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Figure 1: Geophysical turbulence; scales
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� Geophysical turbulence embodies phenomena uncommon in
engineering applications, such as breaking of internal inertia-gravity
waves (viz. localization) and spans an enormous range of scales;
e.g., ��� ������� �"!$# , for the Earth atmosphere.
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Geophysical turbulence is intermittent in nature. This dictates three
useful (for research) simulation strategies:

� direct numerical simulation (DNS), with all relevant scales of
motion resolved, thus admitting variety of numerical methods;

� large-eddy simulation (LES), with all relevant subgrid scales pa-
rameterized, thus preferring higher-order methods;

� implicit large-eddy simulation (ILES) — alias monotonically-
integrated large-eddy-simulation (MILES), or implicit turbulence
modeling — with a bohemian attitude toward subgrid scales and
available only with selected numerical methods.
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� ILES a “do-nothing” approach that relies on nonoscillatory
(physically-motivated) numerics that “adapts” itself to the flow in
the course of a simulation � in progress and controversial, yet
effective and relatively simple; i.e., practical.
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Figure 2: The idealized Held-Suarez climate problem (BAMS 1994); instantaneous
solution after 3 years of simulation (left), and zonally averaged 3-year means
(right) (Sm. et al. JAS 2001).
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RE: ILES Justification

Figure 3: 256 � DNS/ILES of transient decaying turbulence; Margolin et al. J. Fluid Eng. 2002.
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RE: More ILES Justification
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Figure 4: 64 � ILES of decaying turbulence, Domaradzki et al. Phys. Fluids 2003.
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� LES with physically-motivated SGS models � theoretically
not universal enough, and practically much more complicated than
ILES, but effective for shear-driven boundary layer flows.

Figure 5: LES of PBL past a rapidly evolving sand dune; Ortiz & Sm., IJNMF 2005

Simulations of boundary layer flows past sand dunes — ��� ��� ��� ���
� �	� "

domain covered with 
���
 
���
 ������
���
 ��� — depend on
explicit SGS model (here TKE), because the saltation physics that
controls dune evolution depends crucially on the boundary stress.
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� DNS � TRUE, although limited to low Reynolds number
flows, a useful complement of laboratory experiments.
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Figure 6: Time-height cross-section of the observed zonal-mean zonal flow velocity component (plate (a),
adapted from Fig.10 in Plumb & McEwan (1978), contour lines are in ������� � ), compared to the result
of the 3D numerical simulation at �	��

����� (plate (b), contour lines are in ��� � � ). According to Plumb
& McEwan (1978), the lowest ����� in plate (a) could not be observed due to restrictions of the viewing
window; Nils Wedi, Ph.D thesis, � .
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� With mesh adaptivity for simulating complex geophysical flows
in mind, we have developed a generalized mathematical framework
for the implementation of deformable coordinates in a generic Eule-
rian/ semi-Lagrangian format of nonoscillatory-forward-in-time (NFT)
schemes.

� There is more involved than a mere application of well-known
mathematical theories. Technical apparatus of the Riemannian Ge-
ometry must be applied judiciously, in order to arrive at an effective
numerical model.



9

Anelastic Model: Analytic Formulation

Prusa & Sm., JCP 2003; Wedi & Sm., JCP 2004

� diffeomorphic mapping

� � � � � � � � #�� ��� ��� ��� � � � � # ��� ��� � � � � # ��	 ��� � � � � � � # #�� (1)

(t,x,y,z) does not have to be Cartesian!

Figure 7: Continuous global mesh transformation, an example
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� Anelastic system of Lipps & Hemler (JAS, 1982)� ����� ������#�
� � 
 �
	 (2)
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RE: Technical apparatus must be applied judiciously...

� VORTICITY (simple substantiation compared to STRESS)

� � � � 
 � � � , � � � � � , � � �
5

 �

5 � � . � � � �� 3
�
��� � � � � ��

�
3 # (6)

in any system �%� � 
 � � � �2� � , so in the physical space �%� � 
 � � �/� � � .
� � ��� 
 � � � � � � � �

�� ��
�
3 � � � � 3 # � � � � � 3 ! 
 �� 53 � 5 	 (7)

Note the connection with the solenoidal velocity in (5)!
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� Example: flapping membranes (Wedi & Sm., JCP, 2004)

Figure 8: Potential flow simulation past 3D undulating boundaries

Table 2: Vorticity errors in a potential flow simulation
field Max � � � Average Standard deviation�������

6.99 � ��� ��� -4.87 � ��� � �
	 1.90 � � � � ������ �
6.98 � ��� ��� -3.19 � ��� � � � 1.90 � � � � ������ � 7.62 � ��� � � 2.20 � ��� � �
	 1.71 � � � � 
�����
��� �������
3.73 � ��� � � 2.12 � ��� � � � 4.81 � � � ���
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� MOMENTUM DISSIPATION� � � � � �
� � � � � , � � � � � , � # (8)

Strain rate, the symmetric complement of the rotation (viz. ��	 � � � � �
in Eq. (6)) to the gradient of the covariant velocity, the objective
form.

Provision of the dissipative term � � ����� �	���
in momentum equation (3) re-

quires a number of conversions:


 ��
��� �� ���� � ��� ���� ��� � � ��� � �� � � � � � ��� ����� � � � ��� � �� � �  !#"$� �&%'%)(+*, �.- � % �

/10 � � � ��2 � �43 
 � � � �65 � � % 7 % � � � ) 8 � � � � � �9� / � �0 � /10 � � �
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 7 �
� � � �/ � �� � �;: / � �� � � � � ��� � �<� � � �=�?> " � � �
� � � � ���� � � � � � �9� ( ,

� * - � �
@ %BA
� � �
� � � � � �9� � ��� 
 � �
� �$C � �
� � � % 7 % A

� 2 � 3'D /;E C 2 � 5 D / �
(9)
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� TENSOR IDENTITIES
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Finite-Difference Approximations

Sm.. & Prusa, in Turbulent Flow Computation, Kluver, 2002

� Each prognostic equation can be written as either Lagrangian
evolution equation or Eulerian conservation law:���� � 
 � �

� � � ��
�

� � � � � � � � � # 
 � � � 	 (14)

� � � � or � � , and � the associated rhs,
� � ! 
 � � $ � � � � $ � � � � $ � � # � .

� Either form is approximated to ��� 
 �$� � 
�� �$#
��� D �� 
 � � � � ��� � � 	 ��� �	� � # � � 	 ��� �	� � D �� # (15)

where
� � D �� is the solution sought at the grid point � � � D �

� 
 � # , � �
denotes a two-time-level either advective semi-Lagrangian or flux-
form Eulerian NFT transport operator (Sm. & Pudykiewicz, JAS,
1992; Sm. & Margolin, MWR 1993).
� (15) represents an algebraic system implicit for all

� � BVP(
�

) .
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� Example (complete): LES of a moist mesoscale valley flow
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Figure 9: Vertical velocity (outer left panel) and cloud water mixing ratio (inner
left panel) in the ��� cross section at

� � � � �
km and cloud-water mixing ratio at

bottom surface of the model (right panel); Sm. & Prusa, IJNMF 2005.
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Remarks

� Synergetic interaction between (i) rules of continuous mapping,
(ii) strengths of nonoscillatory forward-in-time (NFT) numerical schemes,
and (iii) virtues of the anelastic formulation of the governing equa-
tions of motion facilitates designing a robust multi-scale research
model for geophysical turbulence.

RE (i): e.g., benefits of satisfying the tensor identities at finite-
difference level

RE (ii): e.g., benefits of NFT numerical methods for computations
on dynamically deforming grids (nested grids)

RE (iii): e.g., benefits of the elliptic BVP rigor imposed by anelas-
tic systems for elastic and compressible clones
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�
... a robust multi-scale research model for geophysical turbulence

Figure 10: Urban PBL;

�
��� 
 contours in

�
� cross section at z=10 m (left), and

normalized �����	�
��� profiles at a location in the wake (right).


