Gravity-wave refraction by three-dimensional winds: new effects and a new parametrization scheme

Oliver Bühler \& Alex Hasha
Courant Institute of Mathematical Sciences
Center for Atmosphere Ocean Science

Gravity waves

Gravity waves evolve locally

Current theory paper in JFM 2005

J. Fluid Mech. (2005), vol. 534, pp. 67-95. (c) 2005 Cambridge University Press
doi:10.1017/S0022112005004374 Printed in the United Kingdom

Wave capture and wave-vortex duality

By OLIVER BÜHLER ${ }^{1}$ and MICHAEL E. McINTYRE ${ }^{2}$

${ }^{1}$ Center for Atmosphere Ocean Science at the Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
${ }^{2}$ Centre for Atmospheric Science at the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, UK
(Received 7 July 2004 and in revised form 7 January 2005)

Inertia-gravity waves

Momentum flux $\quad \overline{u^{\prime} w^{\prime}}<0$
(unlike surface waves)
Internal waves make a significant contribution to atmospheric angular-momentum fluxes... convergence yields wave drag Oliver Bühler, Courant Institute, New York University, 2005

Wave breaking

Large-amplitude waves overturn and break nonlinearly, leading to 3d turbulence, irreversible mixing, and convergence of wave momentum flux
before

after

Figure 3: Diffusive scheme applied to the unstable buoyancy profile: $b(x, z)=0.3 \exp [-((x-$ $\left.\left.0.5)^{2}+(z-0.5)^{2}\right) / 0.09\right] \cos [2 \pi(x+z)]$. (a) (b) are surface plots of the potential temperature distribution before and after mixing. (c) and (d) give potential temperature profiles on the transects $x=0.6$ and $z=0.6$ respectively. The blue curve is the profile before mixing, and the green curve is the profile after mixing. Marcus Roper,

$$
\text { GFD report } 2005
$$

Oliver Bühler, Courant Institute, New York University, 2005

The classical gravity wave drag picture

- breaking due to density decrease and /or critical layer effects
- non-local action at a distance

$$
\text { Action }=\operatorname{Re} \text {-action }
$$

- standard accepted theory
- neglects all horizontal dynamics
- robust?

Ray-tracing theory for steady wavetrain as function of altitude z

Horizontal mean-flow inhomogeneity is ignored ("co-dimension 1")

Vertical flux of horizontal pseudomomentum equals vertical flux of horizontal mean momentum

Vertical flux of horizontal pseudomomentum is constant unless waves are dissipating or breaking

This results in the classical force balance: there is an equal-and-opposite action at a distance between mountain drag and wave drag

Oliver Bühler, Courant Institute, New York University, 2005

Wave drag on a rotating planet "gyroscopic pumping"

Retrograde force if $k / \hat{\omega}<0$

Convergence of angular-momentum flux acts as
effective force on zonal-mean flow

Prograde force
if

$$
k / \hat{\omega}>0
$$

Retrograde force -> poleward motion

All Rossby waves Winter gravity waves

Prograde force -> equatorward motion

Summer gravity waves

Oliver Bühler, Courant Institute, New York University, 2005

Vertical propagation of topographic Rossby and gravity waves

GW $f^{2} \leq \hat{\omega}^{2} \leq N^{2} \quad$ RW $\hat{\omega} \leq 0$ Absolute frequency: $\omega=\hat{\omega}+U k$
Topographic waves have zero absolute frequency: $\omega=0$

Fig. 1.4. Schematic latitude-height section of zonal mean zonal wind $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ for solstice conditions; W and E designate centers of westerly (from the west) and easterly (from the east) winds, respectively. (Courtesy of R. J. Reed.)

> Topographic waves are retrograde if $U>0$ near surface

Vertical critical layer occurs where shear pushes intrinsic frequency towards lower limit

Summer zero-wind surface acts to filter topographic waves

Oliver Bühler, Courant Institute, New York University, 2005

Wave-driven global circulation

Prograde and retrograde mesospheric gravity and Rossbywave drag:
Murgatroyd--Singleton circulation from summer to winter pole

Retrograde stratospheric Rossbywave drag:
Brewer--Dobson circulation from equator to pole

Summer polar mesosphere is sunniest place on Earth
Also the coldest $\left(-163^{\circ}\right.$ Celsius)

Fig. 3. Mass tranoport ztreamlines of the global scale mean circulation for Jnnuary 1979 (light cusvesi), (roun refermoc [36], estimated using satellite tata. The pieture gives the typical lacitode auld height dependence of the longitude and time averaged mass circulation of the stratosphere, defined in a quasi-Lagrangian sense giving a simpljitiod, but woughly comect, indication of the verdefimed in a quasi-Lagran of chemical constituents (see (ext, sect. 4). The heary dashed streamline tical advective tranbiarl of chembal constituents (he mesobphoric "Murgatroyd-Siugleton sircu(srhematic only) indicates the quaditalive sense of the mesobphosic (e.g., $[18,28]$) and not from ref. 'ation", deduced from other obsurvational and theoretical evidente (e.g., $[18,28]$) and not com ref.
'36]. The left.hand ecale ia pressure altitude $z=F_{8} \ln \left(p_{0} / p\right)$ in nominal kilometres, ansuming a
 to the micdle thiod of fig. 1 (multiply the right-hand scale in fig. 1 by 7 km). The upward meath viocities are a smallinh fraction of a millimetre per second, uf the order of $0.2 \mathrm{~mm}^{-1}[10,37,39,40]$, ableit somewhal larger in che case of January 1979 when the wintertime stratoophere werdynamically very active (sect. 9). The northward mean velocities at dop right (not counting the heavy fashed streamline) whe of the order of twa or three ma^{-1}. The time for a darked filid element to
 tise from the tropopause to, say,
rirculation cella is afles' collectively referred to as the "Brewer-Dobson circulation"; for historical rirculation cella is
reviews sec $[27,41]$.

Fermi review, ME McIntyre 1993
New York University, 2005

Rough guide to gravity wave scales

To resolve a scale need 10 grid points across it

Gravity wave scales (excludes breaking details)		Model (grid$\frac{\text { resolution }}{\text { size * 10) }}$
Horizontal scale	$10-1000$ km	1000 km
Vertical scale	$0.1-10 \mathrm{~km}$	10 km
Time scale	10 mins day	200 mins

GWs parametrized because need a factor 100 higher resolution. How long will that take?
Oliver Bühler, Courant Institute, New York University, 2005

Computer power and resolution increase

Moore's law: computing power doubles every 18 months.
To reduce grid size by a factor 10 requires $10 \times 10 \times 10 \times 10=10000$ times more computing power in a three-dimensional time-dependent simulation (grid points x time steps with CFL condition)

Let N by number of necessary doubling events:

$$
2^{N}=10^{4} \quad N \log 2=4 \log 10 \quad N=13.3
$$

$$
T=N * 18 \text { months }=19.95 \text { years }
$$

To increase resolution by a linear factor of 10 takes 20 years Moore is not enough..........

Oliver Bühler, Courant Institute, New York University, 2005

Multiscale-based career advice

For gravity waves need factor 100

This will take 40 years, ok for a career!

Oliver Bühler, Courant Institute, New York University, 2005

Columnar gravity wave parametrization

Columnar gravib-wave parametrizution

Parametrization is applied independently in each vertical model column

Time-dependence is ignored
Vertical wave propagation and vertical mean-flow derivatives are taken into account

Horizontal wave propagation and horizontal mean-flow derivatives are ignored: no refraction by mean flow

Many effects are neglected. Which are the important ones?

Some neglected effects are known to be important.
For instance, intermittency.

Oliver Bühler, Courant Institute, New York University, 2005

Known unknown: intermittency

Fig. 4. Wave packets due to hypothetical intermittent wave source at $y_{0}=0$. (left) Steady, nonintermittent source. (middle) Intermittent source with $\gamma=50 \%$. (right) Intermittent source with $\gamma=25 \%$. The wave amplitude increases by a factor of $\sqrt{2}$ from wave to wave, keeping the expected wave energy flux the same in all three cases.

Volume 60
Intermittency increases wave amplitudes at fixed mean wave activity flux

Wave breaking is highly amplitude-dependent
"Intermittency factor" adjusted to increase predicted amplitudes to obtain breaking

Better to model wave generation as stochastic process (future work)

Unknown unknowns in parametrization

Requirements for better parametrization

Theoretical constraints	almost none; plenty of ideas
Computational constraints	Must be in-column \& inexpensive
Observational constraints	Must not require more information

Three-dimensional refraction is a candidate Oliver Bühler, Courant Institute, New York University, 2005

Claim: singular geometric perturbation

```
Key to strong effects:
    ignoring the horizontal
refraction is a singular
perturbation
```


3d ray tracing admits exponentially fast wave breaking without critical layers (Jones 1969, Badulin \& Shira 1993). Wave capture.

3d wave-mean interactions exhibit new features such as remote recoil and missing forces (Bühler \& McIntyre 2003) Wave-vortex duality.

What are the new effects?

Oliver Bühler, Courant Institute, New York University, 2005

An adventure in ray tracing

Wavepackets along group-velocity ray

Wavepackets are the fundamental solutions of ray tracing

Wavetrains can be built from wavepackets

Amplitude along non-intersecting rays is determined by wave-action conservation

Oliver Bühler, Courant Institute, New York University, 2005

Warm-up example: shallow water system

Single layer of hydrostatic incompressible fluid

Variables

$$
\boldsymbol{x}=(x, y) \quad \boldsymbol{u}=(u, v)
$$

depth $h \quad \frac{\mathrm{D}}{\mathrm{D} t}=\frac{\partial}{\partial t}+(\boldsymbol{u} \cdot \boldsymbol{\nabla})$

Mass
 continuity

Dh
$\frac{\mathrm{D} h}{\mathrm{D} t}+h \boldsymbol{\nabla} \cdot \boldsymbol{u}=0$

Momentum
conservation
Du
$\frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}+g \boldsymbol{\nabla} h=0$

Oliver Bühler, Courant Institute, New York University, 2005

Linear small-scale wavepacket

(Example in shallow water)

$$
\begin{array}{lll}
\boldsymbol{u}=\boldsymbol{U}+\boldsymbol{u}^{\prime}+O\left(a^{2}\right) & \mathrm{D}_{t} \boldsymbol{u}^{\prime}+g \boldsymbol{\nabla} h^{\prime}=0 & \mathrm{D}_{t}=\frac{\partial}{\partial t}+(\boldsymbol{U} \cdot \boldsymbol{\nabla}) \\
h=H+h^{\prime}+O\left(a^{2}\right) & \mathrm{D}_{t} h^{\prime}+H \boldsymbol{\nabla} \cdot \boldsymbol{u}^{\prime}=0 & \\
\hline
\end{array}
$$

Slowly varying wavetrain $h^{\prime}=H a(\mu \boldsymbol{x}, \mu t) \exp (i \theta), \quad \mu \ll 1$

$$
\begin{array}{ll}
\boldsymbol{k}=\boldsymbol{\nabla} \theta, \quad \omega=-\theta_{t}, & \text { Dispersion relation } \\
& \hat{\omega}^{2}=g H|\boldsymbol{k}|^{2} \\
\text { background flow, if any } & \hat{\omega}^{2}
\end{array}
$$

$$
\omega=\boldsymbol{U} \overparen{\boldsymbol{k}+\hat{\omega}}
$$

Wavepacket:

Oliver Bühler, Courant Institute, New York University, 2005

Geometric ray tracing - phases

phase lines
of a wavepacket

$$
\Omega(\boldsymbol{k}, \boldsymbol{x}, t)=\boldsymbol{U} \cdot \boldsymbol{k}+\hat{\omega}
$$

$$
\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} t}=+\frac{\partial \Omega}{\partial \boldsymbol{k}} \quad \text { and } \quad \frac{\mathrm{d} \boldsymbol{k}}{\mathrm{~d} t}=-\frac{\partial \Omega}{\partial \boldsymbol{x}}
$$

Group velocity
$\boldsymbol{u}_{g}=\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t}=\boldsymbol{U}+\hat{\boldsymbol{u}}_{g}$
Ray time derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} t}=\frac{\partial}{\partial t}+\left(\boldsymbol{u}_{g} \cdot \boldsymbol{\nabla}\right)
$$

Simple case $\hat{\omega}(\boldsymbol{k})$:

$$
\frac{\mathrm{d} k_{\underline{i}}}{\mathrm{~d} t}=-\frac{\partial U_{j}}{\partial x_{\underline{i}}} k_{j}
$$

Wavenumber changes due to background inhomogeneity --> refraction

Oliver Bühler, Courant Institute, New York University, 2005

Physical ray tracing - amplitudes

"Mean" is the average over rapidly varying wave phase

$$
\begin{aligned}
h & =\bar{h}+h^{\prime} \\
\overline{h^{\prime}} & =0
\end{aligned}
$$

Wave energy $\quad E=\frac{1}{2} H\left(\overline{\boldsymbol{u}^{\prime 2}}+g \overline{h^{\prime 2}} / H\right)$
Wave action $\quad A=\frac{E}{\hat{\omega}}$

$$
\frac{\partial A}{\partial t}+\boldsymbol{\nabla} \cdot\left(A \boldsymbol{u}_{g}\right)=0
$$

Amplitude prediction from wave action conservation

Another important wave property:

$$
\text { Pseudomomentum } \mathbf{p}=\boldsymbol{k} A
$$

Pseudomomentum changes with wavenumber due to refraction
Oliver Bühler, Courant Institute, New York University, 2005

Understanding wavenumber refraction

Wavenumber

$$
\frac{\mathrm{d} k_{\underline{i}}}{\mathrm{~d} t}=-\frac{\partial U_{j}}{\partial x_{\underline{i}}} k_{j} \text { is equivalent to } \frac{\mathrm{d} \boldsymbol{k}}{\mathrm{~d} t}=-\boldsymbol{\nabla} \boldsymbol{U} \cdot \boldsymbol{k}
$$

Passive tracer
$\phi(\boldsymbol{x}, t)$ such that

$$
\mathrm{D}_{t} \phi=0
$$

$$
D_{t}(\sqrt{v})=-\sqrt{=} \cdot(\sqrt{v})
$$

\boldsymbol{k} and $\boldsymbol{\nabla} \phi$ evolve similarly

Intrinsic difference

$$
\boldsymbol{u}_{g}=\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{~d} t}=\boldsymbol{U}+\hat{\boldsymbol{u}}_{g}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}-\mathrm{D}_{t}=\left(\hat{\boldsymbol{u}}_{g} \cdot \boldsymbol{\nabla}\right)
$$

measures the misfit

Oliver Bühler, Courant Institute, New York University, 2005

Wavepacket exposed to pure strain in analogy with passive advection

Wavepacket is squeezed in x and stretched in y. Action is constant

Wavenumber vector \mathbf{k} is increases in size

Pseudomomentum
p increases as well
Is there a "Batchelor" regime for wave phase?
Oliver Bühler, Courant Institute, New York University, 2005

Not in shallow water...

Answer is no in shallow water with sub-critical steady background flow

$$
\begin{aligned}
\omega & =\boldsymbol{U} \cdot \boldsymbol{k}+\hat{\omega}=\text { const. } \\
\hat{\omega} & =\sqrt{g H}|\boldsymbol{k}|
\end{aligned}
$$

$$
|\boldsymbol{k}| \leq \frac{\omega}{\sqrt{g H}-|\boldsymbol{U}|}
$$

wavenumbers are bounded unless

$$
U^{2}>g H \quad \begin{aligned}
& \text { (geophysically less } \\
& \text { relevant regime) }
\end{aligned}
$$

Same answer for rotating shallow water, but not for 3d flow!

Oliver Bühler, Courant Institute, New York University, 2005

Boussinesq system

(no Coriolis force in talk, but in paper)

Variables

$$
\boldsymbol{x}=(x, y, z) \quad \boldsymbol{u}=(u, v, w)
$$

Incompressible

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}=0
$$

Momentum
 conservation

Stratification

$$
\frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}+\boldsymbol{\nabla} P=\underline{b \widehat{\boldsymbol{z}}} \quad \begin{aligned}
& \text { buoyancy } \\
& \text { acceleration }
\end{aligned}
$$

$$
\frac{\mathrm{D}}{\mathrm{D} t}\left(b+N^{2} z\right)=\frac{\mathrm{D} b}{\mathrm{D} t}+N^{2} w=0
$$

$$
\text { constant value defines } 3 \mathrm{~d}
$$

stratification surfaces

Plane Boussinesq gravity waves

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}=0 \quad \text { implies } \quad \boldsymbol{k} \cdot \boldsymbol{u}^{\prime}=0
$$

Dispersion relation

$$
\hat{\omega}^{2}=N^{2} \frac{k^{2}+l^{2}}{k^{2}+l^{2}+m^{2}}
$$

Frequency is independent of

$$
\kappa=\sqrt{k^{2}+l^{2}+m^{2}}
$$

Wavenumber vector

$$
\boldsymbol{k}=(k, l, m)
$$

Group velocity magnitude

$$
\left|\hat{\boldsymbol{u}}_{g}\right|^{2}=\frac{N^{2}-\hat{\omega}^{2}}{\kappa^{2}}
$$

I) Unbounded wavenumber growth is possible at fixed frequency
2) Group velocity inversely proportional to wavenumber at fixed frequency

Oliver Bühler, Courant Institute, New York University, 2005

Three-dimensional ray tracing

Horizontal background flow

$$
\boldsymbol{U}=(U, V, 0) \quad \text { and } \quad U_{x}+V_{y}=0
$$

Gradient of background flow treated as steady for simplicity

$$
\boldsymbol{\nabla} \boldsymbol{U} \equiv\left(\begin{array}{ccc}
U_{x} & V_{x} & W_{x} \\
U_{y} & V_{y} & W_{y} \\
U_{z} & V_{z} & W_{z}
\end{array}\right)=\left(\begin{array}{ccc}
U_{x} & V_{x} & 0 \\
U_{y} & -U_{x} & 0 \\
U_{z} & V_{z} & 0
\end{array}\right)
$$

$D=U_{x}^{2}+\left(\frac{V_{x}+U_{y}}{2}\right)^{2}-\left(\frac{V_{x}-U_{y}}{2}\right)^{2} \quad \begin{gathered}\text { positive for generic case with open 2d } \\ \text { stream lines in group-velocity frame }\end{gathered}$
Wavenumber evolution decouples into horizontal and vertical components

$$
\begin{aligned}
& \frac{\mathrm{d}_{\mathrm{g}}}{\mathrm{~d} t}\binom{k}{l}=-\left(\begin{array}{cc}
U_{x} & V_{x} \\
U_{y} & -U_{x}
\end{array}\right)\binom{k}{l} \quad \text { and } \frac{\mathrm{d}_{\mathrm{g}}}{\mathrm{~d} t} m=-U_{z} k-V_{z} l \\
& \text { easy 2d sub-problem of advection by } \\
& \text { area-preserving flow }
\end{aligned}
$$

Oliver Bühler, Courant Institute, New York University, 2005

Streamlines in group-velocity frame

Hyperbolic $\quad \mathrm{D}>0$

Parabolic $D=0$

Elliptic $\quad \mathrm{D}<0$

The horizontal wavenumber vector aligns itself with the growing eigenvector, which is perpendicular to the extension axis

Final orientation is independent of initial orientation:

 wavepacket loses memoryOliver Bühler, Courant Institute, New York University, 2005

Growing mode in three dimensions

$$
\begin{gathered}
\boldsymbol{k}_{H}(t) \propto\left(-V_{x}, U_{x}+\sqrt{D}\right) \exp (\sqrt{D} t) \\
m(t)=-\frac{U_{z} k(t)+V_{z} l(t)}{\sqrt{D}}+O(1)
\end{gathered}
$$

Intrinsic group velocity decreases as wavenumber grows; the wavepacket becomes frozen into the flow (Jones 1969, Badulin \& Shrira 1993)

The reinforces the analogy between wave phase and passive tracer behaviour; reasonably to expect exponential straining to persist once it gets started

Wave capture:

Exponentially fast wave breaking scenario without critical layers!

Oliver Bühler, Courant Institute, New York University, 2005

Numerical example

Snapshots taken from numerical simulation of meandering jet stream

Plougonven \& Snyder
GRL, 2005
Oliver Bühler, Courant Institute, New York University, 2005

Theory example: wave capture by blocking dipole

Oliver Bühler, Courant Institute, New York University, 2005

Pseudomomentum surge and mean flow

$\mathbf{p}=\boldsymbol{k} A$
grows exponentially during wave capture (action is conserved, but wavenumber grows)

Standard dissipative wave-mean interaction paradigm: mean-flow momentum + wave pseudomomentum = constant.

Does the exponential pseudomomentum surge lead to a dramatic local mean-flow response ?

No, because the standard paradigm does not hold for horizontal wavepacket refraction...
Need to investigate $O\left(a^{2}\right)$ wave-mean interaction theory with refraction
Oliver Bühler, Courant Institute, New York University, 2005

Wave-mean interaction theory

Slowly varying Lagrangian mean flow with strong stratification is layerwise 2d, layerwise non-divergent, and at $O\left(a^{2}\right)$ is governed by (Bretherton 1969)

$$
\boldsymbol{\nabla} \cdot \bar{u}^{L}=0 \quad \text { and } \quad \bar{w}^{L}=0
$$

Can show that (AM 1978, BM 98, B00, BM05)

$$
\left(\frac{\partial}{\partial t}+\overline{\boldsymbol{u}}^{L} \cdot \boldsymbol{\nabla}\right)\left\{\widehat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times\left[\overline{\boldsymbol{u}}^{L}-\mathbf{p}\right]\right\}=0
$$

(Lagrangian and Eulerian mean flows are equal to leading order for Boussinesq wavepackets, but this version holds more generally)

Hence only the vertical curl of pseudomomentum affects the mean flow

Oliver Bühler, Courant Institute, New York University, 2005

Vertical pseudomomentum curl

horizontal projection area-preserving map

Neglect intrinsic group velocity
$\mathbf{p}=\boldsymbol{k} A=\boldsymbol{\nabla} \theta A$ and therefore
$\widehat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times \mathbf{p}=l A_{x}-k A_{y} \propto$
$=\mathrm{d} A \mathrm{~d} \theta=$ const.
as both A and the wave phase are advected by area-preserving flow

Exponential surge in pseudomomentum but not in its vertical curl

Oliver Bühler, Courant Institute, New York University, 2005

Bretherton's flow (1969)

"children on a slide"
Oliver Bühler, Courant Institute, New York University, 2005

Wave-vortex duality

Wavepacket
Dual vortex dipole

wave pseudomomentum = dual vortex impulsesuggests new thinking of interactions....

Oliver Bühler, Courant Institute, New York University, 2005

Straining of wavepacket and vortices

Figure 1. Left: wavepacket exposed to pure horizontal strain contracting along the x-axis and extending along the y-axis. The wavecrests align with the extension axis and their spacing is decreased, so that the wavenumber vector \boldsymbol{k} points at right angles to the extension axis and grows in magnitude, as suggested by the large arrow. Right: a pair of oppositely signed vortices exposed to same strain. The arrow now indicates the vortex pair's Kelvin impulse.

Wavepacket and vortex dipole are strained in the same way

Oliver Bühler, Courant Institute, New York University, 2005

Pseudomomentum + impulse = conserved

Potential vorticity $\bar{q}^{L}=\overline{\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)^{L}}=\widehat{\boldsymbol{z}} \cdot \boldsymbol{\nabla} \times\left(\overline{\boldsymbol{u}}^{L}-\mathbf{p}_{H}\right)$
GLM theory used here

Impulse

$$
\mathbf{I}(t)=\iiint \mathbf{i}(\boldsymbol{x}, t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \quad \text { where } \quad \begin{array}{r}
\mathbf{i}=(y,-x, 0) \bar{q}^{L} \\
\text { skew linear moment of } \mathrm{PV}
\end{array}
$$

Pseudomomentum

$$
\mathbf{P}_{H} \equiv \iiint \mathbf{p}_{H} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{P}_{H}}{\mathrm{~d} t} & =-\iiint\left(\boldsymbol{\nabla}_{H} \overline{\boldsymbol{u}}^{L}\right) \cdot \mathbf{p}_{H} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
\frac{\text { Refraction terms }}{\mathrm{d} \boldsymbol{I} t} & =\iiint\left(\boldsymbol{\nabla}_{H} \overline{\boldsymbol{u}}^{L}\right) \cdot \mathbf{p}_{H} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z .
\end{aligned}
$$

$$
\mathbf{P}_{H}+\mathbf{I}=\text { constant }
$$

Oliver Bühler, Courant Institute, New York University, 2005

The resolution

Dipole straining increases wavepacket pseudomomentum. Bretherton flow advects vortex dipole and reduces impulse. Both compensate and the sum of $P+I$ is conserved!

Duality and dissipation

Wavepacket
Vortex dipole

Dissipation itself does not accelerate the mean flow!
Oliver Bühler, Courant Institute, New York University, 2005

Towards a new parametrization scheme

Joint work with John Scinocca (CCCma, Univ. Victoria, CA)

1. based on existing columnar parametrization scheme
2. wave dissipation and breaking part unchanged, only nondissipative propagation part is changed
3. requires no new assumptions on gravity wave launch spectrum (have only weak observational constraints)
4. requires horizontal derivatives of model fields, which is a bit non-trivial in operational GCMs because of parallel architecture

Oliver Bühler, Courant Institute, New York University, 2005

The key difference

> Old scheme is based on constant pseudomomentum flux New scheme is based on constant wave action flux pseudomomentum flux(z) = k(z) wave action flux changes in $k(z)$ due to horizontal refraction change the pseudomomentum $f l u x(z)$ and hence produce new mean-flow forces

Oliver Bühler, Courant Institute, New York University, 2005

Concluding image

- Angular prom flue + const, even Who dissipation
Monwlenin dry $*$ masasphric dray
- Wave breaking wo critical loo.
- Typical ray paths: nasty, brutish, short.

Wave action flux replaces
 pseudomomentum
 flux

Refraction leads to wave-mean momentum exchanges without dissipation

Mountain drag does not simply equal wave drag anymore (it never did)

Oliver Bühler, Courant Institute, New York University, 2005

