NUMERICAL SIMULATION OF GEOPHYSICAL TURBULENCE

Piotr K Smolarkiewicz*
*National Center for Atmospheric Research, Boulder, Colorado, U.S.A.

Figure 1: Geophysical turbulence; scales $\mathcal{O}\left(10^{7}\right), \mathcal{O}\left(10^{4}\right)$, and $\mathcal{O}\left(10^{-2}\right) \mathrm{m}$.

- Geophysical turbulence embodies phenomena uncommon in engineering applications, such as breaking of internal inertia-gravity waves (viz. localization) and spans an enormous range of scales; e.g., $\kappa \sim \mathcal{O}\left(10^{20}\right)$, for the Earth atmosphere.

Geophysical turbulence is intermittent in nature. This dictates three useful (for research) simulation strategies:

- direct numerical simulation (DNS), with all relevant scales of motion resolved, thus admitting variety of numerical methods;
- large-eddy simulation (LES), with all relevant subgrid scales parameterized, thus preferring higher-order methods;
- implicit large-eddy simulation (ILES) - alias monotonicallyintegrated large-eddy-simulation (MILES), or implicit turbulence modeling - with a bohemian attitude toward subgrid scales and available only with selected numerical methods.
- ILES a "do-nothing" approach that relies on nonoscillatory (physically-motivated) numerics that "adapts" itself to the flow in the course of a simulation \Leftrightarrow in progress and controversial, yet effective and relatively simple; i.e., practical.

Figure 2: The idealized Held-Suarez climate problem (BAMS 1994); instantaneous solution after 3 years of simulation (left), and zonally averaged 3-year means (right) (Sm. et al. JAS 2001).

RE: ILES Justification

Figure 3: 256^{3} DNS/ILES of transient decaying turbulence; Margolin et al. J. Fluid Eng. 2002.

time	1.00	1.25	1.50	1.75	2.00
$-15<u_{x}^{3}>\delta x^{2} /(4 \varepsilon)$	0.785	0.933	1.028	1.054	1.019

Table 1: Verification of " $4 / 5$ " Kolmogorov's law $\left\langle\left(\delta v_{\|}(\mathbf{r}, \mathbf{l})\right)^{3}\right\rangle=-\frac{4}{5} \varepsilon l \Rightarrow \varepsilon \sim v_{o}^{3} / l_{o}$; $\delta v_{\|}(\mathbf{r}, \mathbf{l}):=[\mathbf{v}(\mathbf{r}+\mathbf{l})-\mathbf{v}(\mathbf{r})] \cdot(\mathbf{l} / l), v_{o}:=\sqrt{\left\langle\mathbf{v}\left(\mathbf{r}+\mathbf{l}_{o}\right) \cdot \mathbf{v}(\mathbf{r})\right\rangle}$ - Frisch 1995.

RE: More ILES Justification

Figure 4: 64^{3} ILES of decaying turbulence, Domaradzki et al. Phys. Fluids 2003. Energy spectra and Kolmogorov function $C_{K}(k)=\varepsilon^{-2 / 3} k^{5 / 3} E(k)$ dla $\nu=0.0$ $\Leftrightarrow\left\langle\left(\delta v_{\|}(l)\right)^{2}\right\rangle \sim l^{2 / 3}$

- LES with physically-motivated SGS models \Leftrightarrow theoretically not universal enough, and practically much more complicated than ILES, but effective for shear-driven boundary layer flows.

Figure 5: LES of PBL past a rapidly evolving sand dune; Ortiz \& Sm., IJNMF 2005

Simulations of boundary layer flows past sand dunes - $340 \times 180 \times$ $40 \mathrm{~m}^{3}$ domain covered with $\delta x=\delta y=2 \mathrm{~m}, \delta z=1 \mathrm{~m}$ - depend on explicit SGS model (here TKE), because the saltation physics that controls dune evolution depends crucially on the boundary stress.

- DNS \Leftrightarrow TRUE, although limited to low Reynolds number flows, a useful complement of laboratory experiments.

Figure 6: Time-height cross-section of the observed zonal-mean zonal fbw velocity component (plate (a), adapted from Fig. 10 in Plumb \& McEwan (1978), contour lines are in $m m s^{-1}$), compared to the result of the 3D numerical simulation at $y=L_{y} / 2$ (plate (b), contour lines are in $m s^{-1}$). According to Plumb \& McEwan (1978), the lowest 2 cm in plate (a) could not be observed due to restrictions of the viewing window; Nils Wedi, Ph.D thesis, + .

- With mesh adaptivity for simulating complex geophysical flows in mind, we have developed a generalized mathematical framework for the implementation of deformable coordinates in a generic Eulerian/ semi-Lagrangian format of nonoscillatory-forward-in-time (NFT) schemes.
- There is more involved than a mere application of well-known mathematical theories. Technical apparatus of the Riemannian Geometry must be applied judiciously, in order to arrive at an effective numerical model.

Anelastic Model: Analytic Formulation

Prusa \& Sm., JCP 2003; Wedi \& Sm., JCP 2004

- diffeomorphic mapping

$$
\begin{equation*}
(\bar{t}, \bar{x}, \bar{y}, \bar{z}) \equiv(t, E(t, x, y), D(t, x, y), C(t, x, y, z)), \tag{1}
\end{equation*}
$$

$(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$ does not have to be Cartesian!

Figure 7: Continuous global mesh transformation, an example

- Anelastic system of Lipps \& Hemler (JAS, 1982)

$$
\begin{gather*}
\frac{\partial\left(\rho^{*} \bar{v}^{k}\right)}{\partial \bar{x}^{k}}=0 \tag{2}\\
\frac{d v^{j}}{d t}=-\widetilde{G}_{j}^{k} \frac{\partial \pi^{\prime}}{\partial \bar{x}^{k}}+g \frac{\theta^{\prime}}{\theta_{b}} \delta_{3}^{j}+\mathcal{F}^{j}+\mathcal{V}^{j} \tag{3}\\
\frac{d \theta^{\prime}}{d \bar{t}}=-\bar{v}^{k} \frac{\partial \theta_{e}}{\partial \bar{x}^{k}}+\mathcal{H} \tag{4}\\
\bar{v}^{k}:=\bar{v}^{*}-\frac{\partial \bar{x}^{k}}{\partial t} \quad ; \quad \bar{v}^{j}=\widetilde{G}_{k}^{j} v^{k} \tag{5}
\end{gather*}
$$

$$
\begin{gathered}
\rho^{*}:=\rho_{b} \bar{G} ; d / d \bar{t}=\partial / \partial \bar{t}+{\overline{v^{*}}}^{k}\left(\partial / \partial \bar{x}^{k}\right) ;{\overline{v^{*}}}^{k}:=d \bar{x}^{k} / d \bar{t}:=\dot{\bar{x}}^{k} \\
\widetilde{G}_{j}^{k}:=\sqrt{g^{j j}}\left(\partial \bar{x}^{k} / \partial x^{j}\right) \Leftarrow d s^{2}=g_{p q} d x^{p} d x^{q}, g_{p k} g^{k q} \equiv \delta_{p}^{q}
\end{gathered}
$$

RE: Technical apparatus must be applied judiciously...

- VORTICITY (simple substantiation compared to STRESS)

$$
\begin{equation*}
\bar{\omega}^{*}{ }_{j k}=\bar{v}_{k, j}^{*}-\bar{v}^{*}{ }_{j, k} \Rightarrow \omega^{q}=\varepsilon_{q j k} \sqrt{g^{k k}} \widetilde{G}_{j}^{p} \frac{\partial \sqrt{g_{k k}} v^{k}}{\partial \bar{x}^{p}} ; \tag{6}
\end{equation*}
$$

in any system $\bar{v}^{*}{ }_{k}=\bar{g}_{j k} \bar{v}^{* j}$, so in the physical space $v^{*}{ }_{j}=\sqrt{g_{j j}} v^{j}$.

$$
\begin{gather*}
\nabla \bullet \boldsymbol{\omega}=\nabla \bullet \nabla \times \mathbf{v} \equiv 0 \Rightarrow \\
\frac{1}{\bar{G}} \frac{\partial}{\partial \bar{x}^{p}}\left(\bar{G} \omega^{s p}\right) \equiv 0, \bar{\omega}^{s p}:=\widetilde{G}_{p}^{q} \omega^{q} . \tag{7}
\end{gather*}
$$

Note the connection with the solenoidal velocity in (5)!

- Example: flapping membranes (Wedi \& Sm., JCP, 2004)

Figure 8: Potential fbw simulation past 3D undulating boundaries

Table 2: Vorticity errors in a potential fbw simulation

fi eld	Max $\|\cdot\|$	Average	Standard deviation
$\Delta t \omega^{1}$	$6.99 \cdot 10^{-2}$	$-4.87 \cdot 10^{-18}$	$1.90 \cdot 10^{-3}$
$\Delta t \omega^{2}$	$6.98 \cdot 10^{-2}$	$-3.19 \cdot 10^{-17}$	$1.90 \cdot 10^{-3}$
$\Delta t \omega^{3}$	$7.62 \cdot 10^{-3}$	$2.20 \cdot 10^{-18}$	$1.71 \cdot 10^{-4}$
$\Delta t \Delta x \nabla \bullet \boldsymbol{\omega}^{s}$	$3.73 \cdot 10^{-3}$	$2.12 \cdot 10^{-17}$	$4.81 \cdot 10^{-5}$

$$
\begin{equation*}
\bar{\epsilon}_{j k}^{*} \equiv \frac{1}{2}\left({\bar{v}_{k, j}}^{*}+\bar{v}_{j, k}^{*}\right) \tag{8}
\end{equation*}
$$

Strain rate, the symmetric complement of the rotation (viz. $0.5 \bar{\omega}^{*}{ }_{j k}$ in Eq. (6)) to the gradient of the covariant velocity, the objective form.

Provision of the dissipative term $\mathcal{V} \sim \operatorname{Div} \bullet \boldsymbol{\tau}$ in momentum equation (3) requires a number of conversions:

$$
\begin{align*}
& \epsilon_{j k}^{*} \equiv \frac{1}{2}\left(\sqrt{g_{k k}} \widetilde{G}_{k}^{p} \frac{\partial \sqrt{g_{j j}} v^{j}}{\partial \bar{x}^{p}}+\sqrt{g_{j j}} \widetilde{G}_{j}^{q} \frac{\partial \sqrt{g_{k k}} v^{k}}{\partial \bar{x}^{q}}\right)-\sqrt{g_{m m}}\left\{\begin{array}{c}
m \\
j k
\end{array}\right\} v^{m} . \\
& \left.\rho_{b} \tau^{* j}:=2 \mu \epsilon_{k}^{* j}+\lambda v^{* m}{ }_{, m} \delta_{k}^{j}\right) \Rightarrow \mathcal{V}^{j} \equiv \sqrt{g_{j j}} \rho_{b}^{-1}\left(\rho_{b} \tau^{* j k}\right)_{, k} \\
& \mathcal{V}^{j}=\frac{1}{\rho^{*}} \frac{\partial}{\partial \bar{x}^{p}}\left(\rho^{*} \widetilde{G}_{k}^{p} \sqrt{g_{j j} g_{k k}} \tau^{* j k}\right)-\tau^{* j k} \frac{\partial \sqrt{g_{j j}}}{\partial x^{k}}+\sqrt{g_{j j}}\left\{\begin{array}{c}
j \\
l m
\end{array}\right\} \tau^{* l m} ; \\
& \tau^{* j k}=2 \nu g^{j j} g^{k k} \epsilon^{*}{ }_{j k}+\kappa g^{j k} v^{* m}{ }_{, m} ; \quad \nu:=\mu / \rho, \kappa:=\lambda / \rho . \tag{9}
\end{align*}
$$

$$
\begin{gather*}
\frac{\mathcal{D} \phi}{\mathcal{D} t} \equiv \frac{\partial \phi}{\partial x^{q}} v^{q} \equiv \frac{\partial \phi}{\partial \bar{x}^{r}} \frac{\partial \bar{x}^{r}}{\partial x^{q}} v^{q} \equiv \frac{\partial \phi}{\partial \bar{x}^{r}} \bar{v}^{r}=: \frac{\mathcal{D} \phi}{\mathcal{D} \bar{t}} \tag{10}\\
\frac{D \bar{v}^{* j}}{D \bar{t}}:=\bar{v}_{, m}^{* j} \bar{v}^{* m} \equiv \frac{d \bar{v}^{* j}}{d \bar{t}}+\overline{\left\{\begin{array}{c}
j \\
i \quad m
\end{array}\right\}} \bar{v}^{* i} \bar{v}^{* m} \tag{11}\\
\delta_{s}^{r} \equiv \frac{\partial \bar{x}^{r}}{\partial x^{q}} \frac{\partial x^{q}}{\partial \bar{x}^{s}} \tag{12}\\
\overline{\bar{G}} \frac{\partial}{\partial \bar{x}^{r}}\left(\frac{\bar{G}}{G} \frac{\partial \bar{x}^{r}}{\partial x^{s}}\right) \equiv 0 \tag{13}
\end{gather*}
$$

Sm.. \& Prusa, in Turbulent Flow Computation, Kluver, 2002

- Each prognostic equation can be written as either Lagrangian evolution equation or Eulerian conservation law:

$$
\begin{equation*}
\frac{d \psi}{d \bar{t}}=R, \frac{\partial \rho^{*} \psi}{\partial \bar{t}}+\bar{\nabla} \bullet\left(\rho^{*} \overline{\mathbf{v}}^{*} \psi\right)=\rho^{*} R . \tag{11}
\end{equation*}
$$

$\psi \equiv v^{j}$ or θ^{\prime}, and R the associated rhs, $\bar{\nabla} \bullet=(\partial / \partial \bar{x}, \partial / \partial \bar{y}, \partial / \partial \bar{z}) \bullet$.

- Either form is approximated to $\mathcal{O}\left(\delta t^{2}, \delta x^{2}\right)$

$$
\begin{equation*}
\psi_{\mathbf{i}}^{n+1}=L E_{\mathbf{i}}\left(\psi^{n}+0.5 \Delta t R^{n}\right)+0.5 \Delta t R_{\mathbf{i}}^{n+1} ; \tag{15}
\end{equation*}
$$

where $\psi_{\mathbf{i}}^{n+1}$ is the solution sought at the grid point $\left(\bar{t}^{n+1}, \overline{\mathbf{x}}_{\mathbf{i}}\right), L E$ denotes a two-time-level either advective semi-Lagrangian or fluxform Eulerian NFT transport operator (Sm. \& Pudykiewicz, JAS, 1992; Sm. \& Margolin, MWR 1993).

- (15) represents an algebraic system implicit for all $\psi \Rightarrow \mathrm{BVP}(\pi)$.
- Example (complete): LES of a moist mesoscale valley flow

Figure 9: Vertical velocity (outer left panel) and cloud water mixing ratio (inner left panel) in the $y z$ cross section at $x=120 \mathrm{~km}$ and cloud-water mixing ratio at bottom surface of the model (right panel); Sm. \& Prusa, IJNMF 2005.

Remarks

- Synergetic interaction between (i) rules of continuous mapping, (ii) strengths of nonoscillatory forward-in-time (NFT) numerical schemes, and (iii) virtues of the anelastic formulation of the governing equations of motion facilitates designing a robust multi-scale research model for geophysical turbulence.

RE (i): e.g., benefits of satisfying the tensor identities at finitedifference level

RE (ii): e.g., benefits of NFT numerical methods for computations on dynamically deforming grids (nested grids)

RE (iii): e.g., benefits of the elliptic BVP rigor imposed by anelastic systems for elastic and compressible clones

- ... a robust multi-scale research model for geophysical turbulence

Figure 10: Urban PBL; $\sqrt{T K E}$ contours in $x y$ cross section at $\mathrm{z}=10 \mathrm{~m}$ (left), and normalized $\left\langle u^{\prime} w^{\prime}\right\rangle$ profi les at a location in the wake (right).

