Gravity waves near convection: causes and consequences

Robert Fovell

UCLA Atmospheric & Oceanic Sciences rfovell@ucla.edu

Outline

- Basics
- Mechanically generated stratospheric gravity waves
- Thermally induced low frequency tropospheric gravity waves
- Thermally/mechanically excited high frequency tropospheric gravity waves
- Mechanically forced obstacle effect gravity waves

Terms

• Frequency ω and period *P*

$$P = \frac{2\pi}{\omega}$$

• Wavelengths L_x , L_z ; wavenumbers k, m

$$k = rac{2\pi}{L_x}; \,\, m = rac{2\pi}{L_z}$$

• Intrinsic frequency (relative to mean flow)

$$\hat{\omega}=\omega-\bar{U}k$$

Terms (continued)

• Dispersion equation (N = B-V frequency)

$$\hat{\omega} = \pm \frac{Nk}{\sqrt{k^2 + m^2}}$$

• Phase line tilt from vertical

$$\cos \alpha = \frac{L_z}{\sqrt{L_x^2 + L_z^2}} = \frac{\hat{\omega}}{N}$$

• Phase speed (flow relative)

$$\hat{c}_x = rac{\hat{\omega}}{k}$$

Multicellular squall line storm

Vertical cross-section

Vertical cross-section

Vertical cross-section

Storm-relative airflow

Animation

Storm is heat and momentum source; high frequency and low frequency components

Fovell and Tan (1998)

Theme

- Convective storms are an excellent source of gravity waves
- Some of these waves significantly impact the surrounding environment
- Some of those impacts feed back onto the convection
- GCM import: subgrid phenomena that do not remain subgrid

Gravity waves above convection

S(0) case

S(-8) and S(8) cases

An S(0) case

An S(0) case

An S(0) case

$$\alpha = \arctan\left[rac{16}{6.5}
ight] = 68^{\circ}$$

Aspect ratio not 1:1

$$\alpha = \arctan\left[\frac{16}{6.5}\right] = 68^{\circ}$$

$$\cos \alpha = \frac{\omega}{N} \therefore \omega = 0.0075 \text{ s}^{-1}$$

$$P = \frac{2\pi}{\omega} = 14 \min$$

(principal cell period)

larger α smaller $\cos \alpha$ \therefore smaller ω \therefore longer P

 $\approx 23 \min$

FDH's S(0) gravity wave "fan"

Wave period given in hours

Impact of stratospheric GWs

Alexander and Holton (1997)

Evolution of stratospheric waves

Simple oscillator model

- Tropospheric momentum source mimicking a convective cell updraft
- Oscillate at set period *P*
- Source may be tilted
- Source may be "moved" horizontally

S(+8) case

Storm's convective region acts as equivalent obstacle

 $\omega = 0$ $\hat{\omega}=\omega-\bar{U}k=-\bar{U}k$ Nk $N \kappa$ $\sqrt{k^2 + m^2}$ $Z = \frac{N^2}{\bar{U}^2} -$ $\hat{\omega} =$ $\therefore m^2$

S(+8) case

Fovell, Durran and Holton (1992)

 $k \to \infty$ $\therefore L_z = \frac{2\pi \bar{U}}{N}$

 $L_z \approx 2.4 \text{ km}$

S(+8) case

Fovell, Durran and Holton (1992)

What happened to the high frequency waves?

 $\hat{\omega} = \omega - Uk$ $\bar{U} > 0; \ k < 0$ $\therefore \hat{\omega} > \omega$ As $\hat{\omega} \to N$, $\cos \alpha \approx 1$ $\therefore \alpha \approx 0$

Low frequency tropospheric gravity waves

Vertical half-sine heating profile

For $z \leq H$

Nicholls et al. (1991)

- Compressible, nonlinear with stratosphere
- No mean flow
- Maintained, vertically oriented heat source

Temperature perurbation (colored); potential temperature (contoured)

Animation

Note displaced air does not return to original elevation

$$\omega = \pm \frac{Nk}{\sqrt{(k^2 + m^2)}}$$

As
$$k \to 0$$
, since $m = \frac{\pi}{H}$
 $c_x = \pm \frac{NH}{\pi}$
If $N = 0.01 \text{ s}^{-1}, H = 10 \text{ km}$
 $c_x \approx 32 \text{ m s}^{-1}$

Heat source deactivated halfway through animation

Two vertical modes

No applied cooling needed...

"top heavy" profile

Mapes (1993)

"Top heavy" heating profile in vertically sheared atmosphere

Animation

Result of the two modes: **Net ascent** in lower troposphere in vicinity of source

Rear side of storm...

Rear inflow current

Rear inflow current

Pandya and Durran (1996)

Microphysical impact

Squall line forward environment

Gentle, sustained lower tropospheric lifting generates "cool and moist tongue" ahead of storm

Water vapor perturbations

Mature phase moist tongue

Import of this low frequency GW response: lower troposphere is **more moist, less stable** (especially in near-field) "In theory, there is no difference between theory and practice. But, in practice, there is." -- Jan LA van de Snepscheut (Caltech professor)

BAMEX IOP6

BAMEX IOP6 radar and dropsonde locations

BAMEX IOP6 dropsondes

Mullendore and Fovell (in progress)

21 June 2003 (midnight-5AM), Oklahoma

High frequency tropospheric gravity waves

Steady heat source

Unsteady heat source

Steady heat source

Unsteady heat source

- OU ARPS "cloud model" 2D and 3D
- Idealized setup
- Integrated 6 PM 'till past sunrise
- Model physics:
 - surface physics
 - atmospheric radiation (clear sky & cloud)
 - ice microphysics

Trapping of gravity waves

$$l^2 = \frac{N_*^2}{(U-c)^2} - \frac{U_{zz}}{(U-c)}$$

- Associated with sharp decrease of Scorer parameter *l*² with height
- Forward anvil serves as wave duct
 - Decreased stability
 - Jet-like wind profile

$$l^2 = \frac{N_*^2}{(U-c)^2} - \frac{U_{zz}}{(U-c)}$$

upstream sounding

Fovell, Mullendore and Kim (2006)

$$l^2 = \frac{N_*^2}{(U-c)^2} - \frac{U_{zz}}{(U-c)}$$

upstream sounding

Fovell, Mullendore and Kim (2006)

 $-\frac{U_{zz}}{(U-c)}$ N_*^2 l^2 $c)^2$ Τ

upstream sounding

Fovell, Mullendore and Kim (2006)

Gravity wave-induced clouds

Fovell, Mullendore and Kim (2006)

Obstacle effect gravity waves above convective rolls

Summary

- Convective phenomena (deep convection, rolls) superb source of gravity waves
- High frequency gravity waves
 - Vertically propagating above deep convection
 - Trapped waves ahead of convection
- Low frequency gravity waves
 - Responding to maintained heating/cooling
 - Owing to flow over obstacles
- How gravity waves impact convective environment
- Feedback of impact on convective source
- Subgrid in GCMs... for some time to come