Mathematical and Computational Methods for Stochastic/Deterministic Hybrid Systems

Lecture 1

Markos A. Katsoulakis

University of Massachusetts, Amherst

Some hybrid deterministic/stochastic systems

1. Microscopically active interface or boundary layer interacting with an adjacent "bulk" fluid phase.

2. Rheology of polymers: *micro-macro* models.

Fluids equations at the macroscopic level coupled with kinetic or stochastic equations ruling the evolution of the fluid microstructure at the meso- or micro- scale, e.g. FENE-type models or coupled Monte Carlo with fluid dynamics.

3. Stochastic Phase-Field models.

Solidification, dendritic growth in alloys.

Surface processes: Catalysis, Chemical Vapor Deposition, epitaxial growth, etc.

Atmosphere/Ocean applications: Tropical convection.

"Particles" and sub-grid scale effects: [Majda, Khouider, PNAS 2001]

Cell Biology: Epidermal Growth Factor binding/dimerization

 $\partial_t Ef(\sigma) = EL_X f(\sigma)$ (stochastic model)

X: Fluid/thermodynamic variables defined on top grid L_X : generator of the subgrid stochastic process σ defined on the lower grid (subgrid)

Some challenges and questions:

- Disparity in scales and models; DNS require ensemble averages for a large system.
- Model reduction, however no clear scale separation: need hierarchical coarse-graining.
- Deterministic vs. stochastic closures; when is stochasticity important?
- Error control, stability of the hybrid algorithm; efficient allocation of computational resources: adaptivity, model and mesh refinement.

MODEL SYSTEM

 $\partial_t X = f(X, \bar{\sigma})$ (ODE)

 $\partial_t E f(\sigma) = E L_X f(\sigma)$ (stochastic lattice model)

 L_X : generator of a spatial stochastic process $\sigma_t(x)$.

 $f(x) = f(x, \bar{\sigma})$: scalar bistable, saddle node, or spatially homogeneous complex Ginzburg-Landau equation (Hopf bifurcations), etc.

- h = h(X): external field to the microscopic system.
- $\bar{\sigma} = \frac{1}{N} \sum_{x} \sigma_t(x)$: area fraction (spatial average).

<u>Special case</u>: well-mixed, catalytic reactors (CSTR) [joint work with A. Majda (Courant) and A. Sopasakis (UMass)]

I. Background material on Markov processes and Monte Carlo simulation

1. Discrete-time Markov Chains: "Stochastic, discrete-time dynamical systems"

Stochastic process { X_t : t = 1, 2, 3, ..., n, ...}, $t \sim$ equi-spaced time intervals; finite state space Σ :

$$X_t = x \in \Sigma = \{1, 2, ..., m\}$$

Conditional Probablity: (dependent random variables)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Markov property:

 $P(X_{t+1} = y \mid X_t = x, X_{t-1} = x_{t-1}, ..., X_1 = x_1) = P(X_{t+1} = y \mid X_t = x)$

Transition probability matrix: $P = \{p(x, y)\}_{x,y \in \Sigma}$, $p(x, y) := P(X_{t+1} = y | X_t = x)$

<u>Note</u>: $p(x,y) \ge 0$ and $\sum_{y \in \Sigma} p(x,y) = 1$

n-step transition probability matrix: $P^n = \{p^n(x, y)\}_{x,y \in \Sigma}$, $p^n(x, y) := P(X_{t+n} = y | X_t = x)$ Evolution of the probability distribution:

$$p^{2}(x,y) = P(X_{2} = y | X_{0} = x)$$

$$= \sum_{z}^{z} P(X_{2} = y, X_{1} = z | X_{0} = x)$$

$$= \sum_{z}^{z} P(X_{2} = y | X_{1} = z, X_{0} = x) P(X_{1} = z | X_{0} = x)$$

$$= \sum_{z}^{z} P(X_{2} = y | X_{1} = z) P(X_{1} = z | X_{0} = x)$$

$$= \sum_{z}^{z} p(x, z) p(z, y)$$

Chapman-Kolmogorov equation: $P^n = P \times P \times ...P$ (n-fold product) and $P^{n+m} = P^n P^m$, i.e.

$$p^{n+m}(x,y) = \sum_{z \in \Sigma} p^n(x,z) p^m(z,y)$$

Construction of sample paths:

assume
$$\Sigma = \{x_1, x_2, ..., x_m\}$$
; if $X_t = x$,

$$X_{t+1} = \begin{cases} x_1, & \text{if } U \le p(x, x_1) \\ x_2 & \text{if } p(x, x_1) < U \le p(x, x_1) + p(x, x_2) \\ ... & ... \\ x_m & \text{if } p(x, x_1) + p(x, x_2) + ... + p(x, x_{m-1}) < U \le 1 \end{cases}$$

where U is a uniformly distributed random variable in (0, 1).

Example 1: Random walk on a (periodic) lattice

 $\{\xi_i : i = 1, 2, ...\}$ i.i.d random variables with

$$P(\xi_i = \pm 1) = p^{\pm}, \quad p^+ + p^- = 1$$

Define

$$X_n = \sum_{i=1}^n \xi_i = X_{n-1} + \xi_n$$

Then X_n is a Markov chain, i.e. satisfies the Markov property (Exercise 1).

Transition matrix:

$$p(x,y) = \begin{cases} p^{\pm}, & \text{if } y = x \pm 1 \\ 0 & \text{otherwise} \end{cases}$$

Example 2: Discrete-in-time stochastic dynamical systems $\{X_1, \xi_i : i = 1, 2, ...\}$ independent random variables Define

$$X_{n+1} = f(X_n, \xi_n)$$

where f = f(x, y) a given deterministic function. Then X_n is a Markov chain, i.e. satisfies the Markov property (Exercise 2).

- Analogous to deterministic discrete evolution

$$X_{n+1} = f(X_n)$$

Transition matrix:

$$p_n(x,y) = P(f_n(x,\xi_n) = y)$$

Some useful definitions

1. We say that $x, y \in \Sigma$ communicate if

 $p^n(x,y), p^m(y,x) > 0$

for some m, n. If all states communicate the Markov chain is called irreducible.

2. Let d(x) the greatest common divisor (called the period of the state x) of all $k \ge 1$ such that

$$P(X_{t+k} = x | X_t = x) > 0.$$

A Markov chain is called aperiodic if each state has period 1.

3. If $x \in \Sigma$ is revisited with probability 1 at some finite time is called recurrent; otherwise the state is called transient

Stationary distributions, long-time behavior and ergodicity

Let $\pi = \pi(x) \ge 0$, $\sum_{x \in \Sigma} \pi(x) = 1$ a probability distribution.

If the initial state X_0 is random and distributed according to π , then the distribution of X_n is

$$P(X_n = y | X_0 \sim \pi) = \sum_x \pi(x) p^n(x, y) = \pi P^n$$

• π is stationary (invariant) if $\pi P^n = \pi$ for all n; true if 1 is an eigenvalue of the matrix P with eigenvector π :

 $\pi P = \pi$

- If X_t is aperiodic and irreducible then $\lim_{n \to \infty} p^n(x, y) = \pi(y), \text{ for all } x \text{ (Ergodicity)}$
- For simply irreducible chains we have:

 $\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} p^{t}(x, y) = \pi(y), \quad \text{for all } x \quad (\text{weak ergodicity})$

2. Continuous-time Markov Chains

Stochastic process $\{X_t : t \ge 0.\}$ taking finitely many values on the state space Σ : $X_t = x \in \Sigma$.

Markov property:

$$P(X_{t+s} = y \mid X_s = x, X_u = x_u, 0 \le u < s) = P(X_{t+s} = y \mid X_s = x)$$

Transition probability matrix at time t: $P_t = \{p(t; x, y)\}_{x,y \in \Sigma}$,

$$p(t; x, y) := P(X_{t+s} = y | X_s = x)$$

Note: $p(t; x, y) \ge 0$ and $\sum_{y \in \Sigma} p(t; x, y) = 1$

Chapman-Kolmogorov equation: $P_{t+s} = P_t P_s$, i.e.

$$p(t+s;x,y) = \sum_{z \in \Sigma} p(t;x,z)p(s;z,y). \qquad (C-K)$$

Continuous vs. Discrete time Markov Chains

Discretization: The C-K relation implies that $X_n := X_{nh}$ is a discrete-time Markov Chain with transition probability matrix p(x,y) = p(h;x,y). Hence X_n is a discretization of the continuous time Markov Chain X_t .

Residence time τ_x : time spent by the process X_t at x; random waiting time between consecutive jumps.

Markov property implies:

$$P(\tau_x > t + s \mid \tau_x > s) = P(\tau_x > t)$$

i.e. τ_x is a "memoryless" distribution! Hence

$$P(\tau_x > t + s) = P(\tau_x > t + s, \tau_x > s) = P(\tau_x > t)P(\tau_x > s)$$

thus

.

$$P(\tau_x > t) = \exp(-\lambda(x)t), \quad \lambda(x) \ge 0$$

We can now define the transition matrix-corresponding to a "skeleton" Markov Chain

$$p(x, y) = P(X_{\tau_x} = y | X_0 = x), y \neq x$$

we set p(x,x) = 0; note that we easily get that $\sum_{y} p(x,y) = 1$.

Define the transition rates

$$q(x,y) = \lambda(x)p(x,y), x \neq y$$

and

$$q(x,x) = -\sum_{y \neq x} q(x,y) = -\lambda(x)$$

denote the corresponding matrix $Q = (q(x, y)_{x,y \in \Sigma})$.

Building blocks of the continuous time chain:

q(x,y) or equivalently $\lambda(x), p(x,y)$ for all $x, y \in \Sigma$.

Construction of sample paths from the transition rates q(x, y):

Step 1: Construct all residence times τ_x at each location x: exponentially distributed with rate $\lambda(x) = -q(x, x)$.

Step 2: Determine the next move, starting at t = 0 at the state $x \in \Sigma$ using the "skeleton" Markov Chain:

$$X_t = x$$
, for $0 \le t < \tau_x$

assume $\Sigma = \{1, 2, ..., m\}$;then

$$X_{\tau_x} = \begin{cases} 1, & \text{if } U \leq \frac{q(x,1)}{-q(x,x)} = p(x,1) \\ 2 & \text{if } \frac{q(x,1)}{-q(x,x)} < U \leq \frac{q(x,1)+q(x,2)}{-q(x,x)} \\ \dots & \dots \\ m & \text{if } \frac{q(x,1)+q(x,2)+\dots+q(x,m-1)}{-q(x,x)} < U \leq 1 \end{cases}$$

where U is a uniformly distributed random variable in (0,1). Step 3: From Step 2 we obtain a new location $y \in \Sigma$; then $X_t = y$, for $\tau_x \leq t < \tau_x + \tau_y$ and proceed as before.

C-K and Master equations:

Forward C-K: $p(t+h; x, y) = \sum_{z} p(t; x, z) p(h; z, y)$

Can also show: $\frac{dp(t;x,y)}{dt}|_{t=0} = q(x,y)$

Thus,

$$\frac{dp(t; x, y)}{dt} = \sum_{z \in \Sigma} p(t; x, z)q(z, y)$$

or equivalently

$$\frac{dp(t;x,y)}{dt} = \sum_{\substack{z \in \Sigma \\ z \neq y}} p(t;x,z)q(z,y) - p(t;x,y)q(y,z), \quad \text{(master equations)}$$

Generators:

<u>Observables</u>: $u(x,t) := \mathbf{E}_{\mathbf{x}} \mathbf{f}(\mathbf{X}_{\mathbf{t}}) = \sum_{y \in \Sigma} f(y) p(t; x, y).$

$$\frac{d}{dt}E_x f(X_t) = \sum_{y \in \Sigma} f(y) \frac{dp(t; x, y)}{dt}$$

$$= \sum_{y \in \Sigma} \sum_{z \in \Sigma} p(t; x, z)q(z, y)f(y)$$

$$= \sum_{z \in \Sigma} p(t; x, z) \sum_{y \in \Sigma, y \neq z} q(z, y)[f(y) - f(z)]$$

$$= E_x L f(X_t), \text{ hence}$$

$$\frac{d}{dt} \mathbf{E_x} f(\mathbf{X}_t) = \mathbf{E_x} L f(\mathbf{X}_t)$$

where **L** the generator of X_t : $\mathbf{Lf}(\mathbf{z}) = \sum_{\substack{\mathbf{y} \in \Sigma \\ \mathbf{y} \neq \mathbf{z}}} \mathbf{q}(\mathbf{z}, \mathbf{y}) \left(\mathbf{f}(\mathbf{y}) - \mathbf{f}(\mathbf{z}) \right)$

• The generator completely determines the Markov process X_t .

Example 1: Continuous-time random walk on a lattice $\{\xi_i : i = 1, 2, ...\}$ i.i.d random variables with

$$P(\xi_i = \pm 1) = p^{\pm}, \quad p^+ + p^- = 1$$

 $\begin{aligned} \{\tau_k : k = 1, 2, ...\} \text{ i.i.d exponentially distributed non-negative random variables} & (\tau_k \text{ also independent of } \xi_i, i = 1, 2, ..., k) \text{ with} \\ & P(\tau_k > t) = \exp(-\lambda t), \quad \lambda > 0 \end{aligned}$

Consider the sequence of pairs

$$\left(X_n = \sum_{i=1}^n \xi_i, T_n = \sum_{k=1}^n \tau_k\right)$$

 $(X_n \text{ is a Markov Chain-see Example 1-also the pair is a Markov Chain) and define$

 $X_t = X_n, \quad \text{if} \quad T_n \le t < T_{n+1}$

Then X_t is a continuous time Markov chain, i.e. satisfies the Markov property (Exercise 3).

Generator:

$$Lf(x) = \lambda p^{+}(f(x+1) - f(x)) + \lambda p^{-}(f(x-1) - f(x))$$

Example 2: Birth-death processes (see next talk).

Markov process with random initial data, $\mu = \mu(x), x \in \Sigma$:

$$\mu P_t(y) = \sum_x \mu(x) p(t; x, y) = P(X_t = y \mid X_0 \sim \mu)$$

Invariant (stationary) distribution: $\pi P_t = \pi$ for all t.

Since $\frac{dP}{dt} = PQ$, we have that $\pi \mathbf{Q} = \mathbf{0}$, hence $\sum_{x} \pi(x)\lambda(x)p(x,y) = \pi(y)\lambda(y)$

A stronger condition is **detailed balance**:

$$\pi(x)\lambda(x)p(x,y) = \pi(\mathbf{x})\mathbf{q}(\mathbf{x},\mathbf{y}) = \pi(\mathbf{y})\mathbf{q}(\mathbf{y},\mathbf{x}) = \pi(y)\lambda(y)p(y,x)$$

Ergodicity: unique π such that $\lim_{t \to \infty} \mu P_t = \pi$ for all μ .

1. Remarks on Monte Carlo simulation

1. Markov Chain Monte Carlo (MCMC)

<u>*Task:*</u> sample from a given a probability distribution $\pi = (\pi(x))_{x \in \Sigma}$.

<u>Idea</u>: construct a discrete-time Markov Chain with $P = (p(x, y))_{x,y \in \Sigma}$ having π as an stationary (invariant) distribution. Then generate π using ergodicity.

- Define p(x,y) = r(x,y)a(x,y)
- $R = (r(x,y))_{x,y \in \Sigma}$: transition probabilities for a proposed move y
- a(x,y): acceptance probability
- $\frac{a(x,y)}{a(y,x)} = \frac{\pi(y)r(x,y)}{\pi(x)r(y,x)}$: detailed balance.

Often $a(x,y) \ll 1$ (e.g. low temperatures); many rejected moves hence convergence to π is <u>slow</u>. One way to resolve this....

2. Continuous Time Monte Carlo (CTMC)

Construct a continuous-time Markov Chain with invariant measure π ;

- the random jump time is known (exponentially distributed, etc.) and defines the time step Δt of the simulator.
- no rejected moves
- one drawback: it may be costly to generate for a given x all q(x, y) > 0 for all y's accessible from x.
- CTMC is "real" dynamics.

Ref: Gillespie (chemical reactions); Bortz, Kalos, Lebowitz (Ising-type systems)

Pseudo-algorithm

Step 1: Construct all residence times τ_x at each location x: exponentially distributed with rate $\lambda(x) = -q(x, x)$.

 $\begin{array}{l} \underline{\operatorname{Step 2:}} \text{ Determine the next move, starting at } t = 0 \text{ at the state} \\ \overline{x \in \Sigma} = \{1, 2, ..., m\} \text{ using the "skeleton" Markov Chain:} \\ X_t = x, \quad \text{for } \quad 0 \leq t < \tau_x \\ \\ X_{t} = x, \quad \text{for } \quad 0 \leq t < \tau_x \\ \\ 1, \quad \text{if } \quad \mathbf{U} \leq \frac{q(x,1)}{-q(x,x)} = p(x,1) \\ 2 \quad \text{if } \quad \frac{q(x,1)}{-q(x,x)} < \mathbf{U} \leq \frac{q(x,1)+q(x,2)}{-q(x,x)} \\ \\ \dots \quad \dots \\ m \quad \text{if } \quad \frac{q(x,1)+q(x,2)+\ldots+q(x,m-1)}{-q(x,x)} < \mathbf{U} \leq 1 \\ U: \text{ uniformly distributed random variable in } (0,1) \\ \\ \underline{\operatorname{Step 3:}} \text{ From Step 2 we obtain a new location } y \in \Sigma; \text{ then} \\ \\ X_t = y, \quad \text{for } \quad \tau_x \leq t < \tau_x + \tau_y \end{array}$

and proceed as before.

2. Markov Chains with two time scales—Stochastic Averaging

Discrete-time Markov Chain with transition probability

 $\mathbf{P}^{\epsilon} = \mathbf{P} + \epsilon \mathbf{Q} \,, \quad \epsilon << 1$

 $P = (p(x, y))_{x,y \in \Sigma}$: transition probability matrix

 $Q = (p(x,y))_{x,y \in \Sigma}$: a transition rate matrix

If P is <u>irreducible</u> (more general results exist!), the k-step transition matrix is expanded as:

 $(P^{\epsilon})^{k} = \bar{\mathbf{P}} + \Psi_{0}(\mathbf{k}) + \epsilon \Phi_{1}(\epsilon \mathbf{k}) + \epsilon \Psi_{1}(k) + O(\epsilon^{2})$

 $\bar{\mathbf{P}} = \mathbf{I}\nu$: ν is the invariant distribution of P.

 $\Phi_1(\epsilon \mathbf{k})$: slow time-scale dynamics.

 $\Psi_i(k)$: initial layer terms

- Related results for contin.-time Markov Chains and SDE.
- **Ref:** In math, Khasminskii, Kurtz, Papanicolaou,... In EE, Phillips and Kokotovic,... In AOS, Majda, Timofeyev, Vanden-Eijnden,... Books: Yin and Zhang '04,...

3. Stochastic lattice dynamics–Ising Systems

- Spin: $\sigma(x) \in \{0,1\}$ at the lattice site $x \in \mathbb{Z}^d$ (vacant vs.
- occupied sites). Potts, Heisenberg models. Spin configuration: $\sigma = \{\sigma(x) \mid x \in \Lambda \subset \mathbb{Z}^d\}, |\Lambda| = N$: total number of lattice sites.

Hamiltonian: $H_N(\sigma) = -\frac{1}{2} \sum_{x \neq y} J(x, y) \sigma(x) \sigma(y) + h \sum_x \sigma(x)$

- h: external field J: potential with interaction range L.

Canonical Gibbs measure:

at the inverse temperature $\beta = \frac{1}{kT}$,

$$\mu_{\Lambda,\beta}(\sigma=\sigma_0) = \frac{1}{Z_{\Lambda,\beta}} \exp\left\{-\beta H_N(\sigma_0)\right\} P_N(\sigma=\sigma_0)$$

[Probability of the configuration σ_0]

Partition function: $Z_{\Lambda,\beta} = \sum_{\sigma_0} \exp \left\{ -\beta H_N(\sigma_0) \right\} P_N(\sigma = \sigma_0)$

Prior distribution (no interactions, hight temp.):

$$P_N(\sigma = \sigma_0) = \prod_{x \in \Lambda} P(\sigma(x) = \sigma_0(x))$$

where

$$P(\sigma(x) = 1) = \frac{1}{2}$$
 and $P(\sigma(x) = 0) = \frac{1}{2}$

i.e. the prior distribution is a product measure of Bernoulli distributions with parameter a.

Dynamics

- A. Spin Flip Adsorption/Desorption
- B. Spin Exchange Surface diffusion

Markov Chain modeling with state space

 $\Sigma = \text{set of all configurations } \sigma$

A. Spin Flip–Adsorption/Desorption

Spin flips occur at each lattice site x in $[t, t + \Delta t]$ with probability

 $c(x,\sigma)\Delta t + O(\Delta t^2)$

Generator: $L_N f(\sigma) = \sum_{x \in \Lambda} c(x, \sigma) [f(\sigma^x) - f(\sigma)].$

Transition rate: $c(x, \sigma)$

Detailed balance law:

$$c(x,\sigma) \exp\left(-\beta H(\sigma)\right) = c(x,\sigma^x) \exp\left(-\beta H(\sigma^x)\right)$$

 σ^x : configuration after a spin flip at x.

- Spin flip rate (Metropolis-type dynamics):

$$c(x,\sigma) = \Psi(-\beta \Delta_x H(\sigma)),$$

- $\Delta_x H(\sigma) = H(\sigma^x) H(\sigma)$. $\beta > 0$: inverse temperature. Typical choices of Ψ 's are:

 $\Psi(r) = (1 + e^{r})^{-1}$ (Glauber dynamics). $\Psi(r) = e^{-r^+}$ (Metropolis dynamics).

Arrhenius adsoprtion/desorption dynamics:

 $\sigma(x) = 0$ or 1: site x is resp. empty or occupied.

Generator: $L_X f(\sigma) = \sum_x c(x, \sigma, X) [f(\sigma^x) - f(\sigma)]$ Transition rate: $c(x, \sigma, X) = c_0 \exp \left[-\beta U(x) \right]$

U(x): Energy barrier a particle has to overcome in jumping from a lattice site to the gas phase.

-
$$U(x) = U(x, \sigma, X) = \sum_{z \neq x} J(x-z)\sigma(z) - h(X).$$

- strong interactions/low temperature \rightarrow clustering/phase transitions

B. Spin Exchange Dynamics–Surface diffusion.

- **Dynamics:** Sequence of <u>spin exchanges</u> with nearest neighbors.
- Spin exchange rate (Metropolis-type dyn.):

$$c(x, y, \sigma) = \Psi(-\beta \Delta_{x,y} H(\sigma)),$$

-
$$\Delta_{x,y}H(\sigma) = H(\sigma^{(x,y)}) - H(\sigma).$$

 $\sigma^{(x,y)}$:config. after a spin exch. between x, y.

- Detailed balance.
- Typical choices of Ψ 's are:

 $\Psi(r) = 2(1 + e^r)^{-1}$ (Kawasaki dynamics).

 $\Psi(r) = e^{-r^+}$ (Metropolis dynamics).

- Arrhenius dynamics.