The Importance of Convection from a Large Scale Dynamical Perspective

Dargan M. W. Frierson UCAR/University of Chicago

2 November 2005

Some Motivation

Talk Outline

- A Simplified Moist GCM model description
- A Simple Convection Scheme
 - Formulation
 - Effect on Zonally Averaged Circulation
 - Hadley circulation (energy and mass transports), tropical precipitation
 - Effect on Transient Dynamics/Equatorial Waves
 - Speed/strength of equatorial Kelvin waves

A Simplified Moist GCM

- ► Goal:
 - Design a simplified GCM that incorporates the dynamical effect of moisture in the simplest possible manner, while remaining fully modular with full GCM physical parameterizations whenever possible
- The model:
 - Primitive equations: up to T170 resolution, 25 levels
 - Gray radiative transfer (next slide)
 - Aquaplanet slab mixed layer ocean
 - Closed system in terms of energetics (atmosphere performs all the energy transports)
 - Simplified Monin-Obukhov surface flux scheme, K-profile boundary layer scheme

Radiation Scheme

- Gray radiation: Water vapor, clouds, other tracers have no effect on radiation.
- Parameters: longwave optical depths, shortwave heating

All shortwave (solar) heating into surface

Moisture/Convection

- No condensate, no microphysics, no freezing
- Simplest convection scheme: no convection scheme!
 (large scale condensation (LSC) only)
 - Precipitation occurs when a gridbox becomes saturated
 - Model can be integrated with this
 - Revaporate precipitation into unsaturated areas
 - Similar in practice to moist convective adjustment

No Convection Scheme Simulations

Instantaneous precip, T85 and T170 resolutions

No Convection Scheme Simulations

- Precipitation is concentrated at the grid scale in the tropics
- Tropics are sensitive to resolution in this model: however midlatitudes are not
- This version of the model used in studies of moisture effects on midlatitude static stability, eddy scales, energy fluxes, and jet latitude. (Frierson, Held and Zurita-Gotor 2006a, b)
- Also used in a nonhydrostatic GCM to study the "hypohydrostatic" rescaling (Garner et al 2006)

A Simplified Betts-Miller (SBM) Convection Scheme

Basic principle: relax temperature, humidity to some post-convective equilibrium profile (Betts 1986, Betts and Miller 1986, see also Arakawa 2004)

$$\delta T = -\frac{T - T_{eq}}{\tau_c}, \delta q = -\frac{q - q_{eq}}{\tau_c}$$

- Equilibrium temperature profile: moist adiabat from surface parcel (relax up to LZB)
- Equilibrium humidity profile: specified relative humidity with respect to the equilibrium temperature
- First complication: enthalpy conservation $(-\int \delta q dp/g = \int \frac{c_p}{L} \delta T dp/g$, or drying must equal heating)

Enthalpy Conservation

Shift reference temperatures by a uniform amount in height to satisfy enthalpy conservation (simplest method that is continuous, similar to real Betts-Miller scheme)

$$\Delta k = \frac{1}{\Delta p} \int_{p_0}^{p_{LZB}} -(c_p \delta T + L \delta q) dp$$
$$T_{eq2} = T_{eq} - \frac{\Delta k}{c_p}$$

- If the column is too dry, the temperature correction is negative (rough simulation of **downdrafts**)
- Implies precipitation is **no longer correlated** with CAPE.
- Second complication: what if predicted precipitation after this adjustment is **negative**?

Shallow Convection

- When predicted precipitation is negative, set precip to zero and perform "shallow convection"
- Three methods of doing this:
 - No adjustment of temperature and humidity: baseline for comparison ($\delta T = \delta q = 0$)
 - Change humidity profile by uniform fraction (Choose f_q in $q_{eq2} = f_q q_{eq}$ such that net drying equals zero): "**qref**"
 - Lower depth to where net drying equals zero (Choose p_{shall} such that $0 = \int_{p_0}^{p_{shall}} (-\frac{q-q_{ref}}{\tau_c})$): "shallower"

Sensitivity to Shallow Scheme

11

Simulations with $\tau_c = 2h$, $RH_{SBM} = .7$, instantaneous precip

- With no shallow convection scheme, the convection scheme is much less effective
- Two shallow schemes are qualitatively similar

Moist static energy fluxes by Hadley circulation (30N-30S):

- Equatorward transport by Hadley circulation for LSC only
- Two SBM shallow convection schemes are similar
- ▶ LSC has **50% larger mass flux** compared with SBM!

Precipitation

Zonal mean precip (30N-30S):

- ITCZ precip scales with Hadley circulation strength (larger for LSC and no shallow)
- Increased precip within ITCZ in LSC and no shallow cases are accompanied by reduction within subtropics (total precip remains similar)

Ability to Build Up CAPE

- Claim: key categorization of convection schemes is ability to build up and rapidly release CAPE (abruptness of convective trigger)
- ▶ Time series of precip and CAPE along the equator:

Ability to Build Up CAPE

▶ Test with a more stringent convective criteria: $RH_{SBM} = .8$

- Two shallow schemes begin to diverge
- No shallow scheme looks more like LSC only simulations

Shallow Convection Summary

- Properties of schemes that have abrupt release of CAPE (LSC, or SBM with no shallow scheme):
 - Smaller energy transports by Hadley cell
 - Larger Hadley circulation mass flux
 - Smaller/negative "gross moist stability" = $\frac{\overline{mv}}{\overline{v}}$

- Larger eddy moisture fluxes
- More resolution dependence

Effect of Convective Relaxation Time

- Vary relaxation time: $\tau_c = 1h, 2h, 4h, 8h, 16h$
- Significant effects on many aspects of the circulation: transients, relative humidity, fraction of convection, etc
- However there is no effect on Hadley circulation system (provided large scale precip does not occur)

Mass transport and ITCZ precip are within 2 % for first 4 cases (then an abrupt increase of 35%)

Effect of Convective Relaxation Time

- ▶ How is the circulation so insensitive to relaxation time?
- Rewrite the precipitation expression:

$$\bar{q} = \bar{q}_{eq} + \tau_c P$$

Humidity adjusts to keep precip the same.

- This same adjustment occurs in simple models such as Frierson, Majda and Pauluis 2004.
- Sensitivity to RH_{SBM} is more complicated due to changes in surface budget, but circulation is still relatively insensitive

Tropical Waves

- Method of Wheeler and Kiladis (1999):
 - Fourier transform over the tropics in space and time
 - Separate into **eastward and westward** propagation
 - Take out "background spectrum"
 - Observations show Kelvin waves, Rossby waves, etc with reduced phase speeds

Tropical Waves

• Wheeler-Kiladis diagram for precip for simulation with $\tau_c = 2h$, $RH_{SBM} = .6$

- Strong, persistent **Kelvin wave** dominates the spectrum
- Speed ≈ 20 m/s (40 m equivalent depth), only slightly faster than observations. What sets speed? Sensitive to convection scheme parameters?

Control Simulation Kelvin Wave Composite

Method of Wheeler, Kiladis, and Webster: take Kelvin filtered time series at a point on the equator, regress this against other fields

Control Simulation Composite

▶ P, E, u_{surf} on the equator:

• Evaporation leads and provides strength for wave: evaporation-wind feedback is energy source $(E = C_D | u | (q_s - q))$

Control Simulation Composite

Shallow convection leads and propagates moisture upwards

• Wheeler-Kiladis diagram for different τ_c (2 h, 4 h, 8 h)

 Longer relaxation time causes additional convective damping (Emanuel 1993)

Relaxation Time Composites

▶ Kelvin wave composite of P, omega, q for $\tau_c = 2h$, 4h:

Temperature more out of phase with vertical velocity with longer relaxation time

Simulations With Some Large Scale Precip

Next increase RH_{SBM} from the control value to cause some large scale precip to occur (with $\tau = 4h$ here)

- Percent of large scale precip: (0%, 18%, 99%)
- When there's mostly large scale precip, no Kelvin wave
- With some large scale precip, the variability is enhanced, and the propagation speed becomes slower

Gross Moist Stability

Vertical advection of moist static energy divided by vertical advection of dry static energy:

Conclusions

- Convection can have significant effect on zonally averaged tropical circulation
- Key classification of convection schemes: ability to build up and rapidly release CAPE
- Relative insensitivity to convection scheme parameters, provided LSC precip is not allowed to occur
- LSC precip enhances and slows simulated equatorial Kelvin waves
- Concurrent and future work
 - 2-D Walker cell within this model and full GCM
 - Quantitative theory for gross moist stability
 - Fully moist Hadley circulation theory