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Abstract

Many geophysical and environmental problems depend on estimating
a spatial process that has nonstationary structure. A nonstationary model
is proposed based on the spatial field being a linear combination of mul-
tiresolution (wavelet) basis functions and random coefficients. The key is
to allow for a limited number of correlations among coefficients and also
to use a wavelet basis that is smooth. When approximately 6% nonzero
correlations are enforced, this representation gives a good approximation
to a family of Matern covariance functions. This sparseness is important
not only for model parsimony but also has implications for the efficient
analysis of large spatial data sets. The covariance model is successfully
applied to ozone model output and results in a nonstationary but smooth
estimate.

1 Introduction

Many scientific problems involve geophysical or biological spatial processes that
are nonstationary. Some examples include meteorological and ocean measure-
ments, environmental pollutants and disease incidence. A statistical problem in
all of these areas is to estimate the spatial covariance function without imposing
unreasonable restrictions on its form. In this work we propose a multiresolution
(wavelet) model that can adapt to heterogeneous spatial correlations and also
lends itself to efficient computational algorithms for analyzing large spatial data
sets.

As a motivating example in this work we consider the daily average surface
(ambient) ozone concentration for a Midwest region of the the US. Based on
heterogeneous spatial factors, such as the sources of the precursors to ozone and
different meteorological conditions, one expects that the covariance function for
the ozone field will vary depending on spatial location. Some issues for ozone
pollution are in making spatial predictions at locations where measurements
are not made and also attaching a measure of uncertainty to these predictions.
Uncertainty measures, such as a prediction standard error, are useful not only
for inferences for a given set of data but also to guide thinning, augmenting or
designing monitoring networks for the future.
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A heuristic principle is that although spatial predictions may not be sensitive
to the assumed covariance function the standard errors implied by different
covariance models can vary widely. For this reason it is important to have
accurate models for the covariance structure. Beyond pointwise error estimates,
there is a growing interest in the geophysical sciences to use realizations of a
spatial field consistent with observed data that reproduce the stochastic features
of the field. In a statistical context it is natural to construct ensembles of possible
fields by sampling from the posterior, or conditional distribution, of the spatial
field given the observed data. (This is also known as conditional simulation in
geostatistics.) The validity of this conditional distribution will depend on how
well the spatial process has been modeled and for this reason accounting for
nonstationary structure is important.

Past work on estimating nonstationary spatial fields has included moving
window kriging using a stationary covariance (e.g. [6]), nonlinear deformation of
the geographic coordinates ([12]) or variable convolution of a stationary process
([7]). More recently, change of support models have demonstrated the potential
for incorporating nonstationary structure ([4]) and a method that is similar in
spirit to the approach in this paper is the use of empirical orthogonal functions
(e.g. [14]). These methods all have different advantages and a collateral benefit
of a multiresolution model is to provide a compact representation for some of
the other kinds of models cited above. It should be noted that some of the ideas
in this paper derive from more theoretical treatments from the work of Donoho
and Mallat ([3], [9] ) but we have made some extensions that have practical
import.

The next section discusses representing a spatial process and as a sum of fixed
basis functions with sparsely correlated random coefficients. Section 3 intro-
duces multiresolution bases and presents a particular wavelet (the W-transform
[8]) that we have found useful. The next section gives some results for the
approximation properties of this multiresolution for standard families of covari-
ances and Section 5 explains how to estimate these models from data. Section
6 gives an example of a nonstationary covariance model for daily ozone in the
Midwest.

2 Spatial Models

We assume that z(x), is the value of a random field, e.g. ozone concentration
at location x, with covariance function

k(x,x′) = COV (z(x), z(x′))

Throughout this paper we will assume that z is a mean zero, Gaussian process
and so the covariance function completely describes its stochastic properties.
The covariance kernel has an eigenvalue/eigenfunction decomposition of the
form

k(x,x′) =
∞∑

ν=1

λνψν(x)ψν(x′)
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that holds for all covariance functions both stationary and nonstationary. More-
over, the actual process can be represented as

z(x) =
∞∑

ν=1

√
λνανψν(x)

where {αν} are independent random variables, distributed N(0, 1).
The basic idea of this paper is to use a wavelet basis in place of the eigen-

functions and relax the condition on {αν} to allow some correlation among
these coefficients. The main contribution is how to estimate these covariances
among the coefficients. In order to implement the models for data it is useful
to rephrase this problem for a discrete set of points.

2.1 The Discretized Model

Let z be the values of the field on a large, rectangular grid (and stacked as a
vector). This discretization is partly a computational device and should not
influence the statistical analysis; we assume that the grid is chosen fine enough
to resolve all relevant spatial features. Throughout this discussion we denote
the total number of grid points as m and let Σ = COV (z) be the m×m covari-
ance matrix among grid points. One can always find the eigenvector/eigenvalue
decomposition for Σ. Σ = ΨDΨT where ΨΨT = I and D diagonal. Here the
columns of Ψ are individual basis functions evaluated on the grid but stacked
as a single column vector. One also has the representation z = ΨHa where a is
a vector of independent N(0, 1) random variables and D = H2. To emphasize
the basic idea in this work, the eigen decomposition suggests an alternative way
of building the covariance by specifying the basis functions and a matrix H.
However, Ψ need not be orthogonal and H2 need not be diagonal. The primary
constraint is that the implied covariance matrix and corresponding spatial es-
timator be readily computable and approximate a variety of standard models.
In the rest of this paper Ψ will denote a matrix whose columns form a discrete
basis. But it may not necessarily be based on the eigenvectors of a particular
covariance matrix.

For most problems m is big and Σ is gigantic. Even for the small example
reported in Section 6 of this work, m = 482 and so Σ will have approximately
2.5M unique elements! Dealing with such large matrices is discussed in the next
section.

2.2 Computing a spatial process estimate

We end this section by a brief motivation for the kind of computational ad-
vantages provided by a multiresolution covariance model. In order to do so we
review the equations for the conditional multivariate normal. The basic Gaus-
sian model discussed here can be greatly extended, however we focus on the
simplest case to isolate the main computational challenge.
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Consider an observational model

y = Kz + ε. (1)

where y is a vector of n observations and ε is MN(0, σ2I). The n×m matrix
K is usually an incidence matrix of ones and zeroes with a single one in each
row indicating the position of each observation with respect to the grid.

The simplest spatial inference is to find the conditional normal distribution
of z given y and this distribution has conditional mean vector

ẑ = ΣKT (KΣKT + σ2I)−1y (2)

and conditional covariance matrix

Σ− ΣKT (KΣKT + σ2I)−1KΣ (3)

ẑ can also be identified as the best linear unbiased (Kriging) estimate of z.
When matrices are large the conditional mean vector is most efficiently

solved for using approximate, iterative methods. These methods, such as con-
jugate gradient (see [5]), do not demand the storage of Σ but do require that
that one can multiply Σ and K by arbitrary vectors efficiently. K will typically
be a matrix that is sparse and so can be multiplied with a vector easily. Given
a decomposition Σ = ΨH2ΨT efficient multiplication hinges on the structure of
Ψ and H. Through the choice of a multiresolution basis there are fast recursive
algorithms for multiplying Ψ and ΨT with a vector. If H is also sparse then the
chain is complete and one can also multiply Σ quickly.

Computing the conditional covariance is difficult and we suggest a Monte
Carlo strategy that leverages an efficient algorithm for the conditional mean.
Let u be generated as MN(0,Σ). Generate a pseudo data vector y∗ = Ku + ε
and compute u∗ = u − ΣKT (KΣKT + σ2I)−1y∗. Simple matrix algebra will
show that ẑ + u∗ will be a sample from the correct conditional distribution.
Performing this several times will give an ensemble of fields and, of course,
finding the sample covariance across the ensemble provides a Monte Carlo based
estimate of the conditional covariance.

3 Multiresolution Bases

We will generate a basis for expanding the covariance using repeated transla-
tions and scalings of a few fixed functions. Multiresolution methods, in partic-
ular regression on wavelets, have received much recent attention in the statis-
tics literature, especially in their ability to provide estimates of functions that
have discontinuities or varying degrees of smoothness over their domain. The
reader is referred to the review article by Nason and Silverman [10] for more
background and development. The local support of these basis functions lends
themselves to nonstationary fields because the stochastic properties can also be
controlled locally. Changing the variances and covariances of groups of individ-
ual coefficients will only have a local impact on the spatial field and facilitates
representing nonstationary structure.
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In this section we give a qualitative description of multiresolution bases. One
advantage of wavelet models is their efficient computation due to the discrete
wavelet transform (DWT). Because of its discrete nature, the DWT only ap-
proximates the exact translation and scaling of fixed functions. However, the
approximation is accurate for the coarser levels of resolution and the intuition
of basis functions having a scale of resolutions and local support is important
for understanding their benefit.

3.1 A one-dimensional basis

Although the main practical interest is in two dimensional fields, for illustration
and some later examples we first give a qualitative description of a continuous
multiresolution basis in one-dimension. The key feature that we would empha-
size is building a complete basis through the repeated translation and scaling
of a few fixed template functions. We start with two templates, mother, ψ, and
father, φ, wavelets both defined on [0, 1] and a coarsest level of resolution, say
J. The W wavelets used in this work are plotted in Figure 1 and a basis of 32
functions is displayed in Figure 2. The first J basis functions are similar to the
father wavelet translated to J equally spaced locations. These are given in plot
(a) of Figure 2 for J = 4. The father wavelet only appears in this first J set and
all subsequent basis functions are similar in form to the mother wavelet. The
next J basis functions are the mother wavelets translated in the same manner
and are in plot (b). The next generation of basis functions has twice the resolu-
tion and twice as many members (8) and is similar to a scaling and translation
of the mother wavelet. Plot (c) of Figure 2 shows this generation. This cascade
continues with the number of members in each subsequent generation and the
resolution increasing by a factor of two. Plot (d) completes the basis of size 32.

In this work we concentrate on a basis derived from the W transform. Kwong
and Tang [8] proposed the father and mother wavelet functions based on simple
families of filter weights with respect to the discrete wavelet transform (DWT).
The reason for this choice over more common wavelets is that they appear to
approximate the shape of common covariance models and handle boundaries
easily. We will refer to these as W wavelets and the quadratic parents of this
family are given in (Figure 1). Both are piece-wise quadratic splines but unlike
other popular wavelet bases are not orthogonal or compactly supported. The
W-wavelet is implemented in the Fields package [11] for the Splus and R sta-
tistical environments. The source code is readily available and provides a clear
definition of the filter weights for the transforms. The W-wavelet is also similar
to the biorthognal, b-spline wavelet (bs3.1) implemented in the S+Wavelets [1]
package.

3.2 A two dimensional multiresolution basis

A two dimensional basis can be constructed through translations and scaling of
four template functions that replace the role of the father and mother wavelets
from the one dimensional case. Here we give a qualitative description how
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Figure 1: Continuous versions of the Father (solid) and Mother (dashed) W-
transform wavelets
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Figure 2: Family of 32 basis functions based on an approximate translation and
scaling of the father and mother wavelets from Figure 1. Basis functions at the
end points differ slightly in shape due to boundary corrections.
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this is done. To start, form the tensor products of the one-dimensional father
and mother wavelets functions to obtain four, two-dimensional functions with
domain on [0, 1]× [0, 1]:

S(x1, x2) = φ(x1)φ(x2)
H(x1, x2) = ψ(x1)φ(x2)
V(x1, x2) = φ(x1)ψ(x2)
D(x1, x2) = ψ(x1)ψ(x2)

These are plotted in Figure 3. Here S,H,V, and D stand for smooth, horizontal,
vertical and diagonal respectively and denote their ability to represent features
in these orientations. The later three we refer to as detail functions.

To construct the 2-d basis, one starts with a coarsest scale and translates of
the scaled S. As a specific example, if we choose the beginning level J = 4 then a
scaled S, would be centered at a 4×4 grid of locations yielding 16 basis functions.
The next 16 functions are scaled translates of H followed by translates of V and
D for a total of 64 functions in this first generation. Subsequent generations are
based only on the three detail functions derived from the mother wavelet and
in analogy to the one dimensional case involve reduction by a factor of two and
translation on a grid. For example, with the specific choice of J = 4, the next
generation would involve three sets of 64 basis functions being scaled translates
of H, V, and D on an 8× 8 grid.

3.3 Discrete Wavelet transform

The discrete wavelet transform (DWT) is a fast algorithm to compute the coef-
ficients of a basis that approximates the exact multiresolution. In the notation
of the previous section, the DWT and its inverse can be used to rapidly multiply
Ψ−1 and Ψ by arbitrary vectors. The basis functions comprising the columns of
Ψ are approximately equal to the exact translations and dilations of the smooth
and detail functions with the approximation improving as the level of resolution
decreases.

The key idea behind the DWT is recursion. At each step an image of size
say, n1 × n2 is decomposed through four finite length separable, linear filters
into four equal submatrices of smooth, horizontal, vertical and diagonal terms.
The three matrices for the H, V and D components at this level of resolution are
saved. The submatrix of (n1/2)×(n2/2) smoothed coefficients now becomes the
“image” for the next step and the filtering is repeated. This process continues
until one reaches a smoothed image of a particular size. By varying the filters,
the net result is a family of four algorithms that are linear in the image size and
are equivalent to multiplication of a vector by Ψ, Ψ−1 or their transposes. It
should be noted that the standard DWT refers to the specific multiplication of
a vector by Ψ−1 and, for many wavelet choices, Ψ is an orthonormal matrix.
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(a) (b)

(c) (d)

Figure 3: Tensor products of the father and mother wavelets associated with
the W-transform. (a) S , (b) H, (c) V, and (d) D

8



4 Approximating other covariances

Before considering nonstationary models it is of interest to investigate how well
the multiresolution representation can approximate standard covariance models.
The key issue is enforcing sparsity in the covariance matrix among coefficients
without it losing the approximation properties.

Suppose Σ is the covariance matrix for a spatial process. For any discrete
basis, Ψ, it is always true that

Σ = ΨDΨT = ΨH2ΨT (4)

for D = Ψ−1Σ(ΨT )−1 and H = D1/2. However, this decomposition is only
useful if D or H are close to diagonal (i.e. sparse).

As an example Figure 4 illustrates the structure of these matrices for a one
dimensional grid of 256 equally spaced points on [0, 1] and an exponential co-
variance, k(x, x′) = exp{−|x − x′|/θ} with θ = 1/8. The plot (a) is a scaled
version of log10(|D|) and (b) the leading 16 × 16 submatrix of D. The main
features are clear, the elements of D fall off rapidly with scale and many off di-
agonal elements are zero. Moreover most of the significant off diagonal elements
are associated with the coarsest scale basis functions. Although not shown in
this figure, the sparsity is amplified further by considering H. This example is
motivation for keeping the dominating elements of H but setting to zero small
elements.

4.1 Enforcing sparsity in H

In the spirit of threshold estimators used in wavelet regression and the initial
ideas from [3] we investigate thresholding to enforce sparsity in H. We propose
a simple strategy:

• Retain all diagonal elements of H

• For the finest levels of resolution set all off diagonal elements of H to zero.

• For the remaining elements, given i 6= j and a threshold τ .

Ĥi,j =
Hi,j if |Hi,j | > τ
0 otherwise

Figure 5 reports results for approximating the exponential covariance model
used above. The grid is 256 equally spaced points on [0, 1] and we have chosen τ
to be either the 98% or 97% quantiles for {|Hi,j |}. The approximate covariance
matrix is reconstructed and three rows of this matrix are plotted along with the
true covariance values. Given 97% decimation of H, the agreement is striking.
However, for more decimation there are some inaccuracies in the peak height
and some ringing.

As a final illustration we consider a one dimensional nonstationary model
obtained by deformation. Let T (x) = .4x + .6Φ((x − .57)/.1) where Φ is the
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Figure 4: Approximation to a 1-D stationary covariance function. Here the
spatial covariance is the exponential with range θ = 1/8. The discrete co-
variance matrix is this covariance evaluated on 256 equally spaced grid points
on [0,1]. Image (a) is the matrix D in a log relative scale, the elements are:
log10(|D|/max|D|). Basis functions are ordered according the presentation in
Figure 2 from coarsest scales to finest scales. Image (b) is an enlargement of
the leading 16× 16 submatrix of D. Here the values are not scaled.
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Figure 5: Approximation of a 1-d stationary covariance by wavelets at 97%
and 98% decimation of H. The exponential covariance matrix with θ = 1/8
is approximated by decimating the elements of H by 97% or 98% and then
reforming the covariance matrix. Three rows of the covariance matrices are
plotted in (a) true( solid) 97% (dotted) and 98% (dashed). The differences
between the approximate covariances and the true function are plotted in (b).

11



standard normal distribution function. Define the deformation covariance as
k(x, x′) = exp{−|T (x)−T (x′)|/θ} with θ = 1/8. This results in a nonstationary
covariance on [0, 1] where there are short range correlations in the middle of the
interval and longer ranges near either end point.

Again we decimate H by 98% and 97% and assess the approximation (Figure
6) to the true covariance matrix. Here the wavelet approximation does well in
tracking individual rows of the covariance matrix even with changing shape and
range.

4.2 Approximating the Matern covariance family

The one-dimensional examples given above help to give some intuition concern-
ing the W-transforms approximation and sparsity properties. However, a more
useful comparison is for covariances associated with two dimensional spatial pro-
cesses. In this section we provide more deliberate comparisons for the Matern
family [13]. One key result is a universal mask for sparsity that facilitates esti-
mating these models from data.

The Matern covariance family is indexed by the parameters ν (smoothness)
and θ (range) and has the form

k(x,x′) = Φν,θ(||x− x′||)

where

Φν,θ(r) = C
(θr)ν

θ2ν
Kν(θr).

K is a modified Bessel function of order ν and C a normalization only depending
on ν. A Gaussian process with this covariance will have ν derivatives that exist
in the mean square sense and the parameter θ controls the correlation range.
Two important special cases are the exponential covariance when ν = .5 and
the Gaussian, obtained as a limit as ν →∞.

For numerical results we consider a 16× 16 grid of locations on [0, 1]× [0, 1]
with the coarsest generation having 16 basis functions for the each of the 4
tensor products from Figure 3 and are centered on a 4× 4 grid. The covariance
models were generated according to the smoothness parameters .5, 1.5 and 4 and
with range parameters .125, .25, .5, .75 giving a total of 12 different covariance
functions. The marginal variance for these covariances has been normalized to
one. The wavelet approximation was computed for 98% and 97% decimation
and the results are summarized in Figure 7. For each covariance model the root
mean squared error (RMSE) is found for each row of the difference between
the actual covariance matrix and the wavelet approximation. Each boxplot
summary is based on the 162 = 256 RMSEs calculated in this way. Keeping in
mind that the covariance models have marginal variance of one these RMSE are
small relative to the size of the correlations. However, we see some degradation
in the approximation for small ranges and the exponential model. This behavior
may be related to the choice of 4×4 father wavelets setting the coarsest scale and
also because the shape of the W-wavelets are closer to Gaussian than exponential
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Figure 6: True and approximate covariances based on 97% and 98% decimation
for the nonstationary deformation covariance. Three rows of the covariance
matrices are plotted in (a) true( solid) 97% (dotted) and 98% ( dashed) are
shown in the top. The differences between the approximate covariances and the
true function are plotted in (b).
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at their peak. Also, large values of the RMSE tend to be associated with edges
of the domain.

Another important aspect of this study is investigating how the positions
of the nonzero elements in the decimated H matrix vary among the different
models. For the case with 98% decimation the union of all nonzero elements
across the 12 models amounts to a total of 3.3% nonzero elements and for 97%
decimation there are 5.6% nonzero elements. These results suggest that one
can restrict the models for H to a limited set of elements and still have a good
approximation to a wide range of models.

5 Covariance estimates from data

In many geophysical applications the spatial fields are observed over time and
one can exploit temporal replication to estimate sample covariances. In this
work we focus on this case and also for gridded data with the goal of deriving
estimators that scale to large problems.

5.1 Sample estimates of H

Assume that independent copies of the field are observed over T time points and
let Z be an m×T matrix with each column being the stacked vector of centered
observations ( i.e. mean zero) at a single time. By definition each column of Z
has covariance Σ. With gridded data and (independent) replications over time,
one can get sample estimates of the elements of H. We expect that for most
problems m >> T and so the basic idea is to try to work with matrices of order
m× T or T × T instead of m×m. The sample covariance is

Σ̂ = (1/T )ZZT

and so
D̂ = (1/T )(Ψ−1Z)(Ψ−1Z)T

(D̂ is the sample covariance of the basis function coefficients.) This form
motivates estimating H via the singular value decomposition of Ψ−1Z. Let
V ΛUT = (1/

√
T )(Ψ−1Z) where V and U are orthogonal matrices and Λ a

T × T diagonal matrix of nonnegative singular values. Setting

Ĥ = V Λ1/2V T ,

it now follows that D̂ = Ĥ2. Based on the numerical results from Section
4.2 one is lead to a small number of nonzero elements of H that have good
approximation properties across a whole covariance family. This sparseness
guarantees that we do not have to consider many off-diagonal elements. The
entries that are nonzero can be computed efficiently based on V and Λ1/2.

Once the (nonzero) elements of Ĥ are found one can:

• Further decimate them
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Figure 7: Comparison of the wavelet approximation to the family of Matern
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• smooth across “spatially adjacent” entries.

• shrink toward a stationary model

In the example in the next section we simply use decimation, although we believe
that smoothing entries may be useful in some cases.

6 Example with Surface Ozone

We consider a numerical experiment based on the Regional Oxidant Model
(ROM) and analyze daily average ozone produced by the output. ROM is
an atmospheric chemistry model that simulates ozone formation and transport
based on sources of pollution and meteorological conditions. The data used in
this study is a 48 × 48 grid centered on Illinois and Ohio where each grid box
is approximately 16 × 16 miles in size. Output is available for 79 days using
meteorology from June-August 1987. For background on this model and its
comparison to data see [2].

Ambient average daily ozone has a correlation range of the order of 300 miles
and so it is reasonable to start with a 3×3 grid of father wavelets as the coarsest
level of resolution. This division also facilitates the recursive algorithm because
then the remaining factor of 48 is 16, a power of 2. In this example we simply
decimated the leading 12×12 block of H by 90% and retained diagonal elements
for the remaining levels. A refinement of this could be to smooth the diagonal
elements in the finer levels.

The resulting covariance function appears to be nonstationary with some
interesting structure. Figure 8 depicts the estimated marginal standard devia-
tions at each ROM grid box. We found that this surface has not been smoothed
much relative to the sample variances but note higher variability over urban
areas such as Chicago and Detroit. Figure 9 depicts the covariance at four lo-
cations. Each member of the panel fixes a location and plots the covariance
between all other points and the fixed location. These fixed locations are indi-
cated by an x symbol on the plots. The top left hand location (a) is a rural area
of Illinois and has a covariance that is longer ranged to the west but with low
variability. The location in (b) is near more urban areas in Michigan. It has
higher variability but also a longer correlation range than the locations in the
bottom corners of the domain. Another interesting distinction is that the loca-
tion (c) (near St Louis) has more isotropic contours. Although more extensive
analysis of this data set is beyond the scope of this example it should be noted
that the correlations tend to have longer range west of the locations such as (a)
and (b). This might be due to the general motion of weather systems, and the
corresponding transport of ozone, from west to east.

7 Discussion

We have shown that wavelets provide flexible methods for introducing nonsta-
tionary spatial structure and can reproduce standard spatial models. Due to
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Figure 9: Estimated covariance surface at 4 sample locations for the ROM
output. The image plots indicate the estimated covariance between points in
the domain and the point location denoted by an x. Contour levels are at
(40,60,80,100, 120) .
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the efficiency of the discrete wavelet transform and also the enforced sparseness
in the covariance matrix among coefficients, these models are also amenable to
large spatial problems. The example using ROM output is surprising in how
a regular basis can produce nonstationary but smooth covariance patterns. A
key extension of this method is to irregular locations and we end this paper by
suggesting an approach to this problem when temporal replicates of the field
are available.

When data is not observed on a complete grid one can not take advantage of
the DWT for matrix multiplication of the basis functions. Also there are more
intrinsic problems in that many elements of H are not identifiable. A formal
solution is to write out a full Bayesian model for the field including a hierarchical
model for H and then attempt to sample from the posterior using Markov
chain Monte Carlo techniques. We think this approach may be productive for
moderate size problems but may not be easy to implement for many important
large geophysical data sets. Here we suggest an iterative, Monte Carlo based
approach that has less of a statistical foundation but is more direct.

Given spatial data at irregularly spaced locations and observed at several
times, one starts by fitting a simple, possibly stationary model, to the sample
covariances. Based on this starting covariance model, one samples the condi-
tional distribution of the field on a regular grid given the observed data at each
time point. The result is a time sequence of gridded fields that are consistent
with the data and use the initial covariance for extrapolation. Given these grid-
ded samples of the field one now fits a model to H based on the ideas from
this paper. Now one uses the multiresolution based covariance to sample the
conditional distribution of the field given the data and to reestimate H. This
last step is now repeated until convergence of the covariance estimates.

The basic idea of extrapolating irregularly spaced data to a regular grid
and then using the DWT is not new. However, one crucial difference is that
we propose to sample from the conditional distribution rather than use the
posterior mean. This will have the effect of favoring the starting covariance
model in regions where direct covariance information is limited but adapting to
the data in areas where locations are dense.

Clearly there are many open statistical questions posed by the covariance
model in this paper and we hope that its merits in flexibility and practicality
spur more research.
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