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Large Eddy Simulation:
Estimation, Attribution, Exploration



what is large eddy simulation?

A religion!?

Three-dimensional flows whose smallest cut-off/
filter scale is within a well developed inertial range
of three dimensional turbulence.

A flow realized in a manner which converges to
Navier-Stokes (DNYS) as the grid spacing of the
solver that produces it goes to zero (auxillary
condition)

Compare to Eddy-Permitting simulations.
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caveats?

® Notwithstanding the phenomenological theories, closures that properly
mediate the cascade have proven elusive.

® Most flows of interest are bounded, and interact with their boundaries in
interesting, and important ways... and calculations are always under-resolved
at boundaries.

e Stratification.

® Tests on flows of interest are almost always impossible.



what is it good for?
(i) parameter estimation
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® Pseudoempiricism...
® The spreading angle of the mixing layer.
® Partitioning of energy among velocity components.

e Similarity profile of downstream velocity.



my pet problem™
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*(not nearly so important as deep convection ...)



Recall from last time, the bulk equation may be written as

D¢ Dh B -
S ~ Do [E+Dh]_—Ang—AF¢ (1)
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= — = — = —+Dh+M (2
V Aot M Ao and E ny TPh+ (2)
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Dh
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Given the large-scale flow (D, s.., g ), surface properties, Sp, qo
and Fs, Fq, as a function of the state, closure requires a
specification of M, V. E.



the stratocumulus question

f
M=0 and V= Cy4|v|

and AF
E =« >
Sy —S

what is alpha?
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WOoops...
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Table 4. The averaged growth rate of
the cloud-top height during the second

hour of simulation

Group E

KNMI 1.68
UOK 1.32
UMIST 0.94
NCAR 091
UKMO 0.86
CSU 0.67
Uw 0.51
MPI 0.44
WVU 0.28
ARAP 0.24
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Moeng et al., Bull. Amer. Meteorol. Soc. (1996)
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Figure 5. As Fig. 4, but using standard (25 m) vertical resolution.

Bretherton et al., Quart. J. Roy. Meteorol. Soc. (1998)
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DYCOMS-II (July 2001): observing platforms

GOES, AVHRR, TRMM, QuickScat
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adapted from Stevens et al., (2003)



DYCOMS-II (July 2001): flight strategy
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Method Estimate [cm s™!]

q; budget 0.31 T 0.08

s; budget 0.47 T 0.08

q; cloud-top flux 0.39 T 0.06

Oj3 cloud-top flux 0.31 7 0.09

DMS cloud-top flux 0.53 T 0.08

Weighted Average 0.40 1 0.03

Base Case Test Cases

Model E  Eng=11 | Ear=0 FEg.=50 Essr=2904
AL 0.23 0.20 0.08 0.21 0.16
CM 045 041 0.03 0.45 0.41
DL 0.56 0.46 0.18 0.40 0.43
NT (a2 = 6()) 0.81 0.65 0.36 0.59 0.54
NT (CLQ = 30) 0.57 0.46 0.25 0.43 0.38
LLn=0.25 (046 0.37 0.20 0.28 0.31

Stevens et al.,, 2003, QJRMS.
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LES evaluation using DYCOMS-II data
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remarks

e efforts to reduce mixing made most models perform better in almost every
respect.

® groups whose simulations better represented the cloud layer tried to take
credit ...

® data does seem to bound entrainment, which usefully guides parameterization
(tuesday’s talk).
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what is it good for?
(ii) attribution



Pockets of Open Cells during DYCOMS
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..and EPIC
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19 Comstock, Yuter, Wood, Bretherton



(LES) Pseudo Albedo at 5400 and 17100s
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what is it good for?
(i) exploration
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Trade wind analog to dry convection

@
v,
Yy

\)
-
llllllll

A 3

do,/dz=T

q = qoexp(-z/z,)

» what determines growth rate of layer?
» cloud fraction?
» mass flux at cloud base!?

» velocity scales?
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Visualizations (from three vantage points) of large-eddy simulations of non-precipitating shallow
convection: nz=131, nx=ny=128, dz~dx=dy=37.5m

Side view 45 deg view (soon) top view (eventually)

orange: | m/s isosurface

white: cloud water isosurface
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Temporal evolution of distinguished layers:

(a)

[m]

1457 -

772 =
613 -

[%] (b) cloud fraction
‘]O B v -

0 84 13 30 t [hrs]

24



remarks

® Jlayer grows as t ... growth is mostly through injection, as opposed to
mechanical mixing.

® mass flux scaling determined by subcloud layer scale velocity scales.

® more on shallow convection™® in Zhiming’s talk

25 *(not nearly so important as deep convection ...)



concluding remarks

® large-eddy simulation is a popular and effective way to generate information
about turbulent flows.

® because most flows of interest depend critically on the interaction of a flow
with either the surface or the bounding fluid there is no guarantee that the
information will be useful.

® these statements apply equally to other flow solving strategies (CRM).

® our persistent use of the methodology is also a statement about the
alternatives.
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