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What | mean by Hierarchical Bayesian.
Two interdependent filters using the same observations.

Case 1: Adaptive error correction via inflation:
Ensemble filter for the state,
and
Continuous filter of parameter that corrects model error.

Case 2: Estimating sample regression error in ensemble filters
Ensemble filter for state,
and
An ensemble of these for sampling error in regression.

Anderson: Hierarchical Bayesian Filtering: IMAGe TOY 2 2/24/06



Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors

2. h errors; s _ 4. Sampling Error;
Replresentateness '- L=~ "7 7" Gaussian Assumption
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1. Model Error 5. Sampling Error:”

Assuming Linear
Statistical Relation
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Dealing Wth Ensemble Filter Errors

Fix 1, 2, 3 independently

'3. Gross Obs. Errors

HARD but ongoing.

5. Sampling Error,"
Assuming Linear
Statistical Relation

1. Model Efror

2. h errors; ’ 4. Sampling Error;
Representateness # = T =Gaussian Assumpti
1
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DnOften, ensemble filters...
1-4: Covariance inflation,
Increase prior uncertainty
to give obs more impact.

5. ‘Localization’: only let

obs. impact a set of
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‘nearby’ state variables.
Often smoothly decrease

Impact to 0 as function of
distance.
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod
.4?0.6 450 N 1
S Actual 4.714 SDs /
B 0.4fofo —_— T W— :
£ | Expected Separation
0.2 ) SiDr— \ o — S.Do\ :
94 - - 0 2 4

. . 2 2
2. Expected(prior mean - obs.ervatlon)/erprior + Ogps

Assumes that prior and observation are supposed to be unbiased.
Is it model error or random chance?
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\ .
3 : Actual 3?.698 SDs
804 e e -
O ' Expected Sef ratlon
o 0.2} '”ﬂa.t.l.S.D.. ............... ‘.\. e —_— S Do\ -

94 o R 0 - 2 4

2. Expected(prior mean - obs.ervatlon)/erpr,Or ngs

3. Inflating increases expected separation.
Increases ‘apparent’ consistency between prior and observation.
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\
3 : Actual 3?.698 SDs
S04 I S
O ' Expected Sef ratlon
o 0.2} '”ﬂa.t.l.S.D. ............... ‘.\. e —_— S Do\ -

94 o R 0 - 2 4

2
Distance, D, from prior mean y to obsnig, Jmp”or 0o pe = N(O, )

Prob. Y, is observed giveh: p(y,|A) = (216%™ “exp(—D?/26%)
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

Use Bayesian statistics to get estimate of inflation faktor,

Prior PDF.___ Obs. Likelihood

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

Assume prior is gaussiap(A, t|Y; - N(Ap, 6% )
_1 ’
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

Use Bayesian statistics to get estimate of inflation faktor,

| - Prior PDF5 .. Obs leellhood

We've assumed a
? gaussian for prior

Pt Yy ).

PriOfA PDF Recall thatp(yk‘)\)

can be evaluated
- from normal PDF.

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘)\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

Obs. leellhood

0.6}nflated P-nor-A--w-o--7-5-,»-f-*--'---"-’-- -------- N SRR G et p(yk‘)\ 0.75)
Qap S N ~ from normal PDF.
Q.2F iy Y AT ;

o 2 Multiply by

P =075 Yy )

~to get

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘)\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

: . Obs. Likelihood
0.6fInflated P-rlor-}\--“-1--5----»--’;-------’-s- --------- N I

Get p(yk‘)\ 1.50)

from normal PDF.

0.2 :
o _ 4|wmﬂmyby
2r By """"""""" o S A """"""""""" 5 p()\ = 1. 5Q tk‘Ytk 1

: § : : | 1o get
v o\ e o e PN =1504Y, )

0 1 2 3 4 5 6
Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘)\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

: . Obs. leellhood

0.6fInflated: P'FIOI"?\"“'2"2'5 ----- i e N S G et p(yk‘)\ 2. 25)
O.4p """""" = S NN A ~ from normal PDF.
0.2 ;

o | 2 Multiply by

2r By """"""""" A S A """"""""""" 5 p()\ 2. 25 tk‘Ytk 1

' ' ' ~to get
A e Nt - p(}\ 225 tk|Y
% i 5 ©

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘)\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

Use Bayesian statistics to get estimate of inflation faktor,

.. Obs. Likelihood
0.6 SR P N S - Repeat for a range
0.4} ' | ' ~ of values of\.
0.2} '
0 ; - - Now must get pos-
-1 0 1 2 3 4 terior in same form
Observation: y _ _
2p G S e e R ~as prior (gaussian).
: Prior A PDF : : :

D Likelihood y observed gfiven A
Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk l)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

z - Obs. Likelihood ;
Q.6 e, R N TR S - Very little informa-
O.4p el v N T ~ tion aboutA in a
ook AN S ST N A ~ single observation.
0 : - - :

-1 4 Posterior and prior

Observation: y o
D ~are very similar.

Prior A PDF

b e N ~ Normalized poste-
Posterior ~ rior indistinguish-

/ y \ able from prior.

% 2

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk l)/normalization
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

: S Obs leellhood :

Q.6 A SRV N Very little informa-
Q.4F s ------------ P --------------- “ ---------------------- ; tion aboufA in a
0.2t S AN single observation.

0 === ' i . .

-1 0 1 2 3 4 Posterior and prior

Observation: y ..
~are very similar.

).OLf A Posterior — Prior TS

N -~ Difference shows
- slight shift to larger
JOLp o T Max density shifted to right - yvalues of\.

Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk l)/normalization

Anderson: Hierarchical Bayesian Filtering: IMAGe TOY 15 2/24/06



Variance inflation for Obseawions: An Adaptie Error Dlerant Filter
Use Bayesian statistics to get estimate of inflation faktor,

S Obs. leellhood :
0.6 SRR SRRV G T NS SRR ~ One option is to use
0.4 gt f NI R N AR - Gaussian prior for
0.2F il S g N A.
O H‘—fi z p z :
-1 0 1 2 3 4 Select max (mode)
Observation: y
D ~ of posterior as
Find Max by search Prior A PDF " mean of updated
b ~ Gaussian.
Max is new A mean
/ X \ Do a fit for updated
0

2 standard deviation.
Obs. Space Inflation Factor: A

p()\,tk|Ytk) = p(yk‘}\)p()\,tk‘Ytk 1)/normalization
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Variance inflation for Obseations: An Adaptie Error Dlerant Filter

A. Computing updated inflation meak,

Mode ofp(yk‘)\) P(A, tk‘Ytk—l) can be found analytically!

Solvingo p(y,|A)p(A, T, |Y )|/0A= 0 leads to 6th order poly éh
1 K[t

This can be reduced to a cubic equation and solved to give mode.
New A, is set to the mode.

This iIs relatively cheap compared to computing regressions.
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Variance inflation for Obseations: An Adaptie Error Dlerant Filter

A. Computing updated inflation varianar;ﬁ’ y

1. Evaluate numerator at meadgp  and second pointp@.¢.0) )
2. Findo? , soN(Ay, 0y ,) goes througb(Ay) — amdh, + 0y, o)

3. Compute ag? = -0y o/ 2Inr  whene = p(Ay+ 0y )/ P(Au)

Anderson: Hierarchical Bayesian Filtering: IMAGe TOY 18 2/24/06



Obsenation Space Computations with AdagtiError Correction

0-6 ! ! !

2 0.4}
=
©
e
@)
z0.2

O-” 1 1 - o i

=4 -2 0 2 4

1. Compute updated inflation distributigo(A, tk|Ytk)
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Obsenation Space Computations with AdagtiError Correction

0-6 ! ! !

o
N

Probability

O
N

1. Compute updated inflation distributigo(A, tk|Ytk)

2. Inflate ensemble using mean of updatetistribution.
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Obsenation Space Computations with AdagtiError Correction

0.6

o
N

Probability

O
N

1. Compute updated inflation distributigo(A, tk|Ytk)

2. Inflate ensemble using mean of updatetistribution.
3. Compute posterior for y using inflated prior.
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Obsenation Space Computations with AdagtiError Correction

0.6

o
N

Probability

O
N

1. Compute updated inflation distributigo(A, tk|Ytk)

2. Inflate ensemble using mean of updatetistribution.
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior ensemble.
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Adaptive Obserdation Space Filter. Potential problems

1. Very heuristic.

2. Error model filter divergence (pretty hard to think about).

3. Equilibration problems, oscillations Awith time.

4. Not clear that single distribution for all observations is right.

5. Amplifying unwanted model resonances (gravity waves)
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Simulating Model Error in 40-8fiable Lorenz-96 Model

Inflation can deal with all sorts of errors, including model error.
Can simulate model error in lorenz-96 by changing forcing.
Synthetic observations are from model with forcing = 8.0.

Use forcing to introduce model error.
Try forcing values of 7, 6, 5, 3 with and without adaptive inflation.

The F = 3 model is periodic, looks very little like F = 8.
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Experimental design: Lorenz-96 Model Error Simulation

Truth and observations comes from long run with F=8
200 randomly located (fixed in time) ‘observing locations’
Independent 1.0 observation error variance
Observations every hour

0, Is 0.05, mean ok adjusts but variance is fixed

4 groups of 20 members each (80 ensemble members total)
Results from 10 days after 40 day spin-up
Vary assimilating model forcing: F=8, 6, 3, 0

Simulates increasing model error
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Assimilating F=8 Tuth with F=8 Ensemble

Model time series

Mean value »f

10 1.01
s 1.005|
Of 1 F=8
_g5| F=8 1 , 0 _ 5 10
0 5 10 model time (pseudo—days)

model time (pseudo—days)
Assimilation Results

10

0

-10 True State

Ensemble I\Zlean

0

5
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Assimilating F=8 Tuth with F=6 Ensemble

Model time series Mean value bf
L0 w w
1.5
\ Vv
VIV
5 V F=8 \/ 0 G 10
0 = 10 model time (pseudo—days)

model time (pseudo—days)
Assimilation Results

10

0

_10Mue State  Ensemble Mean

0 5 10
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Assimilating F=8 Tuth with F=3 Ensemble

Model time series Mean value bf
1.5/
. F=3
— =3
F=6
1 "F=8

0 5 10 model time (pseudo—days)
model time (pseudo—days)
Assimilation Results

10— —
;' \ i i \ _@xg‘? . \ \ /
f Y4
O y / '\‘ﬂ ) 7 AL
A o\ Va4 V Y
| v ¥ ¥ /
y Vik. 4 Y -
v J 5
-10 True State  Ensemble Mean Ensemble Members

0 5 10
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Assimilating F=8 Tuth with F=0 Ensemble

Model time series

model time (pseudo—days)

Mean value »f

15 e ———F)
e S o~ M PR
F=6
1 _F=8
0 ) 10

model time (pseudo—days)

Assimilation Results

Ensemble Mean Ensemble Members

-10 True State

0

5

10

Prior RMS Erroyr Spread, and Grow as Model Error Gnes
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Base case: 200 randomly located obaeows per time

6 ; : 1.8
—— RMS Error
—— Spread
é | 1.6f SR
4 ............................................................................ .
(7] B N — e
7 SUSMRRRIRE S, VEeY S -
1.2F o\ S
% 5 10 15 o 10
Assimilating Model lércing, F Assim. Forcing, F

(Error saturation is approximately 30.0)
Prior RMS Erroy Spread, andl Grow as Model Error Gnes
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Less well observed case, 40 randomly located observations per time

20 — RMS Error 3.5 ? :
—— Spread ' — 40 Obs.

. --- RMS400bs | | 3| ----2000bs. || -

e [
15p | --- spread400bs | g : !
: : 4 N : : N
I z . ; z z .
. : S : 2.5 SRR R
. : : ’ %4 : N : : ! :
AR S Y. SR AP T Y - - :
10 ssi Y 4 Y 4 - N |
e ~S ' O' A : :
BTN R ; 2y SRR
P

0 5 10 15 ©0 5 10 15
Assimilating Model lércing, F Assim. Forcing, F
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Adaptie State Space Inflation Algorithm

Suppose we want a global state space inflaignnstead.

Make same least squares assumption that is used in ensemble filter.

Inflation of A;for state variables inflates obs. priors by same amount.

-1/2

Get same likelihood as befonﬁyo‘)\) = (21 62) exp(—DZ/Zez)

obs
Compute updated distribution fag exactly as for observation space.

_ 2 2
0= N/)\Scprior Y

Assumes that inflating all state variables leads to corresponding infla-
tion of all observation variables.
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Implementation of Adapie State Space Inflation Algorithm

1. Apply inflation to state variables with meamgtlistribution.

2. Do following for observations at given time sequentially:
a. Compute forward operator to get prior ensemble.
b. Compute updated estimate limean and variance.

c. Compute increments for prior ensemble.
d. Regress increments onto state variables.

All the algorithmic variants could still be applied.
What are relative characteristics of these algorithms?
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Spatially \arying adaptie inflation algorithm:

Have a distribution fok at for each state variabhg, ;

Use prior correlation from ensemble to determine impa&t pbn
prior variance for given observation.

If vis correlation between state variable | and observation then assum

2 2 2
B = A/[l"'y(ﬁ/)\s, —1)] Oprior T Oobs

Equation for finding mode of posterior is now full 12th order:
Can do Taylor expansion 6faroundAg ;

Retaining linear term is normally quite accurate.
There Is an analytic solution to find mode of product in this case!

Ensemble and inflation filters waightly interwoven!
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Results from CAM ‘Operational’ Assimilation

Run like an operational Numerical Weather Prediction Model
Assimilate reanalyis obserations every 6 hours.

1. Radiosonde u,v,t,q

2. ACARS (airplane) u, v, t

3. Satellite drift u, v

Sampling error leads to variance loss where observations are dense.

T42 CAM global model
Significant model error.
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Results from CAM ‘Operational’ Assimilation

Mean inflation (range 1 to 3) for 500mb Temperature

Overall assimilation quality is improved.
Filter divergence is avoided.
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Combined model and obsathonal error @riance adapte algorithm

Is this really possible. Yes, in certain situations...
|s there enough information available?

Spatially-vary inflation for state

Inflation factor for different sets of observations (all radiosonde T's)

2 2 2
0 = ,\/[1+V(A/)\S, i_l)] 0prior +)\000bs

DifferentA’s see different observations

Initial tests in L96 with model error AND Iincorrect obs. error variance
can correct for both!!!
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Case 2: Estimating sample regression error in ensemble filters
Ensemble filter for state,
and
An ensemble of these for sampling error in regression.
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errors

2. h errors; s _ 4. Sampling Error;
Replresentateness '- L=~ "7 7" Gaussian Assumption
\ r 7
| *4@»
\ 1 1
\ : v y — - - Y

\_» ————— ~~
tk+2 \
A
|
|
1
1
7‘ —- - ,l’
V4 ’
1. Model Error 5. Sampling Error:”

Assuming Linear
Statistical Relation
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
O1

—2%00 —1000 0 1000 2000
Distance from Observation (Km?)
Can use other functions to weight regression.

Unclear whatlistancemeans for some obs./state variable pairs.
Referred to aEOCALIZATION.
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Localization is function ofx@ected correlation between obs and state.

Often, don’t know much about this.

Horizontal distance between same type of variable may be okay.
What is expected correlation for co-located temperature and pressure
What about vertical localization? Looks pretty complex.

What about complicated forward operators:
Expected correlation of satellite radiance and wind component?
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Ways to deal with igression sampling error:
4C. Use hierarchical Monte Carlo: ensemble of ensembles.

A’@h M groups of N-member ensem-

bles.

* ¥ kot

H \ 1 tk+2
X / Compute obs. increments for
”

each group.

I independent { Regression

-member , Confidence  For given obs. / state pair:
1. Have M samples of regression

—————— Factor,a
coefficient,f3.
) 2. Uncertainty i3 implies state

variable increments should be
B tee reduced.
\ 3. Compute regression confi-

dence facton.

3k e
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4C. Use hierarchical Monte Carlo: ensemble of ensembles.

Split ensemble into M independent groups.
For instance, 80 ensemble members becomes 4 groups of 20.

With M groups get M estimates of regression coefficignt,

Find regression confidence facto(weight) that minimizes:

M M )
> > [O‘Bi—Bj]
j=1 i=11#]

Minimizes RMS error in the regression (and state increments).
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4C. Use hierarchical Monte Carlo: ensemble of ensembles.

1

e Grolup Size 2 . .
croup Size 4 || WWelght regression ba.

= (Group Size 8
= = Group Size 16 |

| If one has repeated

| observations, can

| generate sample mean or
median statistics fau.

o
©

o
o

o
\‘

o
o

o
al

o
~

o
w

| Meana can be used In
1 subsequent assimilations
1as a localization.

Regression Confidence Factor, a

o
N

Q: Ratio of sample standard deviation to mean

a is function of M andQ = ZB/B (sample SD / sample mean regression)
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Lorenz 96 Experimental Design

Initial ensemble members random draws from ‘climatology’
Observations every time step

4000 step assimilations, results shown from second 2000 steps
Covariance inflation tuned for minimum RMS

4 groups of ensembles used unless otherwise noted

40 Randomly located observations
Observation error variance £p1073, 0.1, 1.0, 10.0, 10

14 member ensembles; nopeaerate
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Time Mean Rgression Confidence Eslopes

1_

* 0k ok kK HK PRk K Fok $k He KRk K * ke ek K * ok

o
(o]
T

o
(00)
T

o
\l
T

Most results are for
observation at 0.64.

o
(o))
T

Regression Confidence Factor
© o o
w EAN (&)
T T T

o
N
T

o
|
T

0.2 0.4 0.6 0.8 1
State Variable Location

Location of 40 randomly located observations

o
o
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Time Median Ewrelopes: ¥rying Obs. Error &riance

1

o
©

© O
~ (00)
T T

o
(o))
T

Regression Confidence Factor
© o o
w EaN (6]
I I I

o
N
T

o
=
T

h..-.---I-----

== Je-5 |

o
o

0.2 0.4 0.6 0.8
State Variable Location

Small error implies no need for localization
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Time Median Ewrelopes: ¥rying Obs. Error &riance

lh-.-.---l-----"‘-i ‘ E:.-...i
. Y
| R ‘ ‘ ‘ .
09ks et
..~ "
0.8 ¢ .

© O
(o)) ~
T T
i i

Regression Confidence Factor
o
o1

0.4F .
0.3F |
0.2 .
0.1H 1e-5 :
le-3
0 | | | |
0 0.2 0.4 0.6 0.8 1

State Variable Location
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Time Median Ewrelopes: ¥rying Obs. Error &riance

m—‘—‘-““—’l“.—-—-—-—-“‘—‘—ﬁ
1h..-.--ﬂl-----"'- : : .Q:..
N
O' : : : ’Q
09k, SRR RS
§.~ "
0.8 * §

© O
(o)) ~
T T
i i

Regression Confidence Factor
o
o1

0.4F .

0.3F |

0.2f .
m=m Je-5

0.1 == 1e-3 i
le-1

O _________ | | | !

0 0.2 0.4 0.6 0.8 1

State Variable Location

Increasing error implies increasing localization
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Time Median Ewrelopes: ¥rying Obs. Error &riance

e e - - -
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State Variable Location
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Time Median Ewrelopes: ¥rying Obs. Error &riance

e e - - -
1h.--.--II-----u¢‘- :
4

o o
~ 0o
T T
4
A

o
(o))
T

o
I
T

o
w
T

Regression Confidence Factor
o
o1

== Je-5 |
== Jle-3 |
le-1 |

o
N
T

— 10.0

0 0.2 0.4 0.6 0.8 1
State Variable Location

Single Gaspari Cohn half-width can’t deal with this range of errors

Anderson: Hierarchical Bayesian Filtering: IMAGe TOY 51 2/24/06



Time Median Ewrelopes: ¥rying Obs. Error &riance

o
o)

o
\l

o
o

o
~

o
w

Regression Confidence Factor
o
a1

o
N

0 0.2 0.4 0.6 0.8 1
State Variable Location

Climatological case is uniqukooks like time mean coherence
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Time Median Ewrelopes: ¥rying Obs. Error &riance
0.45 ! ! ? f |
Bl Base 14
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Sensitvity of results to group size
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Gradual improvement
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Time mean/median
improve more slowly

Important that small
groups give good
results (for cost)

Group better than time
mean implies some
time varying informa-
tion (time means
should reduce noise)

Obs. error variance 1.0, 14 member ensemble case
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Assimilating obserations at times diérent from state estimate

Ensemble smootherase future observations

Tamgeted obselations examine impact of obs. in past

Real-time assimilatiaruse of late arriving observations in forecast

Expect correlations to diminish as time separation increases

Need a ‘localization’ in timgetoo

Group filter can provide this
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Time ‘localization’: Experimental design

4 group, 14 ensemble member filter

40 random obs. with 1.0 error variance

1 additional observation at location 0.642

The additional observation is from a prior time step

Time mean regression confidence envelope as function of time lag
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Regression confidence factor as function of obs. lag time

100/ ~ 0.9
90 0.8
80 0 0.7
70
0.6
% 60
_ 0.5
GE.) 50
E 04
= a0
30 10.3
20 10.2
10 10.1
0
0 0.2 0.4 0.6 0.8 1

State Variable Location

Moves with group velocity (approximately); dies off with lead
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Assimilation in Idealized KCM: GFDL FMS B-Grid Dynamical Core (idana)
Held-Suarez Configuration (no zonal variation, fixed forcing)

Low-Resolution (60 lons, 30 lats, 5 levels); Timestep 1 hour
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Results for 4x20 group filter

Assimilation for 400 days; starting from climatological distribution
Summary results are from last 200 days

No covariance inflation

1800 randomly located surface pressure stations observe once every -
hours

Observational error variance is 1 mb
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Hierarchical Filter Regression Confidence Factors: PS Obs. at 20N, 60E
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Hierarchical Filter Regression Confidence Factors:

t mean factor level 1
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Hierarchical Filter Regression Confidence Factors:

u mean factor level 1
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Hierarchical Filter Regression Confidence Factors:

v mean factor level 1
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Hierarchical Bayesian Methods for Assimilation Parameter Estimation

1. Is it worth it?
A. Added cost needs to lead to reduced error and/or...
B. Wider applicability for parameters.
C. In other words, don’t want to have to tune.

2. Ensemble / ensemble hierarchies are very expensive.
A. Probably only for exploratory work.
B. Extract information on parameter distributions.

3. Ensemble / continuous may not be expensive.

A. Running these in real time not out of the question.
B. Could look at more sophisticated error correction models.
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