Ensemble Filters for Parameter Estimation:

Jeffrey Anderson
NCAR Data Assimilation Research Section (DAReS)

IMAGe TOY Workshop: 27 February, 2006

Prelude: The Data Assimilation Problem:

Given: 1. A physical system (atmosphere, ocean...)

2. Observations of the physical system

Usually sparse and irregular in time and space.
Instruments have error of which we have a (poor) estimate.
Observations may be of 'non-state' quantities.
Many observations may have very low information content.

3. A model of the physical system

Usually thought of as approximating time evolution.
Could also be just a model of balance (attractor) relations.
Truncated representation of 'continuous' physical system. Often quasi-regular discretization in space and/or time. Generally characterized by 'large' systematic errors. May be ergodic with some sort of 'attractor'.

1. Get an improved estimate of state of physical system

Includes time evolution and 'balances'.
Initial conditions for forecasts.
High quality analyses (re-analyses).

2. Get better estimates of observing system error characteristics

Estimate value of existing observations.
Design observing systems that provide increased information.
3. Improve model of physical system

Evaluate model systematic errors.
Select appropriate values for model parameters.
Evaluate relative characteristics of different models.

Seminar Road Map:

1: Single variable and observation of that variable.
2: Single observed variable, single unobserved variable.
3: Generalize to geophysical models and observations.

4: Dealing with sampling and other errors.
5. Parameter estimation.

Tomorrow: Hierarchical Bayesian methods.

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$

A: Prior estimate based on all previous information, C.
B : An additional observation. $p(A \mid B C)$: Posterior (updated estimate) based on C and B .

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$

A: Prior estimate based on all previous information, C.
B: An additional observation. $p(A \mid B C)$: Posterior (updated estimate) based on C and B .

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$

A: Prior estimate based on all previous information, C.
B : An additional observation. $p(A \mid B C)$: Posterior (updated estimate) based on C and B .

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$

A: Prior estimate based on all previous information, C.
B : An additional observation. $p(A \mid B C)$: Posterior (updated estimate) based on C and B .

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$

A: Prior estimate based on all previous information, C.
B : An additional observation. $p(A \mid B C)$: Posterior (updated estimate) based on C and B .

Consistent Color Scheme Throughout Tutorial

Green $=$ Prior

Red = Observation

Blue $=$ Posterior

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$
This product is closed for Gaussian distributions.

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$
This product is closed for Gaussian distributions.

Product of two Gaussians:

Product of d-dimensional normals with means μ_{1} and μ_{2} and covariance matrices Σ_{l} and Σ_{2} is normal.

$$
\mathbf{N}\left(\mu_{1}, \Sigma_{1}\right) N\left(\mu_{2}, \Sigma_{2}\right)=c \mathbf{N}(\mu, \Sigma)
$$

Product of two Gaussians:

Product of d-dimensional normals with means μ_{1} and μ_{2} and covariance matrices Σ_{l} and Σ_{2} is normal.

$$
\mathbf{N}\left(\mu_{1}, \Sigma_{l}\right) N\left(\mu_{2}, \Sigma_{2}\right)=c \mathbf{N}(\mu, \Sigma)
$$

Covariance: $\quad \Sigma=\left(\Sigma_{1}^{-1}+\Sigma_{2}^{-1}\right)^{-1}$
Mean:

$$
\mu=\left(\Sigma_{l}^{-1}+\Sigma_{2}^{-1}\right)^{-1}\left(\Sigma_{l}^{-1} \mu_{l}+\Sigma_{2}^{-1} \mu_{2}\right)
$$

Product of two Gaussians:

Product of d-dimensional normals with means μ_{1} and μ_{2} and covariance matrices Σ_{l} and Σ_{2} is normal.

$$
\mathbf{N}\left(\mu_{1}, \Sigma_{1}\right) N\left(\mu_{2}, \Sigma_{2}\right)=c \mathbf{N}(\mu, \Sigma)
$$

Covariance: $\quad \Sigma=\left(\Sigma_{1}^{-1}+\Sigma_{2}^{-1}\right)^{-1}$
Mean:

$$
\mu=\left(\Sigma_{l}^{-1}+\Sigma_{2}^{-1}\right)^{-1}\left(\Sigma_{l}^{-1} \mu_{l}+\Sigma_{2}^{-1} \mu_{2}\right)
$$

Weight: $\quad c=\frac{1}{(2 \Pi)^{d / 2}\left|\Sigma_{l}+\Sigma_{2}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left[\left(\mu_{2}-\mu_{I}\right)^{T}\left(\Sigma_{l}+\Sigma_{2}\right)^{-1}\left(\mu_{2}-\mu_{l}\right)\right]\right\}$

We'll ignore the weight unless noted since we immediately normalize products to be PDFs.

Product of two Gaussians:

Product of d-dimensional normals with means μ_{1} and μ_{2} and covariance matrices Σ_{l} and Σ_{2} is normal.

$$
\mathbf{N}\left(\mu_{1}, \Sigma_{1}\right) N\left(\mu_{2}, \Sigma_{2}\right)=c \mathbf{N}(\mu, \Sigma)
$$

Covariance: $\quad \Sigma=\left(\Sigma_{1}^{-1}+\Sigma_{2}^{-1}\right)^{-1}$
Mean:

$$
\mu=\left(\Sigma_{l}^{-1}+\Sigma_{2}^{-1}\right)^{-1}\left(\Sigma_{l}^{-1} \mu_{l}+\Sigma_{2}^{-1} \mu_{2}\right)
$$

Weight: $\quad c=\frac{1}{(2 \Pi)^{d / 2}\left|\Sigma_{l}+\Sigma_{2}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left[\left(\mu_{2}-\mu_{1}\right)^{T}\left(\Sigma_{l}+\Sigma_{2}\right)^{-1}\left(\mu_{2}-\mu_{1}\right)\right]\right\}$

Easy to derive for 1-D Gaussians; just do products of exponentials.

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$
Ensemble filters: Prior is available as finite sample.

Don't know much about properties of this sample. May naively assume it is random draw from 'truth'.

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$
How can we take product of sample with continuous likelihood?

Fit a continuous (Gaussian for now) distribution to sample.

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$
Observation likelihood usually continuous (nearly always Gaussian).

If Obs. Likelihood isn't Gaussian, can generalize methods below.
For instance, can fit set of Gaussian kernels to obs. likelihood.

Bayes rule: $p(A \mid B C)=\frac{p(B \mid A C) p(A \mid C)}{p(B \mid C)}=\frac{p(B \mid A C) p(A \mid C)}{\int p(B \mid x) p(x \mid C) d x}$
Product of prior Gaussian fit and Obs. likelihood is Gaussian.

Computing continuous posterior is simple. BUT, need to have a SAMPLE of this PDF.

Sampling Posterior PDF:

There are many ways to do this.

Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform. Will interact with properties of prediction models, etc.

Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Ensemble Filter Algorithms:
3. Ensemble Adjustment (Kalman) Filter.

Compute posterior PDF (same as previous algorithms).

Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to 'adjust' ensemble.

Ensemble Filter Algorithms:
3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to 'adjust' ensemble.
First, 'shift' ensemble to have exact mean of posterior.

Ensemble Filter Algorithms:
3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to 'adjust' ensemble.
First, 'shift' ensemble to have exact mean of posterior.
Second, use linear contraction to have exact variance of posterior.

Ensemble Filter Algorithms:
3. Ensemble Adjustment (Kalman) Filter.

p is prior, u is update (posterior), overbar is ensemble mean, σ is standard deviation.

Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Bimodality maintained, but not appropriately positioned or weighted. No problem with random outliers.

Phase 2: Single observed variable, single unobserved variable

So far, have known observation likelihood for single variable.
Now, suppose prior has an additional variable.

Will examine how ensemble methods update additional variable.
Basic method generalizes to any number of additional variables.

Methods related to Kalman filter in some sense, but not done here.

Ensemble filters: Updating additional prior state variables

Ensemble filters: Updating additional prior state variables

Assume that all we know is prior joint distribution.

One variable is observed.

Update observed variable with one of previous methods.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Finally, multiply by prior sample correlation.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Finally, multiply by prior sample correlation.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Finally, multiply by prior sample correlation.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Finally, multiply by prior sample correlation.

Ensemble filters: Updating additional prior state variables

Now have an updated (posterior) ensemble for the unobserved variable.

Ensemble filters: Updating additional prior state variables

Ensemble filters: Updating additional prior state variables

-2024
Obs.

Ensemble filters: Updating additional prior state variables

CRITICAL POINT:

Since impact on unobserved variable is simply a linear regression, can do this INDEPENDENTLY for any number of unobserved variables!

Could also do many at once using matrix algebra as in traditional Kalman Filter.

Ensemble filters: Updating additional prior state variables
Two primary error sources:

These are major issues for parameter estimation.

1. Linear approximation is invalid.

Substantial nonlinearity in 'true' relation over range of prior.
2. Sampling error due to noise.

Even if linear relation, sample regression coefficient imprecise.

May need to address both issues for good performance.

Parameter Estimation Questions:

1. Are parameters 'linearly' related to state and observations?
2. Are parameters strongly or weakly related to observations?

Regression sampling error and filter divergence

Ways to deal with regression sampling error:

1. Ignore it: if number of unrelated observations is small and there is some way of maintaining variance in priors.
2. Use larger ensembles to limit sampling error.
3. Use additional a priori information about relation between observations and state variables.
4. Try to determine the amount of sampling error and correct for it.

Ways to deal with regression sampling error:
3. Use additional a priori information about relation between observations and state variables.

Atmospheric assimilation problems.
Weight regression as function of horizontal distance from observation.
Gaspari-Cohn: 5th order compactly supported polynomial.

Ways to deal with regression sampling error:

3. Use additional a priori information about relation between observations and state variables.

Can use other functions to weight regression.
Unclear what distance means for some obs./state variable pairs. Referred to as LOCALIZATION.

Phase 3: Generalize to geophysical models and observations

Dynamical system governed by (stochastic) Difference Equation:

$$
\begin{equation*}
d x_{t}=f\left(x_{t}, t\right)+G\left(x_{t}, t\right) d \beta_{t}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

Observations at discrete times:

$$
\begin{equation*}
y_{k}=h\left(x_{k}, t_{k}\right)+v_{k} ; k=1,2, \ldots ; \quad t_{k+1}>t_{k} \geq t_{0} \tag{2}
\end{equation*}
$$

Observational error white in time and Gaussian (nice, not essential).

$$
\begin{equation*}
v_{k} \rightarrow N\left(0, R_{k}\right) \tag{3}
\end{equation*}
$$

Complete history of observations is:

$$
\begin{equation*}
Y_{\tau}=\left\{y_{l} ; t_{l} \leq \tau\right\} \tag{4}
\end{equation*}
$$

Goal: Find probability distribution for state at time t:

$$
\begin{equation*}
p\left(x, t \mid Y_{t}\right) \tag{5}
\end{equation*}
$$

Phase 3: Generalize to geophysical models and observations

State between observation times obtained from Difference Equation. Need to update state given new observation:

$$
\begin{equation*}
p\left(x, t_{k} \mid Y_{t_{k}}\right)=p\left(x, t_{k} \mid y_{k}, Y_{t_{k-1}}\right) \tag{6}
\end{equation*}
$$

Apply Bayes rule:

$$
\begin{equation*}
p\left(x, t_{k} \mid Y_{t_{k}}\right)=\frac{p\left(y_{k} \mid x_{k}, Y_{t_{k-1}}\right) p\left(x, t_{k} \mid Y_{t_{k-1}}\right)}{p\left(y_{k} \mid Y_{t_{k-1}}\right)} \tag{7}
\end{equation*}
$$

Noise is white in time (3) so:

$$
\begin{equation*}
p\left(y_{k} \mid x_{k}, Y_{t_{k-1}}\right)=p\left(y_{k} \mid x_{k}\right) \tag{8}
\end{equation*}
$$

Integrate numerator to get normalizing denominator:

$$
\begin{equation*}
p\left(y_{k} \mid Y_{t_{k-1}}\right)=\int p\left(y_{k} \mid x\right) p\left(x,\left.t_{k}\right|^{Y_{t_{k-1}}}\right) d x \tag{9}
\end{equation*}
$$

Phase 3: Generalize to geophysical models and observations

Probability after new observation:

$$
p\left(x, t_{k} \mid Y_{t_{k}}\right)=\frac{p\left(y_{k} \mid x\right) p\left(x, t_{k} \mid Y_{t_{k-1}}\right)}{\int p\left(y_{k} \mid \xi\right) p\left(\xi,\left.t_{k}\right|_{t_{k-1}}\right) d \xi}(10)
$$

Exactly analogous to earlier derivation except that x and y are vectors.

EXCEPT, no guarantee we have prior sample for each observation.
SO, let's make sure we have priors by 'extending' state vector.

Phase 3: Generalize to geophysical models and observations

Extending the state vector to joint state-observation vector.
Recall: $y_{k}=h\left(x_{k}, t_{k}\right)+v_{k} ; k=1,2, \ldots ; \quad t_{k+1}>t_{k} \geq t_{0}$

Applying h to x at a given time gives expected values of observations.
Get prior sample of obs. by applying h to each sample of state vector x .
Let $\mathrm{z}=[\mathrm{x}, \mathrm{y}]$ be the combined vector of state and observations.

Phase 3: Generalize to geophysical models and observations
NOW, we have a prior for each observation:

$$
\begin{equation*}
p\left(z, t_{k} \mid Y_{t_{k}}\right)=\frac{p\left(y_{k} \mid z\right) p\left(z, t_{k} \mid Y_{t_{k-1}}\right)}{\int p\left(y_{k} \mid \xi\right) p\left(\xi, t_{k} \mid Y_{t_{k-1}}\right) d \xi} \tag{10.ext}
\end{equation*}
$$

Phase 3: Generalize to geophysical models and observations

One more issue: how to deal with many observations in set y_{k} ?

Let y_{k} be composed of s subsets of observations: $y_{k}=\left\{y_{k}^{1}, y_{k}^{2}, \ldots, y_{k}^{s}\right\}$

Observational errors for obs. in set i independent of those in set j .

Then: $p\left(y_{k} \mid z\right)=\prod_{i=1}^{s} p\left(y_{k}^{i} \mid z\right)$
Can rewrite (10.ext) as series of products and normalizations.

Phase 3: Generalize to geophysical models and observations

One more issue: how to deal with many observations in set y_{k} ?

Implication: can assimilate observation subsets sequentially.
If subsets are scalar (individual obs. have mutually independent error distributions), can assimilate each observation sequentially.

If not, have two options:

1. Repeat everything above with matrix algebra.
2. Do singular value decomposition; diagonalize obs. error covariance. Assimilate observations sequentially in rotated space. Rotate result back to original space.

Good news: Most geophysical obs. have independent errors!

How an Ensemble Filter Works for Geophysical Data Assimilation

1. Use model to advance ensemble (3 members here) to time at which next observation becomes available.

Ensemble state estimate after using previous observation (analysis).

How an Ensemble Filter Works for Geophysical Data Assimilation

2. Get prior ensemble sample of observation, $\mathrm{y}=\mathrm{h}(\mathrm{x})$, by applying forward operator h to each ensemble member.

Theory: observations from instruments with uncorrelated errors can be done sequentially.

How an Ensemble Filter Works for Geophysical Data Assimilation
3. Get observed value and observational error distribution from observing system.

How an Ensemble Filter Works for Geophysical Data Assimilation
4. Find increment for each prior observation ensemble (this is a scalar problem for uncorrelated observation errors).

How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly regress observation increments onto state variable increments.

How an Ensemble Filter Works for Geophysical Data Assimilation
6. When all ensemble members for each state variable are updated, have a new analysis. Integrate to time of next observation...

Phase 3: Generalize to geophysical models and observations

Simple example: Lorenz-63 3-variable chaotic model.
Observation in red.

Prior ensemble in green.

Observing all three state variables.

Obs. error variance $=4.0$.
20
4 20-member ensembles.

Phase 3: Generalize to geophysical models and observations
Simple example: Lorenz-63 3-variable chaotic model.

Phase 3: Generalize to geophysical models and observations
Simple example: Lorenz-63 3-variable chaotic model.

Phase 3: Generalize to geophysical models and observations
Simple example: Lorenz-63 3-variable chaotic model.

Phase 3: Generalize to geophysical models and observations

Simple example: Lorenz-63 3-variable chaotic model.

Observation in red.

Prior ensemble in green.

Ensemble is passing through unpredictable region.

Phase 3: Generalize to geophysical models and observations

Simple example: Lorenz-63 3-variable chaotic model.

Phase 3: Generalize to geophysical models and observations

Simple example: Lorenz-63 3-variable chaotic model.

Phase 3: Generalize to geophysical models and observations

Simple example: Lorenz-63 3-variable chaotic model.

Phase 4: Quick look at real atmospheric applications...

Results from CAM Assimilation: January, 2003

Model:

CAM 3.1 T85L26

U,V, T, Q and PS state variables impacted by observations.
Land model (CLM 2.0) not impacted by observations.
Climatological SSTs.
Assimilation / Prediction Experiments:
80 member ensemble divided into 4 equal groups.
Adaptive error correction algorithm.
Initialized from a climatological distribution (huge spread).
Uses most observations used in reanalysis
(Radiosondes, ACARS, Sat. Winds..., no surface obs. or retrievals).
Assimilated every 6 hours; +/- 1.5 hour window for obs.

NCEP reanalyses, 500mb GPH, Jan $0106 Z$
NCEP

DART/CAM

Difference.

NCEP reanalyses, 500mb GPH, Jan $0200 Z$
NCEP

DART/CAM

Difference.

After 1 day.

NCEP reanalyses, 500mb GPH, Jan $0400 Z$
NCEP

DART/CAM

NCEP reanalyses, 500mb GPH, Jan $0800 Z$
NCEP

DART/CAM

6-Hour Forecast and Analysis Observation Space Temperature RMS

RMS Error: Tropics

RMS Error: Northern Hemisphere

Northern Hemisphere

6-Hour Forecast and Analysis Observation Space Wind RMS

RMS Error: Tropics

RMS Error: Northern Hemisphere

Finally..., Parameter Estimation.

Suppose model is governed by (stochastic) Difference Equation:

$$
\begin{equation*}
d x_{t}=f\left(x_{t}, t ; u\right)+G\left(x_{t}, t ; w\right) d \beta_{t}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

where u and w are vectors of parameters.
Also, suppose we really don't know values of parameters (very well).

Can use observations with assimilation to help constrain these values.

Rewrite (1) as:

$$
\begin{equation*}
d x_{t}^{A}=f^{A}\left(x_{t}^{A}, t\right)+G^{A}\left(x_{t}^{A}, t\right) d \beta_{t}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

where the augmented state vector includes $\mathrm{x}_{\mathrm{t}}, \mathrm{u}$, and w .

Model is modified so values of u and w can be changed by assimilation.

From ensemble filter perspective:

Just add any parameters of interest to the model state vector; Proceed to assimilate as before.

Possible difficulties:

1. Where are parameters 'located' for localization?
2. Parameters won't have any error growth in time (unless we add some): could lead to filter divergence.
3. Parameters may not be strongly correlated with any observations.

Testing Parameter Estimation in Lorenz-96 40-variable Model

Variable size low-order dynamical system
N variables, $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$
Use $\mathrm{N}=40, \mathrm{~F}=8.0$, 4th-order Runge-Kutta with $\mathrm{dt}=0.0$

Time series of x_{1}

Testing Parameter Estimation in Lorenz-96 40-variable Model
$\mathrm{d} \mathrm{X}_{\mathrm{i}} / \mathrm{dt}=\left(\mathrm{X}_{\mathrm{i}+1}-\mathrm{X}_{\mathrm{i}-2}\right) \mathrm{X}_{\mathrm{i}-1}-\mathrm{X}_{\mathrm{i}}+\mathrm{F} \quad \mathrm{i}=1, \ldots 40$
(cyclic indices).
Have observations of functions of state variables.
Generated by model with fixed but unknown value of F .
Recast F as a state variable. Single additional variable, or 40 as follows:

$$
\begin{align*}
& \mathrm{d} \mathrm{X}_{\mathrm{i}} / \mathrm{dt}=\left(\mathrm{X}_{\mathrm{i}+1}-\mathrm{X}_{\mathrm{i}-2}\right) \mathrm{X}_{\mathrm{i}-1}-\mathrm{X}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \tag{2}\\
& \mathrm{dF}_{\mathrm{i}} / \mathrm{dt}=\mathrm{N}\left(0, \sigma_{\text {noise }}\right) \tag{3}
\end{align*}
$$

Can observations of some function of state variables constrain F?

Testing Parameter Estimation in Lorenz-96 40-variable Model 20 Member Ensemble (10 Plotted).
40 Randomly Located Observations (interpolated state) every step.
Truth in Yellow (8.0)
Ensemble

Intriguing Fact: Best assimilations of state come when F_{i} varies, even better than when F_{i} is set to exact value, 8 !

Climate Model Parameter Estimation via Ensemble Data Assimilation

T21 CAM assimilation of gravity wave drag efficiency parameter.

Oceanic values are noise (should be 0).
$0<$ efficiency<~4 suggested by modelers.

Positive values over NH land expected.
Problem: large negative values over SH land near convection. Reduces model bias, but for 'Wrong Reason'.

Assimilation tries to use free parameter to fix ALL model problems

Ensemble Assimilation / Parameter Estimation Issues

1. Dealing with sampling noise.
A. How to localize.
B. What are expected correlations of obs. with parameters?
C. If these are small, can things be 'rotated' to get signal?
2. What question is being answered?
A. Filters try to minimize RMS error.
B. Hard to specify complex prior constraints on parameters.
C. Model designers may be asking a different question.
3. Observability.
A. How much can one get from available obs?
B. Is it hard to estimate many parameters at once?
