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Figure 1: Geophysical turbulence; scales O(107), O(10%), and O(1072) m.

e Geophysical turbulence embodies phenomena uncommon in
engineering applications, such as breaking of internal inertia-gravity
waves (viz. localization) and spans an enormous range of scales;
e.g., k ~ O(10%), for the Earth atmosphere.



Geophysical turbulence is intermittent in nature. This dictates three
useful (for research) simulation strategies:

e direct numerical simulation (DNS), with all relevant scales of
motion resolved, thus admitting variety of numerical methods;

e large-eddy simulation (LES), with all relevant subgrid scales pa-
rameterized, thus preferring higher-order methods;

e implicit large-eddy simulation (ILES) — alias monotonically-
integrated large-eddy-simulation (MILES), or implicit turbulence
modeling — with a bohemian attitude toward subgrid scales and
available only with selected numerical methods.



e |ILES a “do-nothing” approach that relies on nonoscillatory
(physically-motivated) numerics that “adapts” itself to the flow in
the course of a simulation < in progress and controversial, yet
effective and relatively simple; i.e., practical.
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Figure 2: The idealized Held-Suarez climate problem (BAMS 1994); instantaneous
solution after 3 years of simulation (left), and zonally averaged 3-year means
(right) (Sm. et a. JAS2001).



RE: ILES Justification
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Figure 3: 2562 DNS/ILES of transient decaying turbulence; Margolin et al. J. Fluid Eng. 2002.

time 1.00 | 1.25 | 1.50 | 1.75 | 2.00
—15 < ud > 022/(4¢) | 0.785 | 0.933 | 1.028 | 1.054 | 1.019
Table 1: Verification of “4/5” Kolmogorov’s law ((6v |(r,1))*) = —2el

5

= ¢ ~ v3/ly;

dv(r,1) .= [v(r +1) = v(r)] - /), v,:= \/<v(r +1,) - v(r)) — Frisch 1995.
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RE: More ILES Justification
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Figure 4: 64° ILES of decaying turbulence, Domaradzki et al. Phys. Fluids 2003.
Energy spectra and Kolmogorov function Cx (k) = e ?3k*3E(k) dlav = 0.0
& ((byy (D)) ~ 13



e LES with physically-motivated SGS models < theoretically
not universal enough, and practically much more complicated than
ILES, but effective for shear-driven boundary layer flows.
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Figure 5: LES of PBL past arapidly evolving sand dune; Ortiz & Sm., IINMF 2005

Simulations of boundary layer flows past sand dunes — 340 x 180 x
40 m*® domain covered with 6z = dy = 2m, dz = 1 m — depend on
explicit SGS model (here TKE), because the saltation physics that
controls dune evolution depends crucially on the boundary stress.



e DNS < TRUE, although limited to low Reynolds number
flows, a useful complement of laboratory experiments.
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Figure 6: Time-height cross-section of the observed zonal-mean zonal flow velocity component (plate (),
adapted from Fig.10 in Plumb & McEwan (1978), contour lines are in mms~!), compared to the result
of the 3D numerical simulation at y = L, /2 (plate (b), contour lines are in ms~—!). According to Plumb
& McEwan (1978), the lowest 2 ¢m in plate (a) could not be observed due to restrictions of the viewing
window; Nils Wedi, Ph.D thesis, +.



e With mesh adaptivity for simulating complex geophysical flows
in mind, we have developed a generalized mathematical framework
for the implementation of deformable coordinates in a generic Eule-
rian/ semi-Lagrangian format of nonoscillatory-forward-in-time (NFT)
schemes.

e There is more involved than a mere application of well-known
mathematical theories. Technical apparatus of the Riemannian Ge-
ometry must be applied judiciously, in order to arrive at an effective
numerical model.



Anelastic Model: Analytic Formulation

Prusa & Sm., JCP 2003; Wedi & Sm., JCP 2004

e diffeomor phic mapping

(z7 T? g? 7) = ( t? E(t7 ’T7 y)7 D(t7 CC, y)) C(t7 :U, y) Z) ) ? (1)
(t,x,y,z) does not have to be Cartesian!

Figure 7: Continuous global mesh transformation, an example



e Anelastic system of Lipps & Hemler (JAS 1982)

HE -0 g

Ui—g e, g;; + gz;53j +F Vi (3)
%’ —v* gg; +H, (4)

o :—Nk—a;: v = Gk (5)

pt = pyG d)dt = 8/t + v (9/0z") . v = dz*/dt ="

éé? = @(87’“/83}7) & ds® = gy daPdr?, grg™ = 0!
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RE: Technical apparatus must be applied judiciously...

¢ VORTICITY (simple substantiation compared to STRESS)
O/ Gk
Wik =Th; =0k = W =¢grg Gp% : (6)
I
in any system v*;, = g, v*, so in the physical space v*; = ,/g;;v7.

Vew=VeVXxv=0 =

éa%(Gwsp) =0, w’:=GW'. (7)

Note the connection with the solenoidal velocity in (5)!



e Example: flapping membranes (Wedi & Sm., JCP, 2004)

Figure 8: Potential flow simulation past 3D undulating boundaries

Table 2: Vorticity errors in a potential flow simulation
fi eld Max |.| Average  Standard deviation
Atw! 6.99-10~2 -4.87.10°18 1.90-1073
Atw? 6.98-1072 -3.19-107'7 1.90-1073
Atw? 7.62.1073 2.20-10718 1.71.107*
AtAzV ew® 3731073 2.12.107Y7 4.81-107°




e MOMENTUM DISSIPATION

* 1 * —X
€k = 5 (T +7%k) (8)

Strain rate, the symmetric complement of the rotation (viz. 0.5w*
in Eg. (6)) to the gradient of the covariant velocity, the objective
form.

Provision of the dissipative term V ~ Div e 7 in momentum equation (3) re-
guires a number of conversions:
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e TENSOR IDENTITIES
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Finite-Difference Approximations

Sm.. & Prusa, in Turbulent Flow Computation, Kluver, 2002

e Each prognostic equation can be written as either Lagrangian
evolution equation or Eulerian conservation law:

dip 0p*y
a
vy =17 or @', and R the associated rhs, Ve := (0/0%, 0/07, 0/0%)e .
e Either form is approximated to O(6t?, §z?)

+ Ve (p'Vi)=p'R. (14)

it = LE(y" + 0.5AtR") + 0.5At R ; (15)

where 7! is the solution sought at the grid point ("', x;), LE
denotes a two-time-level either advective semi-Lagrangian or flux-
form Eulerian NFT transport operator (Sm. & Pudykiewicz, JAS

1992; Sm. & Margolin, MWR 1993).
e (15) represents an algebraic system implicit for all x = BVP(x).



e Example (complete): LES of a moist mesoscale valley flow
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Figure 9: Vertical velocity (outer left panel) and cloud water mixing ratio (inner
left panel) in the yz cross section at =z = 120 km and cloud-water mixing ratio at
bottom surface of the model (right panel); Sm. & Prusa, IINMF 2005,



Remarks

e Synergetic interaction between (i) rules of continuous mapping,
(i) strengths of nonoscillatory forward-in-time (NFT) numerical schemes,
and (iii) virtues of the anelastic formulation of the governing equa-
tions of motion facilitates designing a robust multi-scale research
model for geophysical turbulence.

RE (i): e.g., benefits of satisfying the tensor identities at finite-
difference level

RE (ii): e.g., benefits of NFT numerical methods for computations
on dynamically deforming grids (nested grids)

RE (iii): e.g., benefits of the elliptic BVP rigor imposed by anelas-
tic systems for elastic and compressible clones



e ... arobust multi-scale research model for geophysical turbulence

Km*dt/Dx**2 at time= 120.00 k= 6 <uw>/Uokx*2
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Figure 10: Urban PBL; /T K E contoursin zy cross section at z=10 m (left), and
normalized < u'w’ > profi lesat alocation in the wake (right).



