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The complete convection problem
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Next-generation global NWP models will have 10-
km grid spacing

Parameterized convection and explicit
convection may occur simultaneously

Parameterization is ill-conditioned, explicit
convection is under-resolved

Dynamical structure, scale-selection, transport,
scale-interaction are all compromised

Positive factors, but pitfalls too, for NWP

Next in line are seasonal prediction models and,
ultimately, climate models




A sobering fact;:

Physical resolution is 7-10 x grid spacing

... important implications for convection where fastest growth
rates are on small scales

... mesoscale organization of convection may be surrogate at 10-
km-grid spacing

... however, even under- resolved explicit convection is a vast
improvement over convective parameterization




The under-resolved dynamics issue
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Cloud-system resolving models (CRM)
at ~100 m grid-resolution
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T1279 L96 simulation on Japan’s Earth Simulator:

(15-km horizontal, 500 m vertical)

Ohfuchi et al. (2004)




Wind shear
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Macrophysics and convective organization

Microphysical processes
Phase changes of water;

radiative transfer, energy
dissipation

Precipitating
cloud
systems

Large-scale
environment

Macrophysical effects
Temperature, moisture,

momentum tendencies




‘fleld-theory’ for atmospheric convection
Is the ultimate need




Organized traveling convection of the

mesoscale convective system
(MCS) kind




Conceptual MCS
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Large-scale convective organization
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Rainrate (mm/hr) 3 km; BAMEX 03 - 09 July 2003
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RADAR derived rain (July)
Spectra averaged between 115W and 75W
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Convective-stratiform interaction
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Physics of upscale evolution

Dynamic
* triggering

Stage 2: upscale development

Mesoscale
latent heating

Mesoscale downdraft
evaporative cooling

Mesoscale Parameterized
heating convective
A heating

Stage 3: development of
mesoscale circulation

An upscale process
not parameterized




Steady, finite-amplitude convective

overturning




Lagrangian conservation properties

Fundamental Theorem of Calculus

applied to the total derivative:

D
o % F(y, z,)

D | N g
— | F(y,z2)dz = —F(y,z) —
sz{ (y.2)ds' = —=F(y,2) -—

— WF(I//,Z) _WOF(WazO)
=wF(,z)




Conserved quantities for 2D moist
convection
Dy ae 0 Oy, _ OF _ D j
D S ax aw(ax) dy  Dt!

O 4wl DBI I' dz , where ¢ =c, In60 and

20

Fp =moist adiabat

Conserved quantities :

= G, (y)+ j(gf;) dz — vorticity

20

¢, =G, () + f I'dz —  entropy




Generalized nonlinear eigen-value / free-
boundary theory of organized convection

Steering
Ievzl = Z.

am—
—
®

S

evaporative
cooling

Formally represented by Moncrieff & Green’s equation:

Vy = G(y) + Jz(g_Fde
£ W

vorticity along inflow vorticity generated by
trajectories vorticity latent heating

F (y,z,c): parcel buoyancy




A complete analytic solution for
unsheared environments

O

Z @n 17 _1|_ I sin[(2n + 1)%exp[—(2n +1)

n=0

Lw(z) =2Uz(1 - ik

)




What’s what the simplest possible (archetypal)
model of steady traveling convection in shear?




Two-branch steady model

Convective overturning in constant
shear (A):

v =A4(z,-z )2 iflow (z,< z.)
v =Ap *(z-z.) outflow (z,<z)

=BH/1+ )
=1(1+1+4Ri)

outflow shear

inflow shear




...free-boundary solution tilts downshear - two-
branch model is physically unrealistic

UPSHEAR-TILTED DOWNSHEAR-TILTED
EDOY
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MCS-like convective organization: two key
dimensionless quantities

Convective Richardson number:

Density-current-like
(hydraulic) behavior




Formal definition of convective organization

° Integrating the horizontal momentum equation along
trajectories gives a dimensionless quantity D, the ratio of the
eddy Reynolds number to dynamical quantities

°* Organized convection characterized by D << 1

=1 EE W - )il

--- in-cloud & inflow horizontal velocities, respectively




The simplest possible three-branch set of
solutions: The archetypal regimes
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The simplest possible three-branch set of solutions:
The archetypal regimes
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Vertical transport of horizontal momentum
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Conceptualization of momentum transport

Eddy tilt

backward
relative to
propagation
vector

+

z jconvection




Validation against numerical simulation

(a)

Y7 r 1 ey y v rrToTTyT T

Height(km)

IS U S O W S T T 1

iAo o » b g 4 s x 1 3 o

970 2020 2870 2128 2170 2220 2278

c)

llllllllIlllllllU]Il/h.llllll T T TV YT PR T [ r vy iy
,
] 1} 1
“
I' ’
o

’ 1
’ ; ,
! L
o \ [P
Y
‘-

e

Height(km)

Height(km)

simulation — 7]
model  --- ]

21990 2200 2210 2220 2230 2240 2250

8.0 8.5

X(km) | uoxx;antum Flux (kg m™ s7%)

Wu and Moncrieff (1996)




Shear generation from a resting initial state

horizontal flow deviation (m s™!)

Mesoscale convective
systems generate
shear -- redistribute
horizontal momentum
in the vertical: a
positive dynamical
feedback recalling that
MCS live on shear flow

height (km

Height (km)

Grabowski & Moncrieff (2001)




Traveling organized convection over the
continental US




A problem of elevated heating, shear flow, traveling
organized convection and the diurnal cycle

Afternoon Next morning

C =
-

S )

To first order, elevated solar heating
determines start position & start
time of traveling convection

Mesoscale
downdraft

—

~1000 km




Amplitude of diurnal cycle:

Variance explained by 1st harmonic of rainfall frequency
Jun-Aug 2003
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Knievel et al. (2004)




Phase of diurnal cycle: getting it right means
getting traveling convective systems right ...

Time of peak in 1st harmonic of rainfall frequency
Jun-Aug 12896-2002

-100 -390
local solar time

12
Knievel et al. (2004)




MMS5 incorporating NCEP MRF boundary layer & surface exchange
schemes, Noah LSM, GSFC microphysics, Betts-Miller convective
parameterization, 40-km ETA model analysis for lateral boundary
conditions and large-scale forcing. Simulate 3-10 July 2003 at 3-km,
10-km, 30-km, 60-km grid-resolution

Moncrieff and Liu (2005)




Precipitation: 3-km grid resolution




Meridionally averaged rain-rate

NEXRAD analysis . . 10-km explicit
Carbone e 3-km explicit
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Parameterized vs. explicit precipitation

Parameterized Explicit
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3-km grld resolutlon

Pressure (mb
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Not represented
in parameterizations, not
adequately simulated at
~10-km grid-resolution




Under-resolution distorts airflow

FCST=147 hours jb=48 je=56
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Momentum transport:

convective

FCST=145.50 hours jb=445 je=500

mesoscale

Pressure (mb)
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Resolution dependence of convective
heating

| Systematic warming:
| mesoscale

| downdrafts

| too weak — can we

parameterize them?
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Parameterizing convective
organization




Organized convection: a parameterization
challenge

Ordinary Organized

v

Isolated system, single grid volume Propagating system, many grid volumes

* Entraining plume (small-scale mixing) * Organized flow (mesoscale dynamics)
* Environmental shear omitted * Environmental shear important

* Local response * Local and remote response

* Closed system (confined subsidence) * Open system (wave response)

» Weak scale-interaction » Strong scale-interaction

* Gravity waves not involved * Convectively-generated gravity waves




Upscale evolution

Mesoscale
latent heating

Mesoscale downdraft
evaporative cooling

Stage 3: development of
mesoscale circulation

Dynamic
* triggering

Stage 2: upscale development

Mesoscale Parameterized
heating convective
A heating

An upscale process
not parameterized




Simple parameterization of stratiform
heating / mesoscale evaporation

Q, () =0, Q,(Osind-—*  p.<p<p,

Q,, (1) =0, Q, (1) sin & ﬁi P <p<p.
*~ Mt

Q. = parameterized convective heating

Moncrieff (1992), Johnson (1993),
Betts (1997)




UTC (July 9 2003)
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Decomposition of convective tendency

_ ) _
S = M@ -6)] + |0, -2, M) (9 -4,)]

M., M _and M are convective— scale, mesoscale and resolved — scale
mass fluxes; €. and € are the fractional areas of convective—

scale and mesoscale updrafts, respectively.
For organized convection €, << €, and € =1, approximately.
So the grid —scale term in the mesoscale parameterization is

equivalent to (¢ — ¢ ") %L
Cheng & Yanai (1989)




Effect of mesoscale parameterization on
convective heating

N
o
o

QrFrrrrrrrrrror o

~~
E
~
o
ft
3
n
n
[\
ft
Ay

- | Mesoscale
-| downdraft

cooling

[ S N NN NN TN AU N N SR NN IO A M B

| o

| [N WO WS N N N T N N N R |

20 40
Q:—Qr (K day—l)




Remarkably similar results for

tropical super-clusters suggests a
degree of universality ...




Superclusters resemble huge mesoscale
convective systems (in a GCM)

Strongest Ascent & Tropopause

Outflow 500-200 mb

=

cean

/p' = 0 in environment

P'm in super-cluster
Dum Ap'm

Dt - AX >0

Heat-induced Westerly
Acceleration

Moncrieff and Klinker (1997)




Total, parameterized (under-resolved) grid-scale
tendencies of predicted superclusters
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MCS-like dynamical structure is
remarkably ubiquitous: widely seen in
large-domain explicit convection
simulations and 'super-parameterized’

simulations

To some degree this evinces physical
aliasing (‘surrogacy’)




Rain-rate spectra: Observed and simulated

Rainrate (mm/hr) 3 km; BAMEX 03 - 09 July 200
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Summary

H1nivers|adl convective organization ubiquitous in many regions of
e wor

Dynamical models, of MCS- like organization have stood the test of
time, new application -- represent organized convection structures
in modern explicit models

At ~10-km grid-resolution, the representation of convection is
markedly different from conventional parameterization

Mesoscale downdrafts represented by a simple parameterization,
promtes propagation, work continues

Under-resolved explicit circulations have OIpractical advantages,
care is needed but points to ways forwar

Resuts for the U.S. continent apply to other regions of the world,
where steep orography, organized convectionand shear-flow exist

Convective parameterization is being redefined, should help
break the vexing bottleneck in convective parameterization —
dynamics are to the fore




