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What I mean by Hierarchical Bayesian.

Two interdependent filters using the same obse

Case 1: Adaptive error correction via inflation:
Ensemble filter for the state,

and
Continuous filter of parameter that corrects 

Case 2: Estimating sample regression error in e
Ensemble filter for state,

and
An ensemble of these for sampling error in r
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Some Error Sources in Ensemble
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Dealing With Ensemble Filter Er
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1. Model Error

2. h errors;
Representativeness

4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

Fix 1, 2, 3
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

Assumes that prior and observation are sup
Is it model error or random chance?
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

3. Inflating increases expected separation.
Increases ‘apparent’ consistency between p

−4 −2 0
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Prior PDF Obs. Likeli

Inflated S.D.
Expected Separa

Actual 3.698 SDs

σprior
2 σ+



2/24/06

rror Tolerant Filter

-observed inconsistency

2 4

hood

S.D.
tion

or σobs
2

+ 
 N 0 θ,( )=

2⁄
D2 2θ2⁄–( )exp
Anderson: Hierarchical Bayesian Filtering: IMAGe TOY 7

Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

Distance, D, from prior mean y to obs. is

Prob. yo is observed givenλ:
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati

Assume prior is gaussian;
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

A. Computing updated inflation mean, .

Mode of  can be found an

Solving  leads to

This can be reduced to a cubic equation and so

New  is set to the mode.

This is relatively cheap compared to computing

λu

p yk λ( ) p λ tk Ytk 1–
,( )

∂ p yk λ( ) p λ tk Ytk 1–
,( ) ∂λ 0=⁄

λu
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Variance inflation for Observations: An Adaptive E

A. Computing updated inflation variance,

1. Evaluate numerator at mean and seco

2. Find  so  goes through

3. Compute as where

σλ u,
2

λu

σλ u,
2 N λu σλ u,

2,( ) p λu( )

σλ u,
2 σλ p,

2 2 rln⁄–= r p=
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.

−4 −2 0
0

0.2

0.4

0.6
P

ro
ba

bi
lit

y O

p λ tk Y,(



2/24/06

iError Correction

.

tion.

nsemble.

2 4

bs. Likelihood

tk
)

Anderson: Hierarchical Bayesian Filtering: IMAGe TOY 22

Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior e
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Adaptive Observation Space Filter: Potential 

1. Very heuristic.

2. Error model filter divergence (pretty hard 

3. Equilibration problems, oscillations inλ with 

4. Not clear that single distribution for all obs

5. Amplifying unwanted model resonances (
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Simulating Model Error in 40-Variable Lore

Inflation can deal with all sorts of errors, includi

Can simulate model error in lorenz-96 by chang

Synthetic observations are from model with forc

Use forcing to introduce model error.
Try forcing values of 7, 6, 5, 3 with and with

The F = 3 model is periodic, looks very little like
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Experimental design: Lorenz-96 Model E

Truth and observations comes from long run wi

200 randomly located (fixed in time) ‘observing 

Independent 1.0 observation error variance

Observations every hour

σλ is 0.05, mean ofλ adjusts but variance is fixed

4 groups of 20 members each (80 ensemble m

Results from 10 days after 40 day spin-up

Vary assimilating model forcing: F=8, 6, 3, 0

Simulates increasing model error
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Assimilating F=8 Truth with F=8 Ens
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Assimilating F=8 Truth with F=3 Ens
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Assimilating F=8 Truth with F=0 Ens
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Assimilation Results
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Base case: 200 randomly located obseratio

Assimilating Model Forcing, F Assim
(Error saturation is approximately

Prior RMS Error, Spread, andλ Grow as Mod
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Less well observed case, 40 randomly located

Assimilating Model Forcing, F Assim
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Adaptive State Space Inflation Algorithm

Suppose we want a global state space inflationλs, i

Make same least squares assumption that is us

Inflation ofλs for state variables inflates obs. prio

Get same likelihood as before:

Compute updated distribution forλsexactly as for 

Assumes that inflating all state variables leads 
tion of all observation variables.

p yo λ( ) 2Πθ2( )
–

=

θ λsσprior
2 σobs

2+=
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Implementation of Adaptive State Space Inflation

1. Apply inflation to state variables with mean oλs

2. Do following for observations at given time se
a. Compute forward operator to get prior en
b. Compute updated estimate forλsmean and v
c. Compute increments for prior ensemble.
d. Regress increments onto state variables.

All the algorithmic variants could still be applied
What are relative characteristics of these algori
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Spatially varying adaptive inflation algorithm:

Have a distribution forλ at for each state variableλ

Use prior correlation from ensemble to determin
prior variance for given observation.

If γ is correlation between state variable i and o

Equation for finding mode of posterior is now fu
Can do Taylor expansion ofθ aroundλs,i .

Retaining linear term is normally quite accurate
There is an analytic solution to find mode of pro

Ensemble and inflation filters now tightly interwove

θ 1 γ λs i, 1–( )+[ ]
2
σprior

2
σobs

2+=
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Results from CAM ‘Operational’ Assimilation

Run like an operational Numerical Weather Pre
Assimilate reanalyis obserations every 6 hours.

1. Radiosonde u,v,t,q
2. ACARS (airplane) u, v, t
3. Satellite drift u, v

Sampling error leads to variance loss where ob

T42 CAM global model
Significant model error.
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Results from CAM ‘Operational’ Assimilation

Mean inflation (range 1 to 3) for 500mb Temper

Overall assimilation quality is improved.
Filter divergence is avoided.
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Combined model and observational error variance 

Is this really possible. Yes, in certain situations.
Is there enough information available?

Spatially-vary inflation for state

Inflation factor for different sets of observations

Different λ’s see different observations

Initial tests in L96 with model error AND incorre
can correct for both!!!

θ 1 γ λs i, 1–( )+[ ]
2
σprior

2
λoσobs

2+=
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Case 2: Estimating sample regression error in e
Ensemble filter for state,

and
An ensemble of these for sampling error in r
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Some Error Sources in Ensemble
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Can use other functions to weight regression.
Unclear whatdistance means for some obs./state
Referred to asLOCALIZATION.
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Localization is function of expected correlation be

Often, don’t know much about this.

Horizontal distance between same type of varia

What is expected correlation for co-located tem

What about vertical localization? Looks pretty c

What about complicated forward operators:
Expected correlation of satellite radiance an
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Ways to deal with regression samplin
4C. Use hierarchical Monte Carlo: ensemble of
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4C. Use hierarchical Monte Carlo: ensemble of

Split ensemble into M independent groups.
For instance, 80 ensemble members becom

With M groups get M estimates of regression co

Find regression confidence factorα (weight) that m

Minimizes RMS error in the regression (and sta

αβi β j–[ ]2

i 1 i j≠,=

M
∑

j 1=

M
∑
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4C. Use hierarchical Monte Carlo: ensemble of
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Lorenz 96 Experimental Desi

Initial ensemble members random draws from ‘clim

Observations every time step

4000 step assimilations, results shown from second

Covariance inflation tuned for minimum RMS

4 groups of ensembles used unless otherwise noted

40 Randomly located observations

Observation error variance 10-5, 10-3, 0.1, 1.0, 10.0

14 member ensembles; not degenerate
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Time Mean Regression Confidence Ev

Location of 40 randomly located observations

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

State Variable Location

R
eg

re
ss

io
n 

C
on

fid
en

ce
 F

ac
to

r

Most results are for
observation at 0.64.
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Time Median Envelopes: Varying Obs. Er

Small error implies no need for localization
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Time Median Envelopes: Varying Obs. Er

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

State Variable Location

R
eg

re
ss

io
n 

C
on

fid
en

ce
 F

ac
to

r

1e−5
1e−3



2/24/06

ror Variance

1

Anderson: Hierarchical Bayesian Filtering: IMAGe TOY 49

Time Median Envelopes: Varying Obs. Er

Increasing error implies increasing localization
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Time Median Envelopes: Varying Obs. Er
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Time Median Envelopes: Varying Obs. Er

Single Gaspari Cohn half-width can’t deal with t
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Time Median Envelopes: Varying Obs. Er

Climatological case is unique: Looks like time mea
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Time Median Envelopes: Varying Obs. Er
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Sensitivity of results to group s
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Assimilating observations at times different fro

Ensemble smoothers: use future observations

Targeted observations: examine impact of obs. in 

Real-time assimilation: use of late arriving observ

Expect correlations to diminish as time separat

Need a ‘localization’ in time, too

Group filter can provide this
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Time ‘localization’: Experimental d

4 group, 14 ensemble member filter

40 random obs. with 1.0 error variance

1 additional observation at location 0.642

The additional observation is from a prior time s

Time mean regression confidence envelope as 
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Regression confidence factor as function

Moves with group velocity (approximately); dies
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Assimilation in Idealized AGCM: GFDL FMS B-Grid Dynam
Held-Suarez Configuration (no zonal variation, fixed forcing)
Low-Resolution (60 lons, 30 lats, 5 levels);        Timestep 1 hour

Has Baroclinic Instability
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logical distribution

s observe once every 24
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Results for 4x20 group filter

Assimilation for 400 days; starting from climato

Summary results are from last 200 days

No covariance inflation

1800 randomly located surface pressure station
hours

Observational error variance is 1 mb
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Hierarchical Filter Regression Confidence Factors: 
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Hierarchical Filter Regression Confidence Factors: 
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Hierarchical Filter Regression Confidence Factors: 
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Hierarchical Filter Regression Confidence Factors: 
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Hierarchical Bayesian Methods for Assimilation

1. Is it worth it?
A. Added cost needs to lead to reduced erro
B. Wider applicability for parameters.
C. In other words, don’t want to have to tune

2. Ensemble / ensemble hierarchies are very ex
A. Probably only for exploratory work.
B. Extract information on parameter distribu

3. Ensemble / continuous may not be expensive
A. Running these in real time not out of the 
B. Could look at more sophisticated error co


