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New and unexpected results are presented regarding the nonlinear interactions
between a wavepacket and a vortical mean flow, with an eye towards internal wave
dynamics in the atmosphere and oceans and the problem of ‘missing forces’ in
atmospheric gravity-wave parametrizations. The present results centre around a pre-
wave-breaking scenario termed ‘wave capture’, which differs significantly from the
standard such scenarios associated with critical layers or mean density decay with
altitude. We focus on the peculiar wave–mean interactions that accompany wave
capture. Examples of these interactions are presented for layerwise-two-dimensional,
layerwise-non-divergent flows in a three-dimensional Boussinesq system, in the strong-
stratification limit.

The nature of the interactions can be summarized in the phrase ‘wave–vortex
duality’, whose key points are firstly that wavepackets behave in some respects
like vortex pairs, as originally shown in the pioneering work of Bretherton (1969),
and secondly that a collection of interacting wavepackets and vortices satisfies a
conservation theorem for the sum of wave pseudomomentum and vortex impulse,
provided that the impulse is defined appropriately. It must be defined as the rotated
dipole moment of the Lagrangian-mean potential vorticity (PV). This PV differs
crucially from the PV evaluated from the curl of either the Lagrangian-mean or the
Eulerian-mean velocity. The results are established here in the strong-stratification
limit for rotating (quasi-geostrophic) as well as for non-rotating systems. The
concomitant momentum budgets can be expected to be relatively complicated, and
to involve far-field recoil effects in the sense discussed in Bühler & McIntyre (2003).
The results underline the three-way distinction between impulse, pseudomomentum,
and momentum. While momentum involves the total velocity field, impulse and
pseudomomentum involve, in different ways, only the vortical part of the velocity field.

1. Introduction
Recently we reported a new insight into wave-induced mean forces (Bühler &

McIntyre 2003, hereafter BM03). A standard paradigm widely used in atmospheric
modelling says that significant – meaning persistent, cumulative – O(a2) mean forces
induced by waves of amplitude O(a) can arise only when and where the waves are
generated or dissipated. We showed by detailed analysis of an idealized problem that
the standard paradigm is wrong, except for the two-dimensional, translationally or
rotationally invariant, backgrounds assumed by classical non-acceleration theorems.
For three-dimensional backgrounds the paradigm omits significant mean forces not
associated with wave generation or dissipation.
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Inertia-gravity waves

x

z

undulating material 
stratification surfaces 

(isentropes/isopycnals)

surfaces are flat at rest

linear particle trajectories

Internal waves make a significant contribution to atmospheric 
angular-momentum fluxes... convergence yields wave drag

Momentum flux u′w′ < 0 (unlike surface waves)

scale-free dispersion relation

ω̂2 = (N2 − f2)
k2

k2 + m2
+ f2

w′ ∝ exp(i[kx + mz − ω̂t])

f2 ≤ ω̂2 ≤ N2
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Wave breaking
Large-amplitude waves overturn and break nonlinearly, leading to 3d 
turbulence, irreversible mixing, and convergence of wave momentum flux
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Figure 3: Diffusive scheme applied to the unstable buoyancy profile: b(x, z) = 0.3 exp[−((x−
0.5)2 +(z−0.5)2)/0.09] cos[2π(x+z)]. (a) (b) are surface plots of the potential temperature
distribution before and after mixing. (c) and (d) give potential temperature profiles on the
transects x = 0.6 and z = 0.6 respectively. The blue curve is the profile before mixing, and
the green curve is the profile after mixing.

both sides of (21) by b and integrating over the entire of the fluid domain, we have

d

dt

1
2

∫
b2dxdz = −

∫
D[θz]

(
∂b

∂z
+ |∇b|2

)
dxdz < 0 (22)

since by construction D ≡ 0 except where ∂b/∂z < −1. In integrating by parts and dis-
carding boundary contributions, we have made tacit use of the fact that periodic boundary
conditions will be imposed upon b. Physically we expect strong diffusion initially in zones
where θz < 0, but that diffusivity will bleed away with time, leaving patches of uniform
θ (in z if not in x). An example of the application of this diffusive mixing scheme to an
initially unstable density profile is shown in Figure 3. Note that for typical aspect ratios
(ε ≈ 0.1) density is almost conserved at each x-station. At x-stations with a single density
inversion (i.e. interval in which θz < 0) this means that the mixing produces a Maxwell-
type construction, with the density made uniform in the smallest z-interval that contains
the unstable zone, while conserving total fluid mass and giving a continuous final density
distribution (see Figure 3c). The weakness of density diffusion between x-stations means
that density distribution is markedly less smooth on horizontal sections than on vertical
sections (see Figure 3d). This is intuitively appealing: although the breaking inertiogravity

9

before after

Marcus Roper, 
GFD report 2005
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The classical gravity wave drag picture

Ray-tracing theory for steady 
wavetrain as function of altitude z

Horizontal mean-flow inhomogeneity 
is ignored (“co-dimension 1”)
 
Vertical flux of horizontal 
pseudomomentum equals vertical flux 
of horizontal mean momentum

Vertical flux of horizontal 
pseudomomentum is constant unless 
waves are dissipating or breaking

This results in the classical force 
balance: there is an   
equal-and-opposite action at a 
distance between mountain drag and 
wave drag
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Wave drag on a rotating planet
“gyroscopic pumping”

Retrograde force 
-> poleward 

motion

All Rossby waves
Winter gravity 

waves

Prograde force 
-> equatorward

motion

Summer gravity 
waves

Convergence of angular-momentum flux acts as 
effective force on zonal-mean flow

Retrograde force
if 

Prograde force
if 

k/ω̂ > 0k/ω̂ < 0
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Topographic waves have zero absolute  frequency:

Vertical propagation of topographic
Rossby and gravity waves

ω = ω̂ + Uk

ω = 0

f2 ≤ ω̂2 ≤ N2GW ω̂ ≤ 0RW Absolute frequency:

Topographic waves are 
retrograde if U>0 near 

surface

Vertical critical layer occurs 
where shear pushes intrinsic 

frequency towards lower 
limit

Summer zero-wind surface  
acts to filter topographic 

waves
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Wave-driven global circulation

Fermi review,
ME McIntyre 1993

Summer Winter

Retrograde stratospheric Rossby-
wave drag: 
Brewer--Dobson circulation from 
equator to pole

Prograde and retrograde 
mesospheric gravity and Rossby-
wave drag: 
Murgatroyd--Singleton circulation 
from summer to winter pole 

Summer polar mesosphere is 
sunniest place on Earth
Also the coldest (-163o Celsius)
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Rough guide to gravity wave scales

Gravity wave scales
(excludes breaking details)

Model resolution
(grid size * 10)

Horizontal 
scale

10 - 1000 
km 1000 km

Vertical 
scale 0.1 - 10 km 10 km

Time scale 10 mins - 1 
day 200 mins

To resolve a scale need 10 grid points across it

GWs parametrized because need a factor 100 higher resolution.  
How long will that take?
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Computer power and resolution increase

Moore’s law: computing power doubles every 18 months.

To reduce grid size by a factor 10 requires 10x10x10x10=10000 times 
more computing power in a three-dimensional time-dependent simulation
(grid points x time steps with CFL condition)

2N = 104 N log 2 = 4 log 10 N = 13.3

T = N ∗ 18 months = 19.95 years

To increase resolution by a linear factor of 10 takes 20 years 
Moore is not enough..........

Let N by number of necessary doubling events:
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Multiscale-based career advice

For gravity waves need factor 100

This will take 40 years, ok for a career!
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Columnar gravity wave parametrization

Parametrization is applied 
independently in each vertical model 
column

Time-dependence is ignored

Vertical wave propagation and 
vertical mean-flow derivatives are 
taken into account

Horizontal wave propagation and 
horizontal mean-flow derivatives are 
ignored: no refraction by mean flow

Many effects are neglected.  Which 
are the important ones?  

Some neglected effects are known to 
be important. 
For instance, intermittency. 

Columnar gravity wave parametrization

Parametrization is applied 

independently in each vertical model 

column

Time-dependence is ignored

Vertical wave propagation and 

vertical mean-flow derivatives are 

taken into account

Horizontal wave propagation and 

horizontal mean-flow derivatives are 

ignored: no refraction by mean flow

Many effects are neglected.  Which 

are the important ones?  

Some neglected effects are known to 

be important. 

For instance, intermittency. 
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Known unknown: intermittency 
1416 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 4. Wave packets due to hypothetical intermittent wave source at y0 ! 0. (left) Steady, nonintermittent
source. (middle) Intermittent source with " ! 50%. (right) Intermittent source with " ! 25%. The wave
amplitude increases by a factor of from wave to wave, keeping the expected wave energy flux the same!2
in all three cases.

rameterized flux E{F}. So all three wave trains are
mapped onto the first wave train for the purpose of
parameterization with equal expected flux.
This is despite the fact that the wave amplitudes are

markedly different in the different cases. This is im-
portant for nonlinear effects, such as the amplitude-de-
pendent dissipative processes to do with wave saturation
by instability or breaking. Clearly, the individual wave
packets in the second and third cases are more likely to
break earlier because of their larger amplitudes. This
means that the likely profiles of flux convergence due
to dissipation are going to be different, which is im-
portant for applications such as vertical transport of mo-
mentum (Alexander and Dunkerton 1999).
A more general random process E0(t) may take many

different values, and it is not obvious how to choose
‘‘the’’ source spectrum value that characterizes the ac-
tive source and hence the wave packet amplitudes. Bas-
ing a probability distribution for E0(t) on the expected
value and the variance of E0(t) could be a useful inter-
mediate step in this context. For instance, knowing the
values of E00 and B(0) allows computing an intermit-
tency parameter " now defined via (24)–(25) as

2E00" ! . (27)
2E # B(0)00

So this equation could be used for an arbitrary source
E0(t) in order to define an intermittency parameter "
that approximates the source with an on–off source hav-

ing the same expected value and variance. This corre-
sponds to a source spectrum defined as

1 B(0)
E ! E ! E 1 # . (28)s 00 00 2" #" E00

Modeling of wave amplitudes and of nonlinear wave
saturation could then follow based on this approxima-
tion as if the source were of the simple on–off type.

b. Observation

Determining the statistics of E0(t) requires suitable
observations to be made either in field data or, if fea-
sible, in high-resolution numerical simulations of the
physical source processes. Because of wave propaga-
tion, there are some interesting answers to the question
of how quickly averaged measurements converge to
their expected value. By definition, a single observation
of E(y, t) ! E0(t $ y/% g) at some y and t has expected
value E00 and variance B(0). Dividing B(0) by gives2E 00

the normalized variance. Now, repeating such an ob-
servation M times (and averaging the results) under the
assumption that all observations are mutually uncorre-
lated reduces the variance to B(0)/M. For example, this
means that for the on–off model described earlier the
normalized root-mean-square error after M such obser-
vations is equal to

Intermittency increases wave 
amplitudes at fixed mean 
wave activity flux

Wave breaking is highly 
amplitude-dependent

“Intermittency factor” 
adjusted to increase 
predicted amplitudes to 
obtain breaking

Better to model wave 
generation as stochastic 
process (future work)

Bühler, 2003 JAS
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Unknown unknowns in parametrization

Theoretical 
constraints

almost none; 
plenty of ideas

Computational 
constraints

Must be in-column 
& inexpensive

Observational 
constraints

Must not require 
more information

Requirements for better parametrization

Three-dimensional refraction is a candidate
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Claim: singular geometric perturbation

Key to strong effects:
ignoring the horizontal 

refraction is a singular 
perturbation

3d ray tracing admits 
exponentially fast wave 
breaking without critical 
layers (Jones 1969, Badulin & 
Shira 1993).  Wave capture.

3d wave-mean interactions 
exhibit new features such as 
remote recoil and missing 
forces (Bühler & McIntyre 
2003)   Wave-vortex duality.

What are the new effects?
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An adventure in ray tracing

Wavepackets along 
group-velocity ray

Amplitude along non-intersecting 
rays is determined by 

wave-action conservation

Wavepackets are the  fundamental 
solutions of ray tracing

Wavetrains can be built from 
wavepackets
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Warm-up example: shallow water system

Momentum
conservation

Mass
 continuity

Variables
x = (x, y) u = (u, v)

depth h

Dh

Dt
+ h∇ · u = 0

Du

Dt
+ g∇h = 0

h

Single layer of hydrostatic 
incompressible fluid

D
Dt

=
∂

∂t
+ (u · ∇)
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Linear small-scale wavepacket

h = H + h′ + O(a2)

Slowly varying wavetrain h′ = Ha(µx, µt) exp(iθ), µ! 1

k = ∇θ, ω = −θt , Dispersion relation

phase lines

ω̂2 = gH|k|2background flow, if any

a ! 1

ω = U · k + ω̂

Wavepacket:

Dtu
′ + g∇h′ = 0

Dth
′ + H∇ · u′ = 0

u = U + u′ + O(a2) Dt =
∂

∂t
+ (U · ∇)

(Example in shallow water)
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Geometric ray tracing - phases

phase lines
of a wavepacket

Ω(k,x, t) = U · k + ω̂

dx

dt
= +

∂Ω
∂k

and
dk

dt
= −∂Ω

∂x

ug =
dx

dt
= U + ûg

d
dt

=
∂

∂t
+ (ug · ∇)

Ray time derivative

Group velocity

dki

dt
= −∂Uj

∂xi
kj

Simple case ω̂(k):
Wavenumber changes
due to background 

inhomogeneity
--> refraction
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Physical ray tracing - amplitudes

Wave energy

“Mean” is the average
 over rapidly varying 

wave phase

A =
E

ω̂

p = k APseudomomentum

Wave action

Amplitude prediction from
wave action conservation

Another important
wave property:

Pseudomomentum changes with wavenumber 
due to refraction

∂A

∂t
+ ∇ · (Aug) = 0

h = h + h′

h′ = 0

E =
1
2

H
(
u′2 + gh′2/H

)
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Understanding wavenumber refraction 

dki

dt
= −∂Uj

∂xi
kj

2 Bühler & McIntyre

1. Ray tracing vs. passive tracer advection
**phase dynamics and advection component discussion **order of magnitude argument

in ray-tracing equations **order of magnitude of growth rate **count the ways standard
wisdom is challenged: turned, **amplified,evaporated pmom **diabatic heating GLM
disclaimer

The standard ray-tracing equations govern the phase and amplitude evolution of a
slowly varying linear wavetrain with slowly varying amplitude a(x, t) and rapidly varying
phase function θ(x, t) such that a typical wave field is given by u′ = u′

0a(x, t) exp(iθ),
with real parts understood. Defining the local wavenumber vector k and frequency ω via

k ≡ +∇θ, ω ≡ −θt (1.1)

the evolution equations for x = (x, y, z) and k = (k, l,m) as functions of time along
group velocity rays are given in terms of the absolute frequency function

Ω(k,x, t) = U · k + ω̂ (1.2)

by Hamilton’s equations

dx

dt
= +

∂Ω
∂k

and
dk

dt
= −∂Ω

∂x
. (1.3)

Here U = (U, V,W ) is the O(1) background velocity field on which the O(a) linear
wavetrain propagates and ω̂ is the intrinsic frequency of the wavetrain, i.e. the wave
frequency after Doppler-shifting to a local frame moving with U . In general, both ω̂ and
U may depend slowly on x and t whilst ω̂ depends on k as well. The local group velocity
ug = (ug, vg, wg) is defined as

ug =
dx

dt
= U + ûg, (1.4)

where the intrinsic group velocity ûg ≡ ∂ω̂/∂k. Clearly, ûg the group velocity in excess
of the advection by the background flow and the time derivative along a ray is equivalent
to the operator

d
dt
≡ ∂

∂t
+ (ug · ∇) =

∂

∂t
+ ((U + ûg) · ∇) (1.5)

acting on slowly varying functions of (x, t).
For simplicity in what follows we will now assume that ω̂ depends on k only, i.e. the

explicit dependence of Ω on x and t is contained entirely in the background flow U(x, t).
Dropping this simplifying assumption if needed is straightforward. The evolution equation
for the wavenumber vector k then becomes

dk

dt
= −∇U · k, (1.6)

where summation is understood and k contracts with U on the right-hand side. This
equation describes the instantaneous change in k = ∇θ due to mean-flow refraction, i.e.
due to the differential advection of the phase lines θ =const. by the background flow
U . This is similar to the evolution equation for the gradient of a passive scalar φ(x, t)
advected by U , i.e.

Dtφ ≡
(

∂

∂t
+ (U · ∇)

)
φ = 0 ⇒ Dt (∇φ) = −∇U · (∇φ). (1.7)

The difference is, of course, that the time derivative along a ray differs from the time

Wave capture 3

derivative following a particle:

d
dt
−Dt = (ûg · ∇). (1.8)

So k behaves like the gradient of a passive tracer only to the extent that the difference
between these two time derivatives does not matter. This indicates that under suitable
circumstances the well-studied properties of passive advection can be relevant to disper-
sive wave dynamics. For instance, in the passive advection case it is well known (**) that
|∇φ| can grow exponentially in time (on average) in the Batchelor regime, i.e. if there
is a scale separation the length scale of the advecting flow and the length scale of φ.
Could the same be true for the evolution of k, given that the relevant scale separation is
already implied in the slowly varying wavetrain assumption? This is the basic question
investigated in this paper, and the answer will be crucially dependent on the behaviour
of û as k becomes large. For instance, if |û| decreases as |k| increases (as is the case for
a number of geophysically interesting waves), then the analogy between ray-tracing and
passive advection will become better and better if k is beginning to grow exponentially,
so k can be expected to behave more and more like the gradient of a passively advected
tracer.†

2. Wavenumber straining details
We will study the topic of this paper first in a fairly specific and simplified setting,

whilst making more general comments later**. For large-scale atmospheric flows the most
relevant type of background velocity field is non-divergent and has negligible vertical
component (refs**), i.e.

U = (U, V, 0) and Ux + Vy = 0. (2.1)

The velocity gradient is then

∇U =




Ux Vx 0
Uy Vy 0
Uz Vz 0



 =




α β + γ 0

β − γ −α 0
δ µ 0



 , (2.2)

where {α, β, γ, δ, µ} are functions of time along the ray. In the simplest setting, however,
we neglect the time-dependence of these parameters. This corresponds to a linear layer-
wise non-divergent shear/strain flow U = U0 + αx + (β − γ)y + δz and V = V0 + (β +
γ)x−αy+µz, where (x, y, z) are measured from the starting location of the ray at t = 0.
Notably, even in this simplest case U is not constant along the ray, though ∇U is.

The advantage of (2.2) is that in (1.6) the evolution of the horizontal wavenumber
vector kH = (k, l) decouples from that of the vertical wavenumber m, i.e.

d
dt

(
k
l

)
= −

(
α β + γ

β − γ −α

) (
k
l

)
and

dm

dt
= −δk − µl (2.3)

can be studied in sequence. The evolution of kH is related to the evolution of a material
point moving with the local velocity field (U − U0, V − V0), but with an important
difference. The curl Vx−Uy = 2γ acts equally on both objects: it rotates their components
by γ radians per unit time around the z-axis. However, the strain matrix, which is
determined by Ux = −Vy = α and Uy+Vx = 2β, acts oppositely on (k, l) and the material
point, i.e. the wavenumber vector behaves like the material point with the direction of

† The wave phase θ is not passively advected of course, but moves with the local phase velocity
kω/|k|2. However, for the evolution of k = ∇θ only the gradient of U matters.
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is equivalent to
dk

dt
= −∇U · k

Passive tracer

such that

k and ∇φ evolve similarly

Intrinsic difference

measures the misfit

Dtφ = 0

ug =
dx

dt
= U + ûg

(i.e. wave phase and passive tracer evolve similarly)

Wavenumber
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Wavepacket exposed to pure strain in 
analogy with passive advectionWave capture and wave–vortex duality 3

Figure 1. Wavepacket exposed to pure horizontal strain contracting along the x-axis and ex-
tending along the y-axis. The wavecrests align with the extension axis and their spacing is
decreased, so that the wavenumber vector k points at right angles to the extension axis and
grows in magnitude, as suggested by the large arrow.

wavepacket and not just when it is generated and dissipated. These forces and momentum
fluxes are anything but local. In fact, the key to understanding the situation is the same
as the key to understanding what happens to a 2-dimensional vortex pair being pulled
apart by pure strain. Here PH is replaced by the Kelvin hydrodynamical impulse I of
the vortex pair, namely the first moment of the vorticity distribution rotated through a
right angle, i.e. the dipole moment; see (5.3) below. I changes under strain in a manner
closely analogous to the way PH changes for the wavepacket, accompanied by essentially
the same remote-recoil effects.

In developing a general theoretical framework we shall find it convenient, therefore,
to speak of a generalized vortex dynamics involving a wave–vortex duality, implying a
nontrivial extension of standard vortex dynamics for strongly stratified, layerwise-2-dim-
ensional flow. A central result of this paper is that when vortices and wavepackets are both
present they satisfy a conservation theorem for the sum of the PH and I contributions.
Thus, for instance, if a wavepacket is being strained by the velocity field of a nearby
vortex pair, then the resulting changes in its PH are accompanied by compensating
changes in I for the vortex pair. An example of this will be analysed in detail. One may
regard the situation of figure 1 as a formal limiting case in which the background strain is
produced by suitably distributed vortices at infinity. The changing PH of the wavepacket
is accompanied by a remote recoil on the infinitely distant vortices, changing their total
I in compensation.

The wave–vortex duality just indicated stems from the relation between P and the
Kelvin circulation for a general material circuit — see (6.3) below — more specifically the
relation between PH and the Kelvin circulation for material circuits lying on stratification
surfaces. Those relations are most clearly exhibited by the GLM theory, via its exact
definitions of P and PH (Andrews & McIntyre 1978a, hereafter AM78a; also Gjaja & Holm
1996, Bühler 2000, hereafter B00), which directly express the contributions to the Kelvin
circulation from correlations between wave-induced velocity fluctuations and undulations
of the material circuit. In the case of large-scale atmosphere–ocean dynamics the effective
forces associated with PH are therefore related to distributions of Rossby–Ertel potential
vorticity (PV), and to the balanced, vortical part of the velocity field derivable from
PV inversion (e.g. Hoskins et al. 1985, 1987), which to a first approximation is just the
layerwise-nondivergent part. It is important to note, therefore, that there is no reason to
expect there to be such a thing as a PH -associated force straightforwardly acting on the

Wavepacket is 
squeezed in x and 

stretched in y.
Action is constant

Wavenumber 
vector k is 

increases in size

Pseudomomentum 
p increases as well

Is there a “Batchelor” regime for wave phase?

p = k A
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Not in shallow water...

Answer is no in shallow water with sub-critical steady background flow

ω = U · k + ω̂ = const.

Same answer for rotating shallow water, but not for 3d flow!

wavenumbers are  bounded unless 

U2 > gH (geophysically less 
relevant regime)

ω̂ =
√

gH|k|
|k| ≤ ω√

gH − |U |
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Boussinesq system

Momentum
conservation

Incompressible

Variables x = (x, y, z) u = (u, v, w)

∇ · u = 0

Du

Dt
+ ∇P = bẑ

Stratification

buoyancy 
acceleration

D
Dt

(b + N2z) =
Db

Dt
+ N2w = 0

constant value defines 3d 
stratification surfaces

(no Coriolis force in talk, but in paper)
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Plane Boussinesq gravity waves

∇ · u = 0 implies k · u′ = 0

Dispersion relation

ω̂2 = N2 k2 + l2

k2 + l2 + m2
k = (k, l,m)

Wavenumber vector

|ûg|2 =
N2 − ω̂2

κ2

Group velocity magnitude

1) Unbounded wavenumber growth is possible at fixed frequency
2) Group velocity inversely proportional to wavenumber at fixed frequency

κ =
√

k2 + l2 + m2

Frequency is independent of 
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Three-dimensional ray tracing

Wave capture 3

derivative following a particle:

d
dt
−Dt = (ûg · ∇). (1.8)

So k behaves like the gradient of a passive tracer only to the extent that the difference
between these two time derivatives does not matter. This indicates that under suitable
circumstances the well-studied properties of passive advection can be relevant to disper-
sive wave dynamics. For instance, in the passive advection case it is well known (**) that
|∇φ| can grow exponentially in time (on average) in the Batchelor regime, i.e. if there
is a scale separation the length scale of the advecting flow and the length scale of φ.
Could the same be true for the evolution of k, given that the relevant scale separation is
already implied in the slowly varying wavetrain assumption? This is the basic question
investigated in this paper, and the answer will be crucially dependent on the behaviour
of û as k becomes large. For instance, if |û| decreases as |k| increases (as is the case for
a number of geophysically interesting waves), then the analogy between ray-tracing and
passive advection will become better and better if k is beginning to grow exponentially,
so k can be expected to behave more and more like the gradient of a passively advected
tracer.†

2. Wavenumber straining details
We will study the topic of this paper first in a fairly specific and simplified setting,

whilst making more general comments later**. For large-scale atmospheric flows the most
relevant type of background velocity field is non-divergent and has negligible vertical
component (refs**), i.e.

U = (U, V, 0) and Ux + Vy = 0. (2.1)

The velocity gradient is then

∇U =




Ux Vx 0
Uy Vy 0
Uz Vz 0



 =




α β + γ 0

β − γ −α 0
δ µ 0



 , (2.2)

where {α, β, γ, δ, µ} are functions of time along the ray. In the simplest setting, however,
we neglect the time-dependence of these parameters. This corresponds to a linear layer-
wise non-divergent shear/strain flow U = U0 + αx + (β − γ)y + δz and V = V0 + (β +
γ)x−αy+µz, where (x, y, z) are measured from the starting location of the ray at t = 0.
Notably, even in this simplest case U is not constant along the ray, though ∇U is.

The advantage of (2.2) is that in (1.6) the evolution of the horizontal wavenumber
vector kH = (k, l) decouples from that of the vertical wavenumber m, i.e.

d
dt

(
k
l

)
= −

(
α β + γ

β − γ −α

) (
k
l

)
and

dm

dt
= −δk − µl (2.3)

can be studied in sequence. The evolution of kH is related to the evolution of a material
point moving with the local velocity field (U − U0, V − V0), but with an important
difference. The curl Vx−Uy = 2γ acts equally on both objects: it rotates their components
by γ radians per unit time around the z-axis. However, the strain matrix, which is
determined by Ux = −Vy = α and Uy+Vx = 2β, acts oppositely on (k, l) and the material
point, i.e. the wavenumber vector behaves like the material point with the direction of

† The wave phase θ is not passively advected of course, but moves with the local phase velocity
kω/|k|2. However, for the evolution of k = ∇θ only the gradient of U matters.

Horizontal background flow

Gradient of background flow treated as steady for simplicity

Wavenumber evolution decouples into horizontal and vertical components

easy 2d sub-problem of advection by 
area-preserving flow

positive for generic case with open 2d 
stream lines in group-velocity frame
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3. Wave capture for internal waves
Internal inertia–gravity waves are susceptible to wave capture (J69, BS93) because of

the form of their intrinsic dispersion relation,

ω̂2 = f2 + (N2 − f2)
k2

H

κ2
, κ2 = k2

H + m2, k2
H = k2 + l2 , (3.1)

alternatively k2
H

m2
=

ω̂2 − f2

N2 − ω̂2
, (3.2)

where f > 0 is the Coriolis parameter and N > 0 the buoyancy frequency, both assumed
constant. Prandtl’s ratio f/N is typically small in most of the atmosphere, roughly
10−2, and more variable but still usually well below unity in the oceans. The Boussinesq
approximation, well justified for large m2, has been made. We see that ω̂ depends only
on the ratio kH/m of horizontal to vertical wavenumber, in turn making it clear on
dimensional grounds that the intrinsic group velocity ĉg = ∂ω̂/∂k must be inversely
proportional to κ for fixed ω̂. Explicitly, the components of ĉg are

(ûg, v̂g) =
(k, l)
kH

N2 − ω̂2

ω̂κ

√
ω̂2 − f2

N2 − f2 and ŵg = −sgn(m)
ω̂2 − f2

ω̂κ

√
N2 − ω̂2

N2 − f2 , (3.3)

so that
|ĉg|2 =

(N2 − ω̂2)(ω̂2 − f2)
ω̂2κ2

, (3.4)

confirming the inverse proportionality of ĉg to κ and the possibility of wave capture.
With U of the form (2.4), the background velocity gradient tensor is

∇U ≡




Ux Vx Wx

Uy Vy Wy

Uz Vz Wz



 =




Ux Vx 0
Uy −Ux 0
Uz Vz 0



 (3.5)

say, where suffixes denote partial derivatives and where, for ray theory to be consistently
applicable, we require large Richardson number,

Ri ≡ N2/(U2
z + V 2

z ) # 1 . (3.6)

Notice that the evolution of the horizontal wavenumber vector kH = (k, l) decouples
from that of the vertical wavenumber m. Thus (2.7) splits into the two subsystems

dg

dt

(
k
l

)
= −

(
Ux Vx

Uy −Ux

) (
k
l

)
and

dg

dt
m = −Uzk − Vzl , (3.7)

which can be studied in sequence.
Generically, Ux etc. are functions of time along the ray. For the sake of simplicity, we

now neglect this time-dependence. This is a severe simplification and we hope to report
later on work that goes beyond it, following the Haynes & Anglade work already cited.
Here we restrict ourselves to a locally steady linear flow U = U0 + Uxx + Uyy + Uzz and
V = V0 +Vxx−Uxy +Vzz, where (x, y, z) are measured from the starting location of the
ray at t = 0, and Ux etc. are all taken to be constant.

The evolution of kH may be contrasted with the evolution of a material line segment
initially coincident with kH , so that one can imagine the tip of the line segment moving
with the local velocity field (U−U0, V −V0), relative to the starting location x = (0, 0, 0).
The curl Vx−Uy acts equally on both objects: it rotates their components by (Vx−Uy)/2
radians per unit time around the z-axis. However, the layerwise-irrotational strain flow,
which is determined by Ux = −Vy and Uy + Vx, acts oppositely on kH and the line
segment: the tip of the kH vector behaves like the tip of the line segment but with the
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Hyperbolic    D>0 Parabolic    D=0 Elliptic    D<0 

Figure 2. Generic contours of horizontal stream function ψ = −αxy + 0.5γ(x2 + y2) with
positive α and γ in principal strain coordinates such that Vx + Uy = 0, D = α2 − γ2.
(For nonzero Vx + Uy and Ux such coordinates are obtained by a rotation through an angle
0.5 arctan((Vx + Uy)/(2Ux)).) Also indicated are captured wavepackets at the orientation of the
growing eigenmode in the first two cases and in that of maximal transient amplification in the
third, elliptic case. The large arrows indicate kH . Left: a hyperbolic case (γ = 0.5α) similar to
that in figure 1 (in which γ = 0). If γ > 0 then the axis of extension is turned counterclockwise
by 0.5 arcsin(γ/α) whilst the axis of contraction is turned clockwise by the same angle. With
increasing γ the strain axes close like a pair of scissors. The advected wavecrests align with the
extension axis; and the growing horizontal wavenumber vector kH , which is always perpendic-
ular to the crests, becomes perpendicular to the extension axis. Middle: the scissors shut in
the parabolic or simple shear case γ = α. Right: an elliptic case (γ = 1.5α). The ellipses have
aspect ratio

p
(γ + α)/(γ − α), which equals the maximum transient amplification factor for

|kH(t)|.

sign of the irrotational strain reversed. This is a consequence of k being the gradient of
a scalar, Θ; in modern geometric language, k is a 1-form rather than a 1-vector.

Most important for our purposes is the long-time behaviour of kH(t), which is governed
by the exponential stretching rates given by the matrix eigenvalues ±

√
D, where D is

the determinant U2
x + VxUy, i.e.

D = U2
x +

(
Vx + Uy

2

)2

−
(

Vx − Uy

2

)2

. (3.8)

Note that a nonzero curl always diminishes the stretching rate. As illustrated in figure 2a,
if D > 0 then the streamlines are hyperbolic and there is a wavenumber eigenmode that
grows exponentially in time (J69) with stretching rate

√
D. The growing eigenmode is ex-

cited by almost all initial conditions; asymptotically kH(t) ∝ (−Vx, Ux+
√

D) exp(
√

D t).
This is the case of wave capture.

If D = 0 (figure 2b) then the flow is a parallel shear flow with a linearly growing
wavenumber, such that asymptotically kH(t) ∝ (−Vx, Ux) |Vx − Uy| t, i.e. classical
critical-layer behaviour. If D < 0 (figure 2c) then the streamlines are closed ellipses,
implying that the wavenumber evolution is bounded, though temporary amplification
can still occur, up to a factor equal to the aspect ratio of the ellipse. For D ! 0 and
for almost all initial kH(0), the asymptotic orientation and growth rate of kH depend
solely on ∇U . In other words, we have a robust behaviour in which the wavenumber
vector of a captured wavepacket forgets about the initial conditions at large time, and
asymptotically points in a direction determined by the local velocity gradient alone.

We now consider the evolution of the vertical wavenumber m in the case D > 0, which
features exponential growth of kH and therefore κ, with stretching rate

√
D. Turning

to (3.7b) we see that m will also exhibit exponential growth at large time, unless it so
happens that the right-hand side of (3.7b) is zero for the growing eigenmode in horizontal
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 Streamlines in group-velocity frame
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Figure 2. Generic contours of horizontal stream function ψ = −αxy + 0.5γ(x2 + y2) with
positive α and γ in principal strain coordinates such that Vx + Uy = 0, D = α2 − γ2.
(For nonzero Vx + Uy and Ux such coordinates are obtained by a rotation through an angle
0.5 arctan((Vx + Uy)/(2Ux)).) Also indicated are captured wavepackets at the orientation of the
growing eigenmode in the first two cases and in that of maximal transient amplification in the
third, elliptic case. The large arrows indicate kH . Left: a hyperbolic case (γ = 0.5α) similar to
that in figure 1 (in which γ = 0). If γ > 0 then the axis of extension is turned counterclockwise
by 0.5 arcsin(γ/α) whilst the axis of contraction is turned clockwise by the same angle. With
increasing γ the strain axes close like a pair of scissors. The advected wavecrests align with the
extension axis; and the growing horizontal wavenumber vector kH , which is always perpendic-
ular to the crests, becomes perpendicular to the extension axis. Middle: the scissors shut in
the parabolic or simple shear case γ = α. Right: an elliptic case (γ = 1.5α). The ellipses have
aspect ratio

p
(γ + α)/(γ − α), which equals the maximum transient amplification factor for

|kH(t)|.

sign of the irrotational strain reversed. This is a consequence of k being the gradient of
a scalar, Θ; in modern geometric language, k is a 1-form rather than a 1-vector.

Most important for our purposes is the long-time behaviour of kH(t), which is governed
by the exponential stretching rates given by the matrix eigenvalues ±

√
D, where D is

the determinant U2
x + VxUy, i.e.

D = U2
x +

(
Vx + Uy

2

)2

−
(

Vx − Uy

2

)2

. (3.8)

Note that a nonzero curl always diminishes the stretching rate. As illustrated in figure 2a,
if D > 0 then the streamlines are hyperbolic and there is a wavenumber eigenmode that
grows exponentially in time (J69) with stretching rate

√
D. The growing eigenmode is ex-

cited by almost all initial conditions; asymptotically kH(t) ∝ (−Vx, Ux+
√

D) exp(
√

D t).
This is the case of wave capture.

If D = 0 (figure 2b) then the flow is a parallel shear flow with a linearly growing
wavenumber, such that asymptotically kH(t) ∝ (−Vx, Ux) |Vx − Uy| t, i.e. classical
critical-layer behaviour. If D < 0 (figure 2c) then the streamlines are closed ellipses,
implying that the wavenumber evolution is bounded, though temporary amplification
can still occur, up to a factor equal to the aspect ratio of the ellipse. For D ! 0 and
for almost all initial kH(0), the asymptotic orientation and growth rate of kH depend
solely on ∇U . In other words, we have a robust behaviour in which the wavenumber
vector of a captured wavepacket forgets about the initial conditions at large time, and
asymptotically points in a direction determined by the local velocity gradient alone.

We now consider the evolution of the vertical wavenumber m in the case D > 0, which
features exponential growth of kH and therefore κ, with stretching rate

√
D. Turning

to (3.7b) we see that m will also exhibit exponential growth at large time, unless it so
happens that the right-hand side of (3.7b) is zero for the growing eigenmode in horizontal

The horizontal wavenumber vector aligns itself with the growing 
eigenvector, which is  perpendicular to the extension axis 

Final orientation is independent of initial orientation: 
wavepacket loses memory
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Growing mode in three dimensions
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wavenumber, implying zero vertical shear in that direction. Specifically, at large time

m(t) = −Uzk(t) + Vzl(t)√
D

+ O(1) , (3.9)

where k(t) and l(t) correspond to the growing eigenmode, kH ≡ (k, l) ∝ (−Vx, Ux +√
D) exp(

√
D t). For a captured wavepacket we therefore have the scaling relation

|kH/m| ∼ H/L (3.10)

in order of magnitude, if H,L are vertical and horizontal length scales characteristic of
the U field. In the real atmosphere we typically have H/L ∼ f/N . If for the sake of
argument we take |kH/m| = H/L = f/N precisely, in the wave-capture limit, then from
(3.2)

ω̂(t)−2 → 1
2

(
f−2 + N−2

)
; hence ω̂(t)2 → 2f2 (3.11)

if we further approximate using N2 ' f2. It is noteworthy that values of ω̂ close to f
appear to be commonplace in the oceans and the atmosphere (e.g. Garrett and Munk
1975, Polzin 2004, Fritts & Alexander 2003, & refs.), where for long data records the
observed wave energy spectrum typically peaks at or near f , so ubiquitous wave capture
would not, of itself, greatly distort the frequency spectrum.

It may be anticipated that the robustness of the wave-capture scenario will persist when
the neglected time dependence of the mean-flow gradient ∇U along rays is restored and
taken into account. In virtue of the passive-tracer analogy and the results of Haynes &
Anglade (1997), we may reasonably hypothesize that the exponential straining of the
wavenumber vector components will typically be slowed down but not eradicated — that
is, capture will typically be delayed but not prevented — and that the scaling relation
(3.10) will tend to persist.

4. Wave amplitude evolution
Before turning to the nonlinear mean-flow response and recoil effects we need to con-

sider the amplitude evolution during wave capture. We show that the exponentially-
increasing amplitudes rapidly overtake any reasonable wave-breaking thresholds.

The wave amplitude a along non-intersecting rays is governed by the standard ray-
theoretic equation for wave action A per unit mass at O(a2) (e.g. Bretherton & Garrett
1968; Whitham 1974), which for the Boussinesq system is

∂A

∂t
+ ∇ · (Acg) =

u′ · F ′

ω̂
⇔ dgA

dt
+ A∇ · cg =

u′ · F ′

ω̂
. (4.1)

Here A = E/ω̂ , and

E = 1
2

(
|u′|2 + b′2/N2

)
= |u′|2

(
1 +

f2

ω̂2

)−1

, (4.2)

the Eulerian-mean wave energy per unit mass, the overbars denoting averages over a
wave period at constant x . The fluctuating body-force field F ′ will be taken to be zero,
making A a conserved density, except in cases of slow wave generation or dissipation
(§9), where F ′ has magnitude O(aµ) with µ ) 1 characterizing slow variation. The
other symbols are u′ = (u′, v′, w′), the O(a) wave velocity and b′, the O(a) disturbance
buoyancy acceleration.

Now the non-dimensional amplitude a of a locally plane wave can conveniently be
defined as the maximum vertical shear of the horizontal wave velocity u′ parallel to
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Figure 2. Generic contours of horizontal stream function ψ = −αxy + 0.5γ(x2 + y2) with
positive α and γ in principal strain coordinates such that Vx + Uy = 0, D = α2 − γ2.
(For nonzero Vx + Uy and Ux such coordinates are obtained by a rotation through an angle
0.5 arctan((Vx + Uy)/(2Ux)).) Also indicated are captured wavepackets at the orientation of the
growing eigenmode in the first two cases and in that of maximal transient amplification in the
third, elliptic case. The large arrows indicate kH . Left: a hyperbolic case (γ = 0.5α) similar to
that in figure 1 (in which γ = 0). If γ > 0 then the axis of extension is turned counterclockwise
by 0.5 arcsin(γ/α) whilst the axis of contraction is turned clockwise by the same angle. With
increasing γ the strain axes close like a pair of scissors. The advected wavecrests align with the
extension axis; and the growing horizontal wavenumber vector kH , which is always perpendic-
ular to the crests, becomes perpendicular to the extension axis. Middle: the scissors shut in
the parabolic or simple shear case γ = α. Right: an elliptic case (γ = 1.5α). The ellipses have
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If D = 0 (figure 2b) then the flow is a parallel shear flow with a linearly growing
wavenumber, such that asymptotically kH(t) ∝ (−Vx, Ux) |Vx − Uy| t, i.e. classical
critical-layer behaviour. If D < 0 (figure 2c) then the streamlines are closed ellipses,
implying that the wavenumber evolution is bounded, though temporary amplification
can still occur, up to a factor equal to the aspect ratio of the ellipse. For D ! 0 and
for almost all initial kH(0), the asymptotic orientation and growth rate of kH depend
solely on ∇U . In other words, we have a robust behaviour in which the wavenumber
vector of a captured wavepacket forgets about the initial conditions at large time, and
asymptotically points in a direction determined by the local velocity gradient alone.
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√
D. Turning

to (3.7b) we see that m will also exhibit exponential growth at large time, unless it so
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Exponentially fast  wave breaking 
scenario without critical layers!

Wave 
capture:

Intrinsic group velocity decreases as wavenumber 
grows; the wavepacket becomes frozen into the flow
(Jones 1969, Badulin & Shrira 1993)

The reinforces the analogy between wave phase and 
passive tracer behaviour; reasonably to expect 
exponential straining to persist once it gets started
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Numerical example

Plougonven & Snyder
GRL, 2005Figure 4. Horizontal and vertical cross-sections of the

horizontal divergence at lower (dx = 100km, dz = 500m,
upper panel) and higher (dx = 25km, dz = 125m lower
panel) resolution, to be compared with the middle pan-
els of Fig. 2 and 3. (Contrary to Fig. 2, the arrows
here show the wind field in the referential moving with
the baroclinic wave, in order to highlight the stagnation
point and the dilatation axis.) In agreement with sec-
tion 2, the wavelengths decrease as resolution increases.
Moreover, the high-resolution simulation clearly shows
the wavelengths decreasing spatially as the waves ap-
proach the dilatation axis.

Snapshots taken from 
numerical simulation of 
meandering jet stream

Interpreted based on wave 
straining 
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counter-clockwise 
vortex

Theory example: wave capture by 
blocking dipole 

clockwise vortex

stagnation 
pointfixed wavepacket 

at t1     
drifting wavepacket 

at  t2>t1      

U10 Bühler & McIntyre

Figure 2. Contours

side-steps complications due to the possible divergence or non-uniqueness of global hori-
zontal momentum integrals for layerwise non-divergent flows on horizontal surfaces (e.g.
BatchBook §7.3**; also BM03**). Kelvin’s impulse, on the other hand, is unambiguously
defined for compact vorticity distributions and we define it for Q

L as

I(z, t) ≡
∫ ∫

(y,−x) Q
L dxdy, (5.11)

where the integral is taken over all of (x, y) at constant (z, t). In the absence of waves
(5.3-5.4) imply that I is constant for ideal flow. In the presence of waves I evolves
according to

∂I
∂t

= −
{

∂

∂t

∫ ∫
pH dxdy +

∂

∂z

∫ ∫
(pHŵg) dxdy

}
, (5.12)

where pH denotes the horizontal part of p and it has been assumed that pH has compact
support on horizontal surfaces. The latter allows the identity

∫ ∫
pH dxdy =

∫ ∫
(y,−x) (ẑ · ∇× p) dxdy (5.13)

to hold trivially and (5.12) then follows directly from (5.4) and (5.9).
Together with (5.7) the impulse budget (5.12) shows that the rate of change of I is

equal to minus the generation rate of pH due to mean-flow refraction. In Bretherton’s
case there was no mean-flow refraction and hence I was constant (and equal to zero).
In the general case of vortical mean-flow structures that refract the wavepacket (5.12)
shows that the net gain in pH is precisely accounted for by minus the concomitant change
in mean-flow impulse I. The simplest thought experiment considers a steady wavetrain
subject to mean-flow refraction, which leads to non-constant vertical flux of horizontal
pseudomomentum. The convergence of this vertical flux at a given z is then precisely
equal to minus the rate of change of I at that altitude.

Another thought experiment considers a single wavepacket undergoing capture. During
capture pH grows exponentially and (5.12) shows this is also true for I, with opposite
sign. This means that there is an exponentially growing mean-flow response that mani-
fests itself in an re-arrangement of Q

L on horizontal surfaces. Of course, the above regular
perturbation analysis is valid only for times t = O(1) and hence the resultant mean-flow
changes are formally bounded by O(a2). However, one can hypothesize that the above

Upstream wind

Strained wavepacket drifts towards 
stagnation point where it must break

(similar to horizontal critical layer) 

ω = 0

ug(t1) = 0 ug(t2) > 0
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Pseudomomentum surge and mean flow

grows exponentially 
during wave capture

(action is conserved, 
but wavenumber grows)

p = k A

Does the exponential pseudomomentum surge lead to a 
dramatic local mean-flow response ?

Standard dissipative wave-mean interaction paradigm:
mean-flow momentum + wave pseudomomentum = constant.

No, because the standard paradigm does not hold for horizontal 
wavepacket refraction...

Need to investigate O(a2) wave–mean interaction theory with refraction
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Wave-mean interaction theory

Slowly varying Lagrangian mean flow with strong 
stratification is layerwise 2d, layerwise non-divergent, and 
at      is governed by (Bretherton 1969)

8 Bühler & McIntyre

5. Mean-flow response
5.1. Non-rotating case f = 0

For simplicity we consider the non-rotating case first**. Linear O(a) waves produce a
nonlinear mean-flow response at O(a2), which is the topic of small-amplitude wave–
mean interaction theory. Using this theory the joint evolution of wavetrain and mean-flow
response can be studied in great detail and in practice this can be a good qualitative guide
for the behaviour of large-amplitude waves. The nonlinear breaking of large-amplitude
waves (i.e. waves with a ∼ 1) is much harder to study, although certain general results
are available using finite-amplitude theories such as generalized Lagrangian-mean (GLM)
theory (refs**). Broadly speaking, the essential outcome of these studies is the importance
of Lagrangian conservation laws such as Kelvin’s circulation theorem. For instance, for
ideal non-rotating stratified flow Kelvin’s circulation theorem states that

∮

C
u · dx = const. (5.1)

where C is any closed material loop lying inside a surface of constant entropy θ and
moving with speed u. In GLM theory there is a corresponding mean circulation theorem
that states ∮

CL

(uL − p) · dx = const., (5.2)

where uL is the Lagrangian-mean (i.e. particle-following) velocity and p is the pseudo-
momentum vector of GLM theory for the waves (resf**). This holds for loops CL that
move with uL and that lie inside a surface of constant Lagrangian-mean entropy θ

L
.

Importantly, the loop is advected by uL but the mean circulation is formed by uL − p.
As is now well understood, the appearance of multiple velocity fields in the circulation
theorem is the inescapable consequence of flow averaging (refs**). The power of (5.2)
lies in the fact that it allows deducing changes in uL caused by p, at least to the extent
that uL is determined by its circulation on mean isentropes. Physically, this amounts
to neglecting mean sound and gravity waves, as in the standard quasi-geostrophic ap-
proximation theory for ‘balanced’ large-scale geophysical flows (e.g. Salmonref**). We
will denote the mean-flow response under the exclusion of such waves as the circulation
response, and in the geophysical regime relevant here it approximately satisfies

∇ · uL = 0 and wL = 0. (5.3)

The mean flow uL is then determined by the circulation integrals (5.2) on horizontal
z-surfaces, or equivalently by the distribution of the scalar

Q
L = ẑ · ∇× (uL − p) such that DL

Q
L = 0, (5.4)

where DL is the mean material derivative following uL.† The key to the practical use-
fulness of (5.3-5.4) is that for small wave amplitude p can be computed at leading order
O(a2) from the linear equations alone and the mean-flow response can then be readily
deduced from these relations. We will now turn to such small-amplitude considerations,
but we note that the above equations are valid a finite amplitude.

In the small-amplitude ray-tracing limit of (5.2) relevant for propagating internal grav-
ity waves uL ≈ u, where u is the usual Eulerian mean flow defined by averaging over a
wave period at constant x. This is because there is no Stokes drift at leading order for

† Under the assumptions (5.3) this Q
L

is proportional to the exact GLM version of the
Rossby–Ertel potential vorticity described in BM98.

Can show that (AM 1978, BM 98, B00, BM05)

(
∂

∂t
+ uL · ∇

) {
ẑ · ∇× [uL − p]

}
= 0

Hence only the vertical curl of pseudomomentum affects the 
mean flow

(Lagrangian and Eulerian mean 
flows are equal to leading 
order for Boussinesq 
wavepackets, but this version 
holds more generally) 

O(a2)
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Vertical pseudomomentum curl

Neglect intrinsic group velocity

and therefore

ẑ · ∇× p = lAx − kAyhorizontal projection
area-preserving map

as both A and the wave 
phase are advected by  
area-preserving flow

Exponential surge in pseudomomentum 
but not in its vertical curl

= dA dθ = const.

p = k A = ∇θ A

∝
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Bretherton`s flow (1969)

Large-scale dipolar return flow 
at second order in wave amplitude

Far-field mean velocity is non-
divergent and decays with 
square of distance to wavepacket

Feynman: 
“children on a slide”

O(a2)

The impulse (ie the skew linear 
moment of vorticity) of this 
layerwise 2d flow is well 
defined, but not its momentum
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Wave-vortex duality

Wavepacket Dual vortex dipole

wave pseudomomentum = dual vortex impulse
.....suggests new thinking of interactions....

Same mean flow field
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Wave capture and wave–vortex duality 3

Figure 1. Left: wavepacket exposed to pure horizontal strain contracting along the x-axis and
extending along the y-axis. The wavecrests align with the extension axis and their spacing is
decreased, so that the wavenumber vector k points at right angles to the extension axis and
grows in magnitude, as suggested by the large arrow. Right: a pair of oppositely signed vortices
exposed to same strain. The arrow now indicates the vortex pair’s Kelvin impulse.

Here we show in detail how the resolution of the paradox lies precisely in the remoteness
of the associated recoil and in the presence of missing forces and momentum fluxes —
missing, that is, from the above picture — which operate throughout the evolution of the
wavepacket and not just when it is generated and dissipated. These forces and momentum
fluxes are anything but local. In fact, the key to understanding the situation is the same as
the key to understanding what happens to a 2-dimensional vortex pair being pulled apart
by pure strain, as shown in figure 1b. Here the wavepacket is replaced by a vortex pair
and PH is replaced by the Kelvin hydrodynamical impulse I , namely the first moment of
the vorticity distribution rotated through a right angle, i.e. the rotated dipole moment
(e.g. p. 529 in Batchelor 1967).

I changes under strain in a manner closely analogous to the way PH changes for the
wavepacket, accompanied by essentially the same remote-recoil effects. In developing a
general theoretical framework we shall find it convenient, therefore, to speak of a general-
ized vortex dynamics involving a wave–vortex duality, implying a nontrivial extension of
standard vortex dynamics for strongly stratified, layerwise-2-dimensional flow. A central
result of this paper is that when vortices and wavepackets are both present they satisfy a
conservation theorem for the sum PH + I, (7.6) below, as long as I is defined in a suitable
way. Then, for instance, if a wavepacket is being strained by the velocity field of a nearby
vortex pair, the resulting changes in its PH are accompanied by compensating changes
in I for the vortex pair. An example of this will be analysed in detail (§10 below). One
may regard the situation of figure 1a as a formal limiting case in which the background
strain is produced by suitably distributed vortices at infinity. The changing PH of the
wavepacket is accompanied by a remote recoil on the infinitely distant vortices, changing
their total I in compensation. A parallel conservation theorem holds, and is similarly
useful, in problems of 3-dimensional phonon–vortex interactions in superfluids (Bühler
& McIntyre, in preparation).†

† The 3-dimensional PH + I conservation theorem greatly simplifies the description and quan-
tification of phonon–vortex interactions, by comparison with momentum-based descriptions
such as those cited in the previous footnote. In connection with the quantum-fluids and con-
densed-matter literature we caution that not only pseudomomentum and momentum, but also
momentum and impulse, are sometimes conflated. (One reason may simply be that in some
languages, including Russian and German, a single word ‘Impuls’ tends to be used for all three;
an old paper by one of us, On the wave momentum myth (1981), has been circulated in Russian
translation as Mif o volnovom impul’sye. Another reason for the conflation may be a technical

Straining of wavepacket and vortices

Wavepacket and vortex dipole are strained in the same way
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Pseudomomentum + impulse = conserved

Impulse

qL =
(

∂v

∂x
− ∂u

∂y

)L

= ẑ · ∇× (uL − pH) GLM theory 
used here
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7. PH + I conservation with and without mean-flow refraction
7.1. Preliminaries

Our aim in this section is to extend Bretherton’s problem (B69) to cases in which the
wavepacket is refracted and possibly captured by the mean flow. In particular, we seek a
generalization of the relation between horizontal pseudomomentum and Kelvin impulse
indicated by Bretherton’s result (5.1). The key is to replace the left-hand side of (5.1)
by the GLM version suggested by the simplicity of (6.4) — that is, the vorticity used in
the definition of the impulse is ∇× (uL − p) rather than ∇× uL or ∇× u .

Before proceeding we should sound one note of caution. Unlike the GLM relations dis-
played in §6, the relation between momentum and Kelvin impulse holds only in the
strong-stratification limit underpinning (5.3) and (5.5). In fact generalization of the
Kelvin impulse concept to less restrictive parameter regimes is not straightforward, for
subtle reasons related, in part, to the limitations inherent in the notions of balanced
flow and PV inversion. More specifically, there is an expectation that balanced flows
will not themselves precisely conserve even momentum, let alone impulse (McIntyre &
Norton 2000), because of the ubiquity of the weak Lighthill radiation, or spontaneous-
adjustment emission, of inertia–gravity waves by unsteady vortical motion — yet another
aspect of wave–mean and wave–vortex interaction problems and, in the present context,
another aspect of the far-field recoil effects. In the less restrictive parameter regimes
there are, therefore, added layers of complication within the aphorism that “momentum
is complicated”.

So it is at present a matter of speculation how far the impulse concept can usefully be
generalized. We content ourselves here with returning for the most part to the strong-
stratification limit and the ray-tracing approximations, with f = 0 in this section and
f #= 0 in §8. We can then use the concept of impulse in the original Kelvin form, apart
from using ∇× (uL − p) instead of ∇× u, allowing everything to be made analytically
clear in a simple way.

7.2. The PH + I conservation theorem
Assuming ideal-fluid flow in the strong-stratification limit, and remembering the absence
of Stokes drifts in plane internal waves, we can replace (5.3) by their GLM counterparts

∇H · uL = 0 with wL = 0 (7.1)

and take the mean isentropes θ
L

= const. to be horizontal planes. Here ∇H is the
horizontal projection of ∇. Given the pH field, the mean flow uL is then fully determined
by the circulation integrals (6.3) on horizontal z-surfaces, or equivalently by the horizontal
distributions of the material invariant qL ∝ Q

L:

qL = ẑ · ∇× (uL − pH) ; DL
qL = 0 . (7.2)

Far-field recoil effects have been pushed out of sight, to infinity. In components, we have

∂uL

∂x
+

∂vL

∂y
= 0 and

∂vL

∂x
− ∂uL

∂y
= qL + ẑ · ∇× pH , (7.3)

generalizing (5.5), hence applying both to the Bretherton problem qL ≡ 0 and to its
extensions to arbitrary wavefields and vortices.

If we now define the impulse I and its density i by

I(t) =
∫ ∫ ∫

i (x, t) dxdydz where i = (y,−x, 0) qL , (7.4)
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(a): Wavepacket (b): Vortex dipole

Figure 3. Illustration of wave–vortex duality (schematic only, plan view). Left: a wavepacket
on an isentrope together with streamlines indicating the return branches of the (horizontal)
Bretherton flow. As in figure 1, the arrow indicates the direction and magnitude of pH . Right:
a vortex pair on the same isentrope with qualitatively the same return flow. The shaded areas
indicate nonzero PV values with opposite signs.

of the ordinary 2-dimensional vortex pair sketched in figure 3b, with velocities falling
off as the inverse square of distance. For convenience we call the layerwise-2-dimensional
O(a2) dipolar flow indicated in figure 3a the Bretherton flow of the wavepacket; the part
of the flow outside the wavepacket will also be called the wavepacket return flow. In B69
the O(a2) velocity field was computed in terms of the usual Eulerian-mean velocity u,
defined by averaging over a wave period at fixed x . It was pointed out in B69 that the
Kelvin impulse of the Eulerian-mean flow u in figure 3a is formally well defined, by an
absolutely convergent volume integral — unlike the momentum — and that in the ray-
theoretic approximation the impulse of u is just equal to the packet-integrated horizontal
pseudomomentum. That is, B69 showed that

∫ ∫ ∫
(y,−x, 0)

(
∂v

∂x
− ∂u

∂y

)
dxdydz = PH ≡

∫ ∫ ∫
pH dxdydz (5.1)

where pH is the horizontal projection of the pseudomomentum density p, with p itself
given in the ray-theoretic approximation by the standard formula

p =
E

ω̂
k = Ak . (5.2)

On the left of (5.1) the impulse integral is absolutely convergent, essentially because
the integrand has compact support. To sufficient approximation, the integrand is zero at
altitudes z above and below the wavepacket. At the intervening z values, the return flow is
layerwise-irrotational outside the wavepacket implying (∂v/∂x− ∂u/∂y) ≡ ẑ ·∇×u = 0
there. The entire Bretherton flow, inside and outside the wavepacket, is layerwise-nondi-
vergent,

∂u

∂x
+

∂v

∂y
= 0 , with w = 0 . (5.3)

Bretherton’s result (5.1) follows at once from compactness of the wavepacket, which
allows us to write

∫ ∫
pH dxdy =

∫ ∫
(y,−x, 0) (ẑ · ∇× pH) dxdy (5.4)

using integration by parts, together with the relation

ẑ · ∇× u = ẑ · ∇× pH (5.5)

Pseudomomentum

Potential vorticity
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then because DL
qL = 0 we have DL

i = (vL,−uL, 0) qL. A little manipulation, using
(7.1) and the definition of the horizontal Kronecker delta ∆ij with ∆i3 = ∆3j = 0,
puts this equation for DL

i into conservation form apart from a term reminiscent of the
right-hand side of (2.7):

∂ ii
∂t

+
∂

∂xj

{
iiu

L
j + uL

i uL
j − ( 1

2 |uL|2−uL·pH) ∆ij − pHiu
L
j

}
=

∂uL
j

∂xi
pHj (i = 1, 2). (7.5a)

Indeed, (2.7) with (4.1) and (5.2) implies

∂pHi

∂t
+

∂

∂xj

{
pHiĉgj + pHiu

L
j

}
= −

∂uL
j

∂xi
pHj (i = 1, 2), (7.5b)

for nondissipative wavemotion, correct to O(a2) since U = uL + O(a2). By comparing
the right-hand sides we see, therefore, not only that pH + i is a conserved density for
nondissipative motion, but also how the individual rates of change of pH and i are related
to wave propagation and horizontal refraction. For instance, it is the source–sink term
−(∂uL

j /∂xi)pHj that accounts for the exponential rate of increase of the packet-integrated
pseudomomentum in the situation of figure 1a.

For an arbitrary collection of wavepackets and vortices within a closed system whose
boundaries recede to infinity, all the flux terms vanish fast enough to make no contribution
at infinity. Remarkably, this remains true even for qL distributions with nonvanishing
monopole moment, since with qL, i and pH all compact or sufficiently evanescent the
only flux terms not similarly compact or evanescent are those quadratic in uL which,
even in monopolar cases, are O(r−2) where r2 = x2 + y2. So by adding (7.5a) to (7.5b)
and integrating, we have simply

PH + I = constant , (7.6)

while the compensating individual rates of change are nonzero only when there is horizon-
tal refraction somewhere, hence creation or destruction of horizontal pseudomomentum:

dPH

dt
= −

∫ ∫ ∫
(∇HuL) · pH dxdydz (7.7)

and dI
dt

=
∫ ∫ ∫

(∇HuL) · pH dxdydz . (7.8)

It should be remembered that I , though not its rate of change, depends on the choice of
coordinate origin when qL has nonvanishing monopole moment.

We note in passing that (7.5a) and (7.8) are valid at arbitrary finite amplitude a , if
the exact GLM definition of pH is used, though dependent on the strong-stratification
conditions (7.1)–(7.2). By contrast (7.5b), (7.6) and (7.7) have been derived correct to
O(a2) only, and depend on the ray-theoretic approximations.† We note also that the
conservation theorem does not require the constant background stratification assumed
in (2.7). It is valid for z-dependent slowly varying stratification N2(z), since background
z-dependence affects only the z or i = 3 component of the right-hand side of (2.7).

We may summarize everything so far by displaying the full differential form of the
conservation theorem implied by (7.5a) and (7.5b), remembering always that the strong-
stratification conditions (7.1)–(7.2) are needed (banishing far-field recoil to infinity) and

† There is an exact GLM counterpart of (7.5b) — essentially the difference between eqs. (3.8)
and (8.7a) of AM78 — but its application is far less simple and will be left aside here. The main
complication is that background inhomogeneities, including ∇ρ̃ , can no longer be treated as
independent of wavefields. Finite-amplitude wave propagation involves self-refraction.
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Refraction terms

skew linear moment of PV
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The resolution
Dipole straining increases wavepacket pseudomomentum. 
Bretherton flow advects vortex dipole and reduces impulse.   
Both compensate and the sum of P + I is conserved!

Looks precisely 
like dipole-dipole 
leap-frog 
interaction...
no accident!

Non-local interaction 
at a distance
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Duality and dissipation

Wavepacket Vortex dipole

Dissipation itself does not accelerate the mean flow!

dissipation

Dissipation 
makes dual 

vortex real, but
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Towards a new parametrization scheme

Joint work with John Scinocca (CCCma, Univ. Victoria, CA)

1. based on existing columnar parametrization scheme 

2. wave dissipation and breaking part unchanged, only non-
dissipative propagation part is changed

3. requires no new assumptions on gravity wave launch 
spectrum (have only weak observational constraints)

4. requires horizontal derivatives of model fields, which 
is a bit non-trivial in operational GCMs because of 
parallel architecture
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The key difference

Old scheme is based on constant pseudomomentum flux

New scheme is based on constant wave action flux

pseudomomentum flux(z) = k(z) wave action flux

changes in k(z) due to horizontal refraction change the 
pseudomomentum flux(z) and hence produce
new mean-flow forces
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Concluding image

Wave action flux 
replaces 
pseudomomentum 
flux 

Refraction leads to 
wave-mean 
momentum exchanges 
without dissipation

Mountain drag does 
not simply equal wave 
drag anymore 
(it never did)


