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• Spatial process estimates and covariance models

• Conditional simulation

• Multiresolution bases - decimation

• An example: Ozone model output for the Midwest



Why are we doing this?

Many geophysical/biological processes are nonstationary over large area

• meteorological variables: precipitation

• pollutants: ambient ozone

• human health: disease incidence

Analyzing numerical model output

Given the output of a geophysical model, the covariance function of a simu-
lated field is a useful summary of the model behavior. Also this covariance
can be used for sampling designs and spatial prediction when the observed
data is sparse.



Spatial Models

z(x), is a random field, e.g. ozone concentration at locationx,

k(x,x′) = COV (z(x), z(x′))

There are other parts ofz that are important:

• E(z(x)), fixed effects and covariates

• z(x) is not Gaussian

• Copies ofz(x) observed at different times are correlated, e.g ozone
fields for each day.

I don’t want to talk about these today!

The wavelet/Gaussian model is a platform for more complicated models,
just as many methods build off of weighted leastsquares as a primitive.



Spatial Models (continued)

Discretize the problem

z be the field values on a large, regular 2-d grid ( and stacked as a vector).

Σ = COV (z)

Locations are discretized to the nearest grid point.

Basis functions

If we find the eigenvector/eigenvalue decomposition forΣ.
Σ = ΨDΨT , ΨΨT = I andD diagonal.
thenz = Ψa wherea is random withCOV (a) = D.
If D = H2 thena = He wheree iidN(0, 1).



Some key ideas

The eigen decomposition suggests an alternative way of building the covari-
ance by specifying the basis functions andD.

But ....

Ψ need not be orthogonal andD need not be diagonal.

The main constraint is that the spatial estimator be computable.



Observational model
Divide upz into two pieces:

z =

(
z1
z2

)
=

(
observed

grid

)
The goal is to estimatez2 usingz1.

A more realistic observation model

y = Jz + e

J is a known “observational functional” such as incidence matrices of ones
and zeroes for irregularly spaced data or weighted averages.COV (e) =
σ2I (where part of the variability may be due to discretization error.)



Estimation and Inference
So what do we do with the covariance once we have it?

Find the conditional distribution of unobserved given observed.[z2|z1].

Under normality, conditional distribution ofz2 for fixed covariance is Gaus-
sian.

Conditional mean

ẑ2 = COV (z2,z1) [COV (z1,z1)]
−1
z1 = Σ2,1Σ

−1
1,1z1

Conditional covariance

Σ2,2 − Σ2,1Σ
−1
1,1Σ1,2



The problems

Σ11 andΣ21 can big! ... And so areΨ andJ !

Solutions

1. Use an iterative method for the solution of large linear systems to find
the conditional mean.

2. Estimate variability by generating samples from the conditional distri-
bution. This can be done by reusing the code for the finding the condi-
tional mean.



A Diversion: Conditional Simulation

We want to generate a sample from

MN(Σ2,1Σ
−1
1,1z1,Σ2,2 − Σ2,1Σ

−1
1,1Σ1,2)

Trick is to reuse the basic Kriging estimator

1. Find ẑ2 = Σ2,1Σ
−1
1,1z1 (just do this once)

2. Generate a synthetic fieldz∗ = (z∗1, z
∗
2). (using square root ofΣ)

3. e = z∗2 − Σ2,1Σ
−1
1,1z

∗
1 (error in prediction using this bogus data)

4. Conditional field:[z2|z1] = ẑ2 + e



Example using 8 hour average Ozone
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Kriging surface for day 16

Data and the conditional mean surface
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Mean surface and 5 draws from the ”posterior”
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Remarks about computing

Iterative methods demand that one can multiplyΣ with a vector efficiently.
For irregularly spaced data, do the whole multiplication (Σ) and just keep
the parts you need (Σ1,1)

Recall thatΣ = ΨDΨT so fast multiplication ofΣ can be done by fast
multiplications ofΨ,D andΨT .

Sampling the conditional distribution requires that one can simulate a pro-
cess at all grid points. e.g. NeedΣ1/2 = ΨD1/2.

EstimatingD is easier if we haveΨ−1.



Multiresolution Bases
• translations and scalings of a few fixed functions

• have local support

• defined recursively

• Ψz andΨTz can be multiplied quickly

Key idea: Because the basis functions are locally supported changing the
variances and covariances of individual coefficients will only have a local
impact.



1-d Mother and father wavelets



Building up a family (Starting with 4)
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Approximating other covariances

(No data yet!)

If Σ is any covariance matrix for the grid points.

Σ = ΨDΨT = ΨH2ΨT

One can always find aD orH that will work.

Also

D = Ψ−1Σ(ΨT )−1

However, the decomposition is onlyusefulif we can findD ... or anH and
it is close to diagonal.



1-d exponential example ( range of 8 on [0,256])

What doD andH look like?
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Sparseness of H

Decorrelation

ForH = D1/2 wantH to be sparse. But waveletsdecorrelatea spatial
signal so we can expect many elements ofH to be near zero.

Decimation of H

Only keep the large values ofH.

Ĥi,j =
Hi,j if |Hi,j| > τ
0 otherwise

Zero out all off diagonal elements for basis functions that are below a set
resolution.



Approximation by wavelets: 98 % decimation of H!

5 10 15 20 25 30

5
10

15
20

25
30

−
20

00
0

20
00

40
00

60
00

5 10 15 20 25 30

5
10

15
20

25
30

0
20

00
40

00
60

00

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

co
va

ria
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

20
−

0.
10

0.
00

0.
10



Nonstationary, 1-d deformation

The deformation and the 1-d covariance matrix.
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Approximation by wavelets 98 % decimation of H!

H matrix, Decimated H, Some covariance traces and the errors.
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Two dimensions: tensor products of fa-
ther and mothers













So what do we do when we have data?

Sample estimates of H

With gridded data and (independent) replications over time, one can get
sample estimates of the elements ofH. The amount of computation and
storage is of the order of the image size and time points, not (image size)2.

Z matrix with rows= space and columns = time

Σ̂ = ZZT

or

D̂ = (Ψ−1Z)(Ψ−1Z)T



Decimation

The sparseness ofH guarantees that we do not have to look (or compute)
many off-diagonal elements.

Once the elements of̂H are found one can:

• decimate them

• smooth across ”spatially adjacent” entries.

• shrink toward a stationary model

For the ROM example we just decimate the leading block of H (12 × 12)
by 90% and retain diagonal elements for the rest.



Regional Oxidant Model (ROM)

Atmospheric chemistry model that determines ozone formation and trans-
port based on sources of pollution and meteorological conditions.

Model output:
8 hour daily average ozone
48× 48 grid centered on Illinois and Ohio,
grid box size: 25km
79 days in June-August 1987, this was a period of high summer ozone



Mean and sd fields for ROM output 8 hour average ozone



Estimated covariance/correlation function at four locations
(with 90 % decimation ofH)
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Concluding remarks
• Wavelets provide flexible methods for introducing nonstationary spatial

structure at different spatial scales. But they can also reproduce standard
spatial models.

• Wavelet bases are well suited for computation with large data sets.

• The most important future work is to extend the covariance estimate to
irregularly sampled data.
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