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Penalized least squares

An abstraction of Grace’s model and estimate is

Observe:

yi = f (xi) + ei

f is smooth and {ei} iid normal

A spline:

f̂ (x) =
n∑
j=1

cjK(x, xj)

where c minimizes

||y −Kc||2 + λcTKc

The RKHS:

Ki,j = K(xi, xj) and K is a reproducing kernel (or a covariance function).
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What problem are we solving?

If f is Gaussian process with mean zero and with

covariance K

• then f̂ is the “Kriged” curve.

• then f̂ is the conditional expectation of f given y.

• then f̂ is the posterior mean/mode with a Gaussian process prior on f
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Grace does something different

Instead of

||y −Kc||2 + λcTKc

c minimizes

||y −Kc||2 + λ
n∑
j=1

|cj|

This forces some components to be identically zero the number being con-

trolled by λ.
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What problem are we solving? What about the L1 penalty?

||y −Kc||2 + λ
∑n
j=1 |cj|

−log likelihood log prior (minus some constants)

The prior is {ci} are iid double exponential RVs.

i.e.

f (c) = λ/2e−|c|/λ

minimizing this is the same as maximizing the posterior.
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Something else

Instead of

||y −Kc||2 + λcTKc

Kriging/spatial statistics version

||y −K1/2β||2 + λ||β||2

(β = K−1/2c)

Version of hard thresholding with wavelets

||y −K1/2β||2 + λ
n∑
j=1

|βj|

If K1/2 has columns that are an orthogonal wavelet basis.
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What are the priors for f like?

K generalized covariance related to cubic smoothing spline

f (x) =
∑
j
ajψj(x)

Four (2× 2) interesting cases

• Cubic smoothing spline prior

aj iid normal, ψj = K1/2(., xj)

• Wavelet type prior

aj iid double exponential and ψj same.

• ≈ Grace’s model.

aj = cj iid double exponential but ψj = K(., xj)

• Gaussian analog

aj = cj iid normal and ψj = K(., xj)

... and also a mixture πδ0, (1− π)N(0, σ2)
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Sample paths for cubic smoothing spline prior
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Adding sample paths with double exponential coefficients

(and using same set of generating uniforms RVs)

dashed = double exponential
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Realizations from prior related to Grace’s talk

Cubic spline prior Basis pursuit prior
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Comparison to Gaussian process

dashed = double exponential

11



Comparison to mixture (π = .8)
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A project at NCAR

From a numerical simulation of turbulence find individual vortices and expand

them in a parsimonious basis.

The whole image:

ζ(x) =
∑K
k=1 vk(x) + e(x)

The kth vortex:

vk =
∑3J+1
i=1 ck,i ψj(x− µk)
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Conclusion

Basis pursuit raises issues about what priors are good for functional

structure.

Distinguish variable selection from function estimation.
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