then Ẑ(x ∗) as given by (1) is just a conditional expectation of Z(x ∗) given the
observations. We will denote the prediction mean squared error by

MSE(x ∗, K̂) = E
(
Ẑ(x ∗)− Z(x ∗)

)2 = K(x ∗,x ∗)− 2ĉ∗TĈ−1c∗ + ĉ∗TĈ−1CĈ−1ĉ∗, (2)

where the hat entities are based on K̂. Here is it important to note that the covariance in the second
argument defines the estimate and may not necessary be the actual covariance of the process. This
distinction is important if we want to study the performance of the kriging estimator when the covariance
is misspecified, or at least deviates from the actual covariance of the process. However, if K is indeed the
true covariance the MSE(x ∗,K) from (2) simplifies to

%(x ∗,K) = K(x ∗,x ∗)− c∗TC−1c∗ (3)

and is the well known expression for the variance of the kriging estimate. Finally, we note that %(x ∗, K̂)
is a naive prediction standard error computed assuming K̂ is the true covariance function.

The computation of u = C−1Z in (1) involves the solution of a linear system that is the size of the
number of observations. Both the operation count for solving a linear system and also the storage increase
by order n2. Moreover, we wish to evaluate the prediction at many grid points and so the practical
applications involve finding c∗Tu for many vectors c∗. These two linear algebra steps effectively limit
a straightforward calculation of the spatial prediction to small problems. Note that for our motivating
climate application n = 5,906 and c∗Tu must be evaluated on the order of 100,000 times. The direct
computation of the prediction error variance (3) is even more demanding as this involves either solving a
different linear system at each x ∗ or directly inverting the matrix C and performing the multiplications
explicitly.

1.2 Tapering

The goal of our work is to give an accurate approximation to (1) and (2) but also to propose a method that
scales to large spatial problems. The basic idea is simple, we deliberately introduce zeros into the matrix C
in (1) to make it sparse. How the zeros are introduced, however, is crucial. Let Kθ be a covariance function
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that is identically zero outside a particular range described by θ. Now consider a tapered covariance that
is the direct (or Schur) product of Kθ and K:

Ktap(x ,x ′) = K(x ,x ′)Kθ(x ,x ′).

Throughout the paper we suppose that Kθ(x ,x ) = 1. The approximate estimate is obtained by replacing
the covariance matrices in (1) based on K by those defined by Ktap. The intuition behind this choice is
that product still preserves some of the shape of K but also it is identically zero outside of a fixed interval.
Of equal importance, Ktap is a valid covariance. This is based on the result that the Schur product of two
positive definite matrices is again positive definite (Horn and Johnson, 1994, Theorem 5.2.1).

Limiting the kriging estimate to a local neighborhood is of course not a new idea. Indeed, a very
effective use of covariance tapering is well known in the atmospheric science literature for numerical
weather prediction (Gaspari and Cohn, 1999). Examining the weight vector λ = C−1c∗ from (1) one
would expect this to be close to zero for observation locations that are “far” from x ∗. The contribution
of an observation, say Z(x i) to the prediction of Z(x ∗) decreases as the distance between x i and x ∗

increases and it would be reasonable to consider only nearby locations for the prediction at x ∗. This
restriction also makes sense even when the process has long-range correlations by interpreting the estimate
as a conditional expectation. Although Z(x ∗) may be highly correlated with distant observations it can be
nearly independent of distant observations conditional on its neighbors. The distant observations do not
give additional information about Z(x ∗) given the observed values of the field close by. Such arguments
leads to the so-called kriging neighborhood. One simply calculates the spatial estimate based on a small
and manageable number of observations that are close to x ∗. This approach is quite useful when predicting
at a limited number of locations (e.g. Johns et al., 2003), but has several drawbacks as pointed out in
Cressie (1993). We also acknowledge a parallel development in nearest neighbor and local estimates from
nonparametric regression (e.g. Cleveland et al., 1992). Here, the form of the estimators is justified by
asymptotic optimality and usually depends on measurement error being a significant fraction of the variance
in the data. For our purposes we are more concerned with the low noise situation where the fitted surface
tends to interpolate or nearly interpolate the observations. However, in all of these cases the difficulty
of neighborhood methods is that the neighborhood changes for each point for prediction. Although the
computation is reduced for an individual point, prediction of the field without artifacts from changing
neighborhoods is problematic. Moreover, we will show that the tapering sparse matrix approach from this
work has a similar operation count to nearest neighbor estimators without its disadvantages.

1.3 Outline

The effect of the covariance function on linear predictor has a long and extensive literature; some examples
include Diamond and Armstrong (1984); Yakowitz and Szidarovszky (1985); Warnes (1986); Stein and
Handcock (1989). In a series of papers Stein (Stein, 1988, 1990a, 1997, 1999b) gives a thorough theoretical
discussion of the effect of miss-specifying the covariance function. In his approach, “miss-specified” refers to
a covariance similar — in some sense — to the true underlying covariance. Although much of that work is
motivated by a covariance that is in error, one might adapt these results to consider the effect of deliberately
modifying the “true” covariance through a taper. We note that from a theoretical perspective Stein has
also suggested that tapering could be effective (Stein, 1999a, page 53) for reducing the computation.

These remarks motivate the following research questions:

Question A. What is the increase in squared prediction error by using the taper approach?

Question B. What are the associated computational gains?
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The next section answers Question A by adapting the asymptotic theory in Stein (1990a, 1997, 1999b)
to understand the large sample properties. This is paired with some exact calculations in Section 3.2 to
investigate the efficiency for finite samples. Question B can be answered by comparing standard and sparse
techniques and Section 3.3 illustrates the gain in storage and computational cost when tapering is used.
To emphasize the practical benefits of tapering we report timing results for the large climate application
based on monthly precipitation fields in Section 4. To limit the scope of this paper we will only consider
stationary processes and, in fact, restrict most of our study to the Matérn family. In addition we do not
highlight the more practical spatial processes that admit some fixed effects (also known as spatial drift).
The last section discusses the logical extension of tapering algorithms to nonstationary covariances and to
spatial models with fixed effects.

2 Asymptotic Properties of Tapering

Our goal is to show that under specific conditions the asymptotic mean squared error of the tapered
covariance will converge to the optimal error. Following the theory of Stein we phrase these results in
terms of a misspecified covariance. Of course, the misspecification here is deliberate and involves tapering.

An important restriction throughout this analysis is that the processes and tapering functions are
second order stationary and isotropic. Moreover, we will focus on the Matérn family of covariances.
Assume that the process Z is isotropic, stationary and has an underlying Matérn covariance function
defined by Kα,ν(x ,x ′) = Cα,ν(h), h = ||x − x ′|| with

Cα,ν(h) =
πd/2φ

2ν−1Γ(ν + d/2)α2ν
(αh)νKν(αh), α > 0, φ > 0, ν > 0, (4)

Γ is the Gamma function and Kν is the modified Bessel function of the second kind (Abramowitz and
Stegun, 1970). The process Z is m times mean square differentiable iff ν > m and this concept can be
extended to fractional differentiability. The parameters α and φ are related to the standard range and
the sill, respectively. The Matérn family is a prototype for a scale of covariances with different orders of
smoothness and has a simple spectral density

φ

(α2 + ρ2)ν+d/2
. (5)

In this work without loss of generality, we assume φ = 1 and so it is convenient to let fα,ν(ρ) denote
the Matérn spectral density in (5) with this restriction. If ν = 0.5, Cα,ν is an exponential covariance,
ν = n + 0.5, n an integer, (4) is an exponential covariance times a polynomial of order n and the limiting
case ν →∞ is the Gaussian covariance.

Our results are asymptotic in the context of a fixed domain size and the sequence of observations
increasing within the domain. This is known as infill asymptotics.

Infill Condition. Let x∗ ∈ D and x1,x2, . . . be a dense sequence in D and distinct from x∗.

Taper Condition Let fθ be the spectral density of the taper covariance, Cθ, and for some ε > 0 and
M(θ) < ∞

fθ(ρ) <
M(θ)

(1 + ρ2)ν+d/2+ε
.

We will motivate the material in this section by the main result:
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Theorem 2.1. (Taper Theorem) Assume that Cα,ν is a Matérn covariance with smoothness parameter ν

and the Infill and Taper Conditions hold. Then

lim
n→∞

MSE(x∗, Cα,νCθ)
MSE(x∗, Cα,ν)

= 1, (6)

lim
n→∞

%(x∗, Cα,νCθ)
MSE(x∗, Cα,ν)

= γ. (7)

The following sections develop a proof for this result with some details contained in the Appendix A.

2.1 Asymptotic Equivalence of Kriging Estimators

Asymptotic equivalence for two covariance functions is easiest to describe based on tail behavior of the
spectral densities. Let C0 and C1 be two stationary covariance functions with corresponding spectral
densities f0 and f1.

Tail Condition. For two spectral densities f0 and f1

lim
ρ→∞

f1(ρ)
f0(ρ)

= γ, 0 < γ < ∞. (8)

Based on the tail condition we have the following general result for misspecification.

Theorem 2.2. Let C0 and C1 be isotropic covariance functions with corresponding spectral densities f0

and f1. Furthermore assume that Z is a mean zero second order stationary process with covariance C0

and that the Infill Condition holds. If f0 and f1 satisfy the Tail Condition then

lim
n→∞

MSE(x∗, C1)
MSE(x∗, C0)

= 1, lim
n→∞

%(x∗, C1)
MSE(x∗, C0)

= γ.

The first limit indicates that the misspecified estimator has the same convergence rate as the optimal
one. The second limit indicates that the naive formula (3) for the kriging variance also has the correct
convergence rate. Finally, if γ = 1 then we have asymptotic equivalence for the estimator and the variance
using the wrong covariance function. If γ 6= 1, we can divide the taper by γ to optain asymptotic
equivalence.

This theorem cited above does not identify the rate of convergence of the optimal estimate. However,
these are well known for equispaced multidimensional grids (Stein, 1999a). In addition, we believe one can
apply some classical interpolation theory (e.g. Madych and Potter, 1985) to bound the rate for the kriging
estimator for irregular sets of points, but this is a subject of future research.

2.2 Tail Condition for Matérn Covariances

In order to apply Theorem 2.2 it is necessary to verify the Tail Condition for the hypotheses in the Taper
Theorem. Recall that the convolution of two functions is equivalent to multiplication of their Fourier
transforms. Moreover, one can reverse operations and it is also true that the product of two functions is
equivalent to a convolution of their Fourier transforms. Let f tap denote the spectral density for Ctap and
so we have

f tap(||u ||) =
∫

Rd

fα,ν(||u − v ||)fθ(||v ||) dv .

It is reasonable to expect these two spectral densities to satisfy the Tail Condition when fθ has lighter tails
than fα,ν . Consider the following intuitive reasoning. The spectra fα,ν and fθ can be considered as the
densities of random variables, say X and Y , respectively. Then, being a convolution, f tap is the density of
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X + Y . The Tail Condition implies that the variables X + Y and X have the same moment properties.
This will hold given the initial tail assumptions on the densities for X and Y . As the tail behavior is
related to the behavior of the covariance at the origin, the taper needs to be at least as differentiable at
the origin as Cα,ν . Stein (1988) noted that this necessary condition is not sufficient. The taper has also to
be sufficiently derivable away from zero without imposing restrictions on the domain D. If this condition
is not met, the taper has oscillating behavior for high frequencies which is unrealistic for many physical
processes. Therefore, in what follows, we always use a taper which is one more time differentiable on (0,∞)
than it needs to be at the origin.

The following proposition gives a rigorous result leveraging the simple form for the Matérn family.

Proposition 2.3. The Taper Condition for fθ implies the Tail Condition for f tap and fα,ν .

2.3 Principal Irregular Terms of a Covariance

The analysis has focused on spectral densities because it provides the most accessible theory. However,
because the tapering is done in the spatial domain it would be practical to characterize the Taper or Tail
Conditions in terms of the taper covariance directly. The concept of principal irregular terms (PIT) is a
characterization of a stationary covariance function at the origin. For a stationary, isotropic covariance
function, consider the series expansion of C(h) about zero. An operational definition of the PIT of C is
the first term as a function of h in this series expansion about zero that is not raised to an even power
(Matheron, 1971). For the Matérn covariance function (4) the PIT is easy to identify. Let m denote the
integer part of ν, if ν is noninteger then

Cα,ν(h) =
m∑

j=0

bjh
2j − Γ(−ν)

Γ(ν)22ν
h2ν + O(h2m+2), as h → 0, (9)

and if ν = m

Cα,ν(h) =
m∑

j=0

bjh
2j +

2(−1)mΓ(m + 0.5)
(2m + 1)!Γ(m)

√
π

log(h)h2m+1 + O(h2m+2), as h → 0, (10)

in either case the constants bj depend only on ν and α and the PIT is the middle term on the right side
of (9) and (10). The coefficient of the PIT simplifies to π and π/6 for ν = 0.5 and ν = 1.5 respectively.

The previous equations also imply that the Matérn covariance function is 2m times differentiable at
the origin if ν > m. From (5), (9) and (10), we confirm that the behavior at the origin of the covariance
is related to the high frequency of the spectrum via the parameter ν. Specifically, differentiability of a
function is equivalent to the number of finite moments for the Fourier transform.

Stein (1999a) discusses this loose definition of the PIT in more detail and suggests that for all models
used in practice, the PIT is of the form bhβ , b ∈ R, β > 0 and not an even integer, or b log(h)hβ , b ∈ R,
β an even integer.

It is also simple to identify the PIT of the covariance tapers. Wu (1995); Gaspari and Cohn (1999)
and Gneiting (2002) give several procedures to construct compactly supported covariance functions with
arbitrary differentiability at the origin and at the support length. Most of these tapers are of polynomial
type and hence having a PIT of the form Bhµ. Moreover, under the Taper Condition, it is straightforward
to show that the PIT associated with Ctap = CθC and with C coincide.

In the case of a Matérn covariance function we have a one-to-one relationship between the PIT and the
tail behaviour, whereas for polynomial tapers we are led to the following conjecture:
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Conjecture 2.4. Assume a polynomial isotropic covariance function Cθ in Rd that is integrable with PIT
Bhµ. Then the PIT and the tail behaviour are related by

lim
ρ→∞

ρµ+dfθ(ρ) =
∣∣B · µ!

2
( 2
π

)(d+1)/2∣∣ . (11)

A rigorous proof of this conjecture and perhaps additional technical conditions would be based on a
special case of a Tauberian theorem. In some special cases one can derive the tail behavior analytically from
the tapered covariance and the conjecture is true for these cases. Examples of such covariance functions are
polynomial tapers similar to the ones considered in Section 3 or wave covariances (Yaglom, 1987, Example
3, page 122).

Theorem 2.5. Assume that the above conjecture holds. Let b be the PIT coefficient of Cα,ν . Assume a
polynomial taper Cθ with PIT Bhµ, µ ≥ 2ν. Then the Tail Condition holds with

γ =

1 , if µ > 2ν ,

(B + b)/b , if µ = 2ν .
(12)

The result holds for any dimension d.

The connection of the PIT with the Tail Condition also suggests a practical scaling of the tapered
covariance. As the PIT does not depend on the range parameter α, any Matérn covariance function with
parameters ν and α? 6= α satisfies the Tail Condition. This concept is equivalent to compatibility (see
Stein, 1988, 1990b or Krasnits′kĭı, 2000) and can be used to optimize the tapering performance by rescaling
the range parameter to α? for the covariance Ctap = CθCα?,ν . The intuition behind this rescaling is that
for large ranges α a small taper length might be less efficient than tapering a small range α?. In Section 3.2
we report results that indicate adjusting the scale in concert with tapering is slightly more efficient than
tapering alone.

3 Finite Sample Accuracy and Numerical Efficiency

In this section we investigate the numerical convergence of the ratios (6) and (7) for different sample sizes,
covariance function shape and the choice of taper. These results are complemented by timing studies for
the sparse matrix implementations.

3.1 Practical Tapers

For the applications in this work we consider the spherical covariance and the two tapers developed in Wu
(1995), and parametrized so that they have support in [0, θ). All three tapers are valid covariances in R3.
The functions are plotted in Figure 1 and summarized in Table 1. Note that the spherical is linear at the
origin and once differentiable at θ. Based on the theory from Section 2, relative to the Matérn smoothness
parameter we use the spherical to taper for ν < 0.5, Wu1 for ν < 1.5 and Wu2 ν < 2.5. If we admit
the conjecture we can use the respective tapers for ν ≤ 0.5, ν ≤ 1.5, ν ≤ 2.5. Appendix B gives some
additional analytical results.

3.2 Simulations

Throughout this section, we will focus on the stationary Matérn covariance function in R2. The factors
in the simulation related to the covariance are the smoothness ν, the range α and the taper length θ.
As data we select n locations within the unit square D = [0, 1]2 sampled randomly and, if n is a perfect

7



square, locations on a regular grid. The spatial prediction is for the center location x ∗ = (0.5, 0.5) and the
following quantities are calculated: the root mean squared error (MSE) for estimates of Z(0.5, 0.5) using
the actual and tapered covariance, i.e. MSE(x ∗, Cα,ν), MSE(x ∗, Ctap), and the naive estimate of the MSE
%(x ∗, Ctap).

The MSE can be computed exactly for a fixed configuration of observation locations and so the only
random element in these experiments is due to the locations being sampled from a uniform distribution
over D.

The first experiment examines the convergence analogous to infill asymptotics. The sample size n is
varied in the range [49, 784], 100 different sets of uniformly distributed locations are generated at each
sample size and for sample sizes that are perfect squares a regular grid of locations is also considered. The
covariance parameters are ν = 0.5, 1, 1.5, θ = 0.4 and the range α is fixed so that correlation decreases
to 0.05 over the distance 0.4. Note that for the Matérn covariance, the value of α that achieves this
criterion must be found numerically and will depend on the choice of ν. As a reference, Figure 1 graphs
the covariances and taper functions. Outside a disk of radius 0.4 centered at (0.5, 0.5) the field contributes
little information for the prediction and this choice also minimizes any edge or boundary effects in the
experiment.

Figure 2 summarizes the results. The convergence is considerably slower for (7). The higher the
smoothing parameter, the larger the variation of the MSE ratios from the random locations. Note further
that for smaller n the ratio of the regular grid is above the mean of the ratios arising from the random
locations. This is not surprising, since for random patterns there are often more locations within the taper
range. For the spherical taper with ν = 0.5, γ = 1.5, cf. left lower panel.

The second simulation examines the influence of the taper shape and support on accuracy. The locations
are fixed on a 20× 20 grid in the unit square and we predict at x ∗ = (0.5, 0.5). We calculate the ratio of
MSE(x ∗, Ctap) and MSE(x ∗, Cα,ν) for different θ, ν and different tapers. Figure 3 gives the results. We
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Figure 1: Matérn covariance with effective range θ (i.e. α = θ/3, θ/4, 0.21·θ), sill 1 and different smoothing
parameters (left). Spherical, Wu1 and Wu2 tapers with taper length θ and sill 1 (right).

Table 1: Characteristics of the practical tapers used in the simulations. (x+ = max{0, x}.)
Derivative(s) ValidTaper Cθ(h) for h ≥ 0 PIT

at zero taper for

Spherical
(
1− h

θ

)2

+

(
1 +

h

2θ

) 3h

2θ
1 ν < 0.5

Wu1

(
1− h

θ

)4

+

(
1 + 4

h

θ
+ 3

h2

θ2
+

3h3

4θ3

)
−35h3

4θ3
3 ν < 1.5

Wu2

(
1− h

θ

)6

+

(
1 + 6

h

θ
+

41h2

3θ2
+ 12

h3

θ3
+ 5

h4

θ4
+

5h5

6θ5

)
−77h5

2θ5
5 ν < 2.5
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Figure 2: A comparision between taper estimate and the BLUP with respect to different true covariance
functions. The ratio of the MSE of the tapered estimate to that of the BLUP is displayed in the top row
and the ratio of the naive estimate of the MSE to its actual MSE in the bottom row, cf. ratios given by (6)
and (7). The smoothness parameter was ν = 0.5, 1.0, 1.5 for left, middle and right column respectively. We
used a spherical (left column) and a Wu2 tapers (middle and right columns). The solid line corresponds
to the ratios of a regular grid in the unit square. 100 samples of n random points in the unit square were
sampled and the dotted lines show the mean of the MSE ratios.

note that the ratio increases for increasing smoothness. For ν = 0.5 and θ > 0.15, all three tapers perform
similarly. Wu1 is slightly better than Wu2 for comparable smoothness parameters. For the Wu2 taper, θ

should be chosen slightly bigger. This may be explained by the fact that it decays much faster than the
spherical beyond θ/3. The rough behavior for Wu2 might be explained by numerical instabilities. If our
goal is to be within 5% of the optimal MSE then according to Figure 3 a rule of thumb is to require 16 to
24 points within the support of the taper. A few more points should be added for very smooth fields. As
a reference we also added the normed MSE of the nearest neighbor kriging with nearest neighbor distance
θ to Figure 3. This approach performs very well, even if we include as few as 12 neighbors (θ = 0.1).

We indicated in Section 2 that the original covariance could be scaled and tapered. To illustrate this
approach, consider again the same simulation setup with effective range of Cα,ν(·) of 0.4. For a fixed
θ = 0.15 of a Wu2 taper, we used Ctap = CθCα?,ν for different values of α?. Figure 4 shows that by
reducing the range, we can gain approximately one to two percent, i.e. with effective range between 0.2
and 0.3. Note that the values observed at the effective range of 0.4 correspond to the values at θ = 0.15
in the corresponding panels of the last column of Figure 3.

Finally, we were curious about what would happen if we simply tapered with a hard threshold, i.e.
use the “top hat” taper I{h≤θ}. This is a naive approach and mimics the idea of nearest neighbors. The
resulting matrices C in (1) are not necessarily positive definite for all θ. Neglecting the statistical paradigm
to work with positive definite covariance matrices, top hat tapers often lead to numerical instabilities and
the MSE ratios are inferior to those from positive definite tapers.

3.3 Numerical Performance

For symmetric, positive definite matrices C, the estimator in (1) is found by first performing a Cholesky
factorization on C = AAT. Then one successively solves the triangular systems Aw = Z and ATu = w

giving u = C−1Z. The final step is the dot product c∗Tu . The common and widely used numerical

9
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Figure 3: The ratio of the MSE with the tapered and the exact
covariance. The columns are for spherical, Wu1, and Wu2 ta-
pers. The rows correspond to increasing the smoothness param-
eter of the Matérn covariance function having an effective range
of 0.4. The solid line corresponds to the MSE of a regular grid
in the unit square. 100 samples of n = 400 random points in
the unit square were sampled and the dotted line shows the mean
of the MSE ratios. The dashed line gives the MSE of nearest
neighbor kriging with corresponding nearest neighbor distance.
With θ = 0.1, 0.125, 0.15, 0.175, 0.2 there are 12, 16, 24, 32, 44 points
within the taper range respectively.

software packages Matlab and R contain a toolbox (Gilbert et al., 1992) and a library SparseM (Ihaka
and Gentleman, 1996) respectively with sparse matrix techniques functions to perform the Cholesky fac-
torization.

The performance of the factorization depends on the number of non-zero elements of C and on how
the locations are ordered. We first discuss the storage gain of sparse matrices. A sparse matrix is stored as
the concatenation of the vectors representing its rows. The non-zero elements are identified by two integer
vectors. An n×m sparse matrix S with z non-zeros entries requires

8z + 4z + 4n + 1 bytes, (13)

if we have “typical” precision with 8-byte reals and 4-byte integers. For a regular equispaced n ×m grid
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Figure 4: Root mean squared errors ratios with tapered and exact covariance. Similar to the last column
of Figure 3 but using Ctap = CθCα?,ν . The abscisse denotes the effective range associated with α?. The
true covariance has an effective range of 0.4. The taper length is θ = 0.15.

with spacing h and taper support θ, the number of non-zero elements is given by

z =
n−1∑
l=0

(1 + I{l>0})(n− l)
Kl−1∑
k=0

(1 + I{k>0})(m− k), Kl = min
(
m,

⌈(
(c/h)2 − l2

)1/2

+

⌉)
, (14)

with (x)+ = max{0, x} and d·e the biggest integer function. For irregular grids, we cannot determine
directly the number of non-zero elements, but the formula can be used as a fairly good approximation if
the locations are uniformely distributed within a rectangle.

The reduction in storage space allows us to work with much bigger problems. We have to distinguish
between the limitations due to the physical restrictions (RAM, available access memory) and the limitations
due to the software (addressing of arrays). The former determines nowadays still the upper bound of the
problem size. To illustrate the latter, Matlab, for example, can handle matrices with up to 228 − 1
elements2, or sparse matrices with up to roughly 229 non-zero entries.

It is not obvious that the Cholesky factor A of a sparse matrix will also be sparse. Define the semi-
bandwidth s of a symmetric matrix S as the smallest value for which Si,i+s = 0, for all i, then the Cholesky
factor A has a semi-bandwidth of at most s. If the locations are not “ordered”, then A is virtually “full”.
But by ordering the locations deliberately, sparsity of the factor can be insured. For ordered n×m grids
with the numbering along the smaller dimension first, say n, the semi-bandwidth is

(n− 1)L + KL − 1, L = argmin
l

{Kl ≥ 0},

where Kl is given by (14). Other possible permutations are the Cuthill–McKee or minimum-degree or-
dering. See Figure 5 for an illustration of the effect of ordering. Although having a much larger semi-
bandwidth, the minimum degree ordering3 performs slightly better in computational cost and storage than
the reverse Cuthill–McKee ordering (George and Liu, 1981). In the R library SparseM, there exist no
explicit permutation functions and the sparse Cholesky decomposition relies on the sparse factorization
algorithm by Ng and Peyton (1993).

Figure 6 compares the performance of the SparseM library of R and the Sparse toolbox of Matlab

on a Linux powered 2.6 GHz Xeon processor with 4 Gbytes RAM. The sparse and standard approaches
are approximately of the order of n and n3 respectively. We notice that for all grid sizes n Matlab

outperforms R and for small n, the SparseM library is not efficient. Gilbert et al. (1992) indicate how to
improve the computational costs for smaller order. However, most of the functions are built-in such that
the user has no ability to manipulate the source code.

2http://www.mathworks.com/support/solutions/data/1103.shtml
3http://www.mathworks.com/access/helpdesk/help/techdoc/ref/symmmd.shtml
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4 Application

In this section we apply covariance tapering in kriging to a large irregularly spaced dataset. We use
aggregated monthly precipitation for April 1948 at 5,909 stations in the US4. For a detailed description of

4Available at http://www.cgd.ucar.edu/stats/Data/US.monthly.met.html .

Figure 5: Influence of ordering on the performance. The top row shows the structure of the covariance
matrix, the bottom row its upper triangular Cholesky factor. The first column is for an arbitrary number-
ing, the second for a row-by-row numbering, the third column is after a reverse Cuthill-McKee reordering,
the last after a minimum-degree reordering. We considered an equispaced 50× 50 grid in the unit square
with taper length 0.05. The indicated time is for solving 100 linear systems in Matlab and nz states the
number of nonzero elements in the matrix.

Table 2: Necessary times to create the prediction anomaly field in R with sparse and classical techniques.
The result of the sparse approach is depicted in Figure 8. The matrix C̃ contains as columns the vectors
c∗ for the different points on the prediction grid. (Linux, 2.6 GHz Xeon processor with 4 Gbytes RAM,
SparseM, Fields and Base libraries.)

Time (sec)Action
Sparse Sparse+FFT Classic+OPT Classic

1 Reading data, variable setup 0.54 0.54 0.54 0.54
2 Creating the matrix C 6.35 6.35 21.59 41.34

Cholesky 0.28 0.28 169.09 169.093 Solving Cx = Z
{

Backsolve 0.03 0.03 6.13 6.13
4 Multiplying C̃T with C−1Z 733.82 26.99 1830.86 4638.01
5 Creating the figure 6.19 6.19 6.19 6.19
Total 747.12 40.92 2034.40 4859.81
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Figure 6: Comparison of the performance between R and Matlab. A positive definite taper was applied
to an equispaced one-dimensional grid of size n in [ 0, 1 ]. The range of the taper was such that the
semi-bandwidth (bw) is 20, 15 or 10. Standard refers to Cholesky decomposition and two Backsolves.

the data we refer to Johns et al. (2003). Instead of working with the raw data, we standardize the square
root values. The resulting values represent anomalies and are closer to a Gaussian distribution than the
raw data (Johns et al., 2003). Further, there is evidence that the anomaly field is closer to being second
order stationary compared to the raw scale (Fuentes et al., 1998). For the estimation of the second order
structure of the anomalies we refer again to Johns et al. (2003). They justify a slight anisotropy of 0.85
in the North–South and East–West direction. The resulting fitted covariance structure is a mixture of
two exponential covariances with range parameter α of 40.73 and 523.73 miles with respective sill φ of
0.277 and 0.722. We rescale the resulting covariance structure with a factor of 5 as explained in Section 2
and taper with a spherical covariance with a range of 50 miles. The taper range was chosen as small as
possible but such that all the locations had at least one point within the taper range. On average, each
point has approximately 20 other locations within 50 miles (see Figure 7). The resulting sparse covariance
matrix C has only 0.35% non-zero elements. The prediction is then performed on a regular 0.025 × 0.05
latitude/longitude grid within the coterminous US. Figure 8 shows the kriged anomaly field consisting of
more than 6.6 × 105 predicted points. Table 2 summarizes the required times to construct the predicted
field and the displayed figure with sparse and classical techniques. The sparse approach is faster by a
factor of over 560 for step 3. Using the FFT approach with the library Fields we can speed up the time
consuming step 4 considerably (column Sparse+FFT). The Classic+OPT approach consists of classical
techniques where costly loops are programmed in Fortran.

Finally, notice that the predicted anomaly field can be back-transformed using predicted or interpolated
climatological means and standard deviations.

5 Discussion

An omnipresent example in spatial statistics is the prediction onto a large grid of a correlated quantity.
In this article, we showed that truncating the covariance function to zero with appropriate polynomial
tapers preserves asymptotic optimality and results in tremendous efficiencies in computation. For sparse
matrices, one can use well established algorithms in numerical analysis to handle the sparse systems.
Commonly used software packages such as R or Matlab contain libraries or toolboxes with the required
functions. We showed that for large fields tapering results in a significant gain in storage and computation.
In the precipitation dataset we achieve a speedup of more than 560 to solve the linear system. In fact, the
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Figure 8: Kriged surface of the precipitation anomaly field of April 1948. The dots represent the 5,906
locations of the observations.

manageable size of the observed and predicted fields can be far bigger than with classical approaches.
Although we developed the theory for zero-mean processes with continuous covariance functions, these

assumptions are not restrictive. Suppose a spatial process of the form

Y (x ) = m(x )Tβ + Z(x ), (15)

where m is a known function in Rp and β is an unknown parameter in Rp. Similar to equation (1), the
BLUP of Y (x ∗) is then given by

Ŷ (x ∗) = cTC−1
(
Y −Mβ̂

)
+ m(x 0)Tβ̂, where β̂ = (MTC−1M)−1MTC−1Y (16)

with M =
(
m(x 1), . . . ,m(xn)

)
T. The sparse approach could be used with an iterative procedure illus-

trated as follows. We estimate the mean structure, i.e. the vector β in (15), via ordinary least squares
(OLS), then Y−Mβ̂∗ is kriged yielding Z∗. With OLS on Y−Z∗ we obtain a second estimate β̂∗ and so
forth. This convenient back-fitting procedure converges to the BLUP and a few iterations usually suffice
to obtain precise results. If p is not too big, the BLUP can be also obtained by solving p + 2 linear sys-
tems as given by equation (16) using the approach delineated in this paper. From the theoretical aspect,
Yadrenko (1983, page 138), and Stein (1990b) show that if the difference of the true mean structure and
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the presumed mean structure is sufficiently smooth, then Theorem 2.2 still holds. Further, Stein (1999a,
Theorem 4.2), gives analogous results for processes with a nugget effect.

Conjecture 2.4 was stated for polynomial tapers only. We believe that a similar statement might be
true for a much broader class of covariance functions. It is straightforward to show that the multiplicative
constant is a general case of the constant for the Matérn covariance function. Necessary conditions would
be that the spectral density has unbounded support and that the PIT exists. The conjecture holds for
many covariance functions used in practice.

It remains an open question how accurate the tapering approximation will be for nonstationary prob-
lems. However, our numerical results suggest that tapering is effective for different correlation ranges. A
possible strategy is to choose a conservative taper that is accurate for the smallest correlation range in the
domain. Of course the identification of nonstationary covariances is itself difficult for large datasets but
perhaps sparse techniques will also be useful in covariance estimation.

Although there are still many open questions regarding the theoretical properties of tapering and its
practical application, we believe that this work is a useful step toward the analysis of large spatial problems
that often have substantial scientific importance.

Appendix A: Proofs

Proof. (Theorem 2.2) The spectral density of the Matérn covariance satisfies Condition (2.1) of Stein
(1993) and with the Tail Condition, i.e. (8), Theorems 1 and 2 of Stein (1993) hold.

Proof. (Propostion 2.3) Without loss of generality, we suppose that α = 1 and so f1,ν(||ω||) = M1/(1 +
||ω||2)ν+d/2, ν > 0. We need to prove that the limit

lim
||ω||→∞

∫
Rd f1,ν(||x ||)fθ(||x − ω||) dx

f1,ν(||x ||)
(17)

exists and is not zero. As the spectral densities are radially symmetric, we choose an arbitrary direction
for ω and we set ||x || = r||u || and ||ω|| = ρ||v ||, with ||u || = ||v || = 1. The convolution reduces to∫

Rd

f1,ν(||x ||)fθ(||x − ω||) dx =
∫

∂Bd

∫ ∞

0

f1,ν(r)fθ(||ru − ρv ||)rd−1 dr dU(u),

where ∂Bd is the surface of the unit sphere in Rd and U is the uniform probability measure on ∂Bd.
We integrate over the three annuli A,B,C discribed by the radii [0, ρ − ∆], [ρ − ∆, ρ + ∆], [ρ + ∆,∞) (as
illustrated in Figure 9 for d = 2). We will bound each part under the ansatz of choosing a sufficiently
large ρ and ∆ = O(ρδ), for some well-chosen 0 < δ < 1. The basic idea is that we can bound the inner

Figure 9: Separation of the convolution integral into three annuli, illustration for two dimensions.
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integral independently of u for the respective intervals. Then the outer integrals are just the surface of the
hypersphere, i.e. 2πd/2

/
Γ(n/2), times the inner bound. Within the ball A, the Taper Condition implies

that fθ(||ru − ρv ||) is bounded by M/(1 + (ρ−∆)2)ν+d/2+ε. Hence,∫ ρ−∆

0

f1,ν(r)fθ(||ru − ρv ||)rd−1 dr ≤ M

(1 + (ρ−∆)2)ν+d/2+ε

∫ ρ−∆

0

f1,ν(r)rd−1 dr.

As f1,ν is a density in Rd the last integral is finite. Since f1,ν is monotonically decreasing in ρ, we have
for the second part∫ ρ+∆

ρ−∆

f1,ν(r)fθ(||ru − ρv ||)rd−1 dr ≤ f1,ν(ρ)
∫ ρ+∆

ρ−∆

fθ(||ru − ρv ||)rd−1 dr. (18)

Again, as fθ is a density in Rd the last integral is finite and is positive for all ∆ > 0.
For the last term, we have∫ ∞

ρ+∆

f1,ν(r)fθ(||ru − ρv ||)rd−1 dr ≤ f1,ν(ρ)
∫ ∞

ρ+∆

fθ(||ru − ρv ||)rd−1 dr.

As ρ tends to infinity, the integral will tend to zero.
Now, as ρ,∆ →∞ with ∆/ρ → 0, the fraction (17) is bounded by

lim
ρ→∞

(1 + ρ2)ν+d/2

(1 + (ρ−∆)2)ν+d/2+ε

∫
∂Bd

∫ ρ−∆

ρ−∆

f1,ν(r)rd−1 dr dU(u) +
∫

∂Bd

∫ ∞

ρ−∆

fθ(||ru − ρv ||)rd−1 dr dU(u) = 1.

To show that the limit is strictly positive, consider annulus B∫
Rd

f1,ν(||x ||)fθ(||x − ω||) dx ≥ f1,ν(ρ + ∆)
∫

∂Bd

∫ ρ−∆

ρ−∆

fθ(||ru − ρv ||)rd−1 dr dU(u),

then for all ρ > ρ0, the integral is positive and has a lower bound. Further, the fraction (17) has limit

lim
ρ→∞

(1 + ρ2)ν+d/2

(1 + (ρ + ∆)2)ν+d/2

∫
∂Bd

∫ ρ+∆

ρ−∆

fθ(||ru − ρv ||)rd−1 dr dU(u) = 1.

Proof. (Theorem 2.1) The proof of the theorem is a direct consequence of the Theorem 2.2 and Proposi-
tion 2.3.

Proof. (Theorem 2.5) The case of µ > 2ν corresponds to Proposition 2.3 and is independent of the
conjecture. Consider the case µ = 2ν. It is straightforward to show that the conjecture holds for the
Matérn covariance function. For polynomial tapers the existence of limρ→∞ ρµ+dfθ(ρ) implies that there
exists two constants M1 = M1(ρ0) and M2 = M2(ρ0) such that M1 ≤ ρµ+dfθ(ρ)2/µ!(π/2)(d+1)/2 ≤ M2

for ρ > ρ0. The proof follows closely the one of Proposition 2.3 for the upper bound with ε = 0. For the
lower bound, annulus A has to be taken into account to show that

M1 + b

b
≤ lim

ρ→∞

fα,ν(ρ + ∆)
fα,ν(ρ)

∫
∂Bd

∫ ρ−∆

ρ−∆

fθ(||ru − ρv ||)rd−1 dr dU(u) ≤ M2 + b

b
.

As ρ →∞, we can choose M1 and M2 arbitrary close to B.
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Appendix B: Spectral Densities of Taper Functions

Let C be an isotropic covariance function in Rd. The corresponding spectral density can be obtained by

f(ρ) = (2π)−d/2

∫ ∞

0

(ρr)−(d−2)/2J(d−2)/2(ρr)rd−1C(r) dr,

where J is the Bessel function of the first kind. For d = 1 and d = 3, J(d−2)/2 can be written as a function
of r, a cosine and a sine function respectively. For polynomial tapers, it is thus straightforward to obtain
the spectral densities. As the expressions are rather long, we only give the tail behavior. In one dimension
we have:

Spherical: lim
ρ→∞

ρ2fθ(ρ) =
3

2πθ
, Wu1 : lim

ρ→∞
ρ4fθ(ρ) =

105
2πθ3

, Wu2 : lim
ρ→∞

ρ6fθ(ρ) =
4620
πθ5

.

For d = 3, we observe that the tail behavior is decreased by ρ2. For d = 2, we can only numerically verify
the tail behavior. The tail behavior of these and other invested tapers matches the conjecture.
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