Mathematical and Computational challenges in Stochastic/Deterministic Hybrid Systems

Lecture 2

Markos A. Katsoulakis

University of Massachusetts, Amherst

Surface processes: Catalysis, Chemical Vapor Deposition, epitaxial growth, etc.

Atmosphere/Ocean applications: Tropical convection.

 $\partial_t Ef(\sigma) = EL_X f(\sigma)$ (stochastic model)

X: Fluid/thermodynamic variables defined on top grid L_X : generator of the subgrid stochastic process σ defined on the lower grid (subgrid)

Some challenges and questions:

- Disparity in scales and models; DNS require ensemble averages for a large system.
- Model reduction, however no clear scale separation: need hierarchical coarse-graining.
- Deterministic vs. stochastic closures; when is stochasticity important?
- Error control, stability of the hybrid algorithm; efficient allocation of computational resources: adaptivity, model and mesh refinement.

MODEL SYSTEM

 $\partial_t X = f(X, \bar{\sigma})$ (ODE)

 $\partial_t Ef(\sigma) = EL_X f(\sigma)$ (stochastic lattice model)

 L_X : generator of a spatial stochastic process $\sigma_t(x)$.

 $f(x) = f(x, \bar{\sigma})$: scalar bistable, saddle node, or spatially homogeneous complex Ginzburg-Landau equation (Hopf bifurcations), etc.

- h = h(X): external field to the microscopic system.
- $\bar{\sigma} = \frac{1}{N} \sum_{x} \sigma_t(x)$: area fraction (spatial average).

Joint work with:

A. Majda (Courant), A. Sopasakis (UMass)

Related work:

- B. Khouider(Victoria, Canada), P. Plecháč(Warwick, UK),
- L. Rey-Bellet(UMass), A. Szepessy(KTH, Sweden),
- J.Trashorras (Paris IX, France),
- D.Tsagkarogiannis (Max Planck-Leipzig),
- D.G. Vlachos(Chem. Eng. Delaware)

Stochastic lattice dynamics–Ising Systems

- Spin: $\sigma(x) \in \{0,1\}$ at the lattice site $x \in \mathbb{Z}^d$ (vacant vs. occupied sites). - Spin configuration: $\sigma = \{\sigma(x) \mid x \in \Lambda \subset \mathbb{Z}^d\}, |\Lambda| = N$: total
- number of lattice sites.

Hamiltonian: $H_N(\sigma) = -\frac{1}{2} \sum_{x \neq y} J(x, y) \sigma(x) \sigma(y) + h \sum_x \sigma(x)$

- *h*: external field *J*: potential with interaction range *L*.

Canonical Gibbs measure:

at the inverse temperature $\beta = \frac{1}{kT}$,

$$\mu_{\Lambda,\beta}(\sigma=\sigma_0) = \frac{1}{Z_{\Lambda,\beta}} \exp\left\{-\beta H_N(\sigma_0)\right\} P_N(\sigma=\sigma_0)$$

[Probability of the configuration σ_0]

Partition function: $Z_{\Lambda,\beta} = \sum_{\sigma_0} \exp \left\{ -\beta H_N(\sigma_0) \right\} P_N(\sigma = \sigma_0)$

Prior distribution (no interactions, hight temp.):

$$P_N(\sigma = \sigma_0) = \prod_{x \in \Lambda} P(\sigma(x) = \sigma_0(x))$$

where

$$P(\sigma(x) = 1) = \frac{1}{2}$$
 and $P(\sigma(x) = 0) = \frac{1}{2}$

i.e. the prior distribution is a product measure of Bernoulli distributions with parameter a.

Arrhenius adsoprtion/desorption dynamics:

 $\sigma(x) = 0$ or 1: site x is resp. empty or occupied.

Generator: $L_X f(\sigma) = \sum_x c(x, \sigma, X) [f(\sigma^x) - f(\sigma)]$ Transition rate: $c(x, \sigma, X) = c_0 \exp \left[-\beta U(x) \right]$

U(x): Energy barrier a particle has to overcome in jumping from a lattice site to the gas phase.

- Detailed Balance

-
$$U(x) = U(x, \sigma, X) = \sum_{z \neq x} J(x - z)\sigma(z) - h(X).$$

- strong interactions/low temperature \rightarrow clustering/phase transitions

ODE for the large scales:

CGL:
$$f(\vec{X}, \sigma) = (a(\bar{\sigma}) + i\omega)\vec{X} - \gamma |\vec{X}|^2 \vec{X} + \hat{\gamma} \vec{X^*}$$

Bistable: $f(X, \sigma) = a(\bar{\sigma})X + \gamma X^3$,
Saddle: $f(X, \sigma) = a(\bar{\sigma}) + \gamma X^2$,
Linear: $f(X, \sigma) = a\bar{\sigma} + b - cX$

Coupling of the two systems: $h = h(X), f = f(x, \bar{\sigma})$.

- $h(X) = cX + h_0$, or $h(X) = c|X|^2 + h_0$
- $\bar{\sigma}$: affects the bifurcation diagram of the ODE

I. Deterministic closures

- Mean field models (uniform interactions in the micro-model)
- Local mean field models (weak interactions)
- Stochastic averaging (time scale separation)

$$\partial_t X^\epsilon = f(X^\epsilon, \bar{\sigma})$$

$$\partial_t Ef(\sigma) = \frac{1}{\epsilon} EL_X f(\sigma)$$

Then, [Khasminskii, Kurtz, Papanicolaou, ... etc.]

$$\lim_{\epsilon \to 0} X^{\epsilon} = X$$
$$\partial_t X = \bar{f}(X), \quad \bar{f}(x) = \int_{\Sigma} f(x, \bar{\sigma}) \, \mu^x_{\text{equil}}(d\sigma),$$

 μ^{x}_{equil} canonical Gibbs measure.

Remarks

- 1. Evaluation of $\bar{f}(\mathbf{x}) = \int_{\Sigma} f(\mathbf{x}, \bar{\sigma}) \, \mu^{\mathbf{x}}_{\text{equil}}(d\sigma)$?
- 2. Theorem $\rightarrow \epsilon \ll 1$; how big can we take ϵ ?
- 3. Need ergodicity for the micro process: no phase transitions in the microscopic model, i.e. only when we have weak interactions/high temperature
- 4. Finite time interval derivation [0, T]; large deviations from the averaged equation [Freidlin-Wentzell for SDE].

When stochastic fluctuations become important?

<u>External ODE</u>: $f(X, \sigma) = a(\bar{\sigma}) + \gamma X^2$, (saddle node bifurcation)

External ODE: $f(X, \sigma) = a(\bar{\sigma})X + \gamma X^3$, (Bistable)

• Deterministic closures capture correctly large scale features but miss the stochastically-driven transient dynamics.

Phase transitions in hybrid systems: How do we observe them in experiments?

Catalysis: CO on Pt oxidation example:

Suchorski, Evans, Imbihl et al., Phys. Rev. Lett. 89, 1907 (1999)

Phase transitions in hybrid systems: strong particle/particle interactions

$$\frac{d}{dt}X = f(X,\overline{\sigma}) = a\overline{\sigma} + b - cX$$
$$\frac{d}{dt}Ef(\sigma) = E\mathcal{L}_X f(\sigma), \quad h = h(X)$$

Step 1: mean field approximation (ODEs):

$$\frac{d}{dt}x = au + b - cx \equiv f(x, u)$$
$$\frac{d}{dt}u = (1 - u) - u \exp[-\beta J_0 u + h(x(t))]$$

- one stable state (weak interactions J₀); stochasticity is not important
- bistable, excitable, oscillatory regimes (strong interactions)
 Fitzhugh-Nagumo type system

- a. Need model reduction through suitable closure.
- b. Deterministic vs. stochastic closures; stochasticity can be important.

2. Hierarchical coarse-graining of stochastic processes

[Katsoulakis, Majda, Vlachos, PNAS (2003), JCompPhys (2003), JChemPhys(2003)]

Construct a **coarse-grained stochastic process** for a hierarchy of "mesoscopic" length or time scales that retains fluctuations.

Coarse observable (why this one?)

$$\eta_t(k) = \sum_{y \in D_k} \sigma_t(y)$$
.

In general it is non-markovian

Stochastic closures: can we write a new approximating Markov process for η_t ?

Examples of continuous coarse-grained models

<u>Deterministic PDE</u>: Ginzburg-Landau models, lattice Boltzmann, etc.

<u>Stochastic PDE</u>: Cahn-Hilliard-Cook, diblock co-polymer models, etc.

Examples of discrete coarse-grained models

<u>CG of macromolecules</u>: model "superatoms" of 10-20 atoms in polymers, proteins etc; fitting of parametrized potentials against DNS for given observables

Renormalization Group Methods

Step 1: From the microscopics:

$$egin{aligned} & rac{d}{dt} Eg(\eta) = & E\sum_{k\in\Lambda_c} \left\{ \sum_{x\in D_k} c(x,\sigma) ig(1-\sigma(x)ig)
ight\} imes \ & \left[g(\eta+\delta_k)-g(\eta)
ight] + \ & E\sum_{k\in\Lambda_c} \left\{ \sum_{x\in D_k} c(x,\sigma)\sigma(x)
ight\} imes \ & \left[g(\eta-\delta_k)-g(\eta)
ight]. \end{aligned}$$

 $\frac{\text{``Closure'' argument:}}{\text{ables the terms}}$ Express as a function of the coarse variables the terms

$$igg\{ \sum_{x\in D_k} c(x,\sigma) \dots igg\}$$

•
$$\sum_{x\in D_k} c(x,\sigma) \left(1-\sigma(x)\right) = \left(q-\eta(k)\right) := c_a(k,\eta)$$

•
$$\sum_{\mathbf{x}\in\mathbf{D}_{\mathbf{k}}}\mathbf{c}(\mathbf{x},\sigma)\sigma(\mathbf{x}) \stackrel{??}{=} \mathbf{c}_{\mathbf{d}}(\mathbf{k},\eta)$$

Note that $\sum_{x \in D_k} c(x, \sigma) \sigma(x) = \sum_{x \in D_k} \sigma(x) \exp\left[-\beta \left(U_0 + U(x)\right)\right],$

where

$$U(x) = \sum_{z \neq x, z \in \Lambda} J(x-z)\sigma(z) - h$$

$$\sum_{z \neq x, z \in \Lambda} J(x-z)\sigma(z) = \sum_{k \in \Lambda_c} \sum_{z \neq x, z \in D_k} J(x-z)\sigma(z)$$
$$= \sum_{z \neq x, z \in D_l} J(x-z)\sigma(z) +$$
$$\sum_{k \neq l, k \in \Lambda_c} \sum_{z \in D_k} J(x-z)\sigma(z)$$
$$:= I + II.$$

Term I: interactions within the cell D_l .

Term II: interactions of $x \in D_l$ with particles in other coarse cells D_k , $k \neq l$.

Coarse-grained potential

$$\bar{J}(k,l) = m^2 \int \int_{D_l \times D_k} J(r-s) dr ds$$
,

 $|D_l \times D_k| = 1/m^2.$

Includes all contributions of pairwise microscopic interactions between coarse cells and within the same coarse cell.

<u>Wavelet</u>-based coarse graining (with vanishing moments). Advantages: Nonstandard form [Beylkin, Coifman, Rokhlin], accurate quadratures [Beylkin].

Term II =
$$\sum_{\substack{k \in \Lambda_c \\ k \neq l}} \overline{J}(l,k)\eta(k) + O\left(\frac{q}{L}\right)$$

Term I = $\overline{J}(0,0)\left(\eta(l) - \sigma(x)\right) + \frac{1}{2L+1}O\left(\frac{q}{L}\right)$

- q: level of coarse-graining
- L: interaction range

Similar error estimates for singular potentials. Improved estimates using the decay of J.

Desorption rate:

$$c_d(k,\eta) \approx \eta(k) \exp\left[-\beta \left(U_0 + \bar{U}(k)\right)\right]$$

where we dropped the term $O(\frac{q}{L})$ in: $U(x) = \overline{U}(l) + O(\frac{q}{L})$,

$$\bar{U}(l) = \sum_{\substack{k \in \Lambda_c \\ k \neq l}} \bar{J}(l,k)\eta(k) + \bar{J}(0,0)\left(\eta(l) - 1\right) - \bar{h}.$$

When L >> q the coarse grained variable η is "approximately" a Markov process.

Expected form of the generator:

Birth-Death type process,

$$L_{c}g(\eta) = \sum_{k \in \Lambda_{c}} \qquad c_{a}(k,\eta) \left[g(\eta + \delta_{k}) - g(\eta) \right] + c_{d}(k,\eta) \left[g(\eta - \delta_{k}) - g(\eta) \right].$$

• Coarse-grained rates:

Adsorption rate of a single particle in the k-coarse cell $c_a(k,\eta) = q - \eta(k)$ Desorption rate (approximate-error estimates)

$$c_d(k,\eta) = \eta(k) \exp\left[-\beta\left(U_0 + \bar{U}(k)\right)\right]$$
$$\bar{U}(l) = \sum_{k \in \Lambda_c \atop k \neq l} \bar{J}(l,k)\eta(k) + \bar{J}(0,0)\left(\eta(l) - 1\right) - \bar{h}.$$

Birth-Death type process, with interactions.

Step 2: Ergodicity at every coarse level *q*:

Detailed balance for coarse Gibbs states:

Gibbs measure: $\mu_{m,q,\beta}(d\eta) = \frac{1}{Z_{m,q,\beta}} \exp(-\beta \bar{H}^{0}(\eta)) P_{m,q}(d\eta)$

Coarse-grained Hamiltonian

$$\bar{H}^{0}(\eta) = -\frac{1}{2} \sum_{l} \sum_{k,k \neq l} \bar{J}(k,l) \eta(k) \eta(l) \\ -\frac{\bar{J}(0,0)}{2} \sum_{l} \eta(l) (\eta(l)-1) + \sum_{l} \bar{h}(l) \eta(l)$$

Coarse-grained prior distribution:

$$P_{m,q}(\eta) = \prod_{k} \rho_q(\eta(k)), \quad \rho_q(\eta(k) = \lambda) = \frac{q!}{\lambda!(q-\lambda)!} \left(\frac{1}{2}\right)^q$$

Higher-order corrections: Relation to RG, cluster expansions.

• CPU savings: at least $O(q^2)$ or more.

Rare events and metastability

Analysis and numerics: Transient and long-time comparisons

Error I–Loss of information during coarse-graining

[with José Trashorras (Paris IX)]

- $\mu_{m,q,\beta}(t)$: Coarse-grained PDF at time t.
- $\mu_{N,\beta}(t)$: Projection of the microscopic PDF at time t on the coarse observables.
- q: level of coarse-graining
- L: # of interacting neighbors

Then,

$$\mathcal{R}\left(\mu_{m,q,\beta}(t) \,|\, \mu_{N,\beta} oF(t)\right) = O_T(\frac{q}{L})\,, \quad t \in [0,T]$$

where

$$\mathcal{R}(\mu \,|\, \nu) := \frac{1}{N} \sum_{\sigma} \log \left\{ \frac{\mu(\sigma)}{\nu(\sigma)} \right\} \mu(\sigma) \quad .\diamond$$

Information Theory interpretation: The relative entropy describes the increase in descriptive (in terms of a D-nary alphabet) complexity of a random variable due to "wrong information".

Distance between two probability measures

• Convergence in TV

$$|\pi_1 - \pi_2||_{TV} = \sup_A |\pi_1(A) - \pi_2(A)| = \sup_f \left| \int f(\sigma) \pi_1(d\sigma) - \int f(\sigma) \pi_2(d\sigma) \right|$$

• Relative entropy of $\pi_1(\sigma)$ and $\pi_2(\sigma)$

$$\mathcal{R}(\pi_1 | \pi_2) = \sum_{\sigma \in \mathcal{S}} \pi_1(\sigma) \log \frac{\pi_1(\sigma)}{\pi_2(\sigma)}.$$

$$\begin{array}{rcl} \mathcal{R}\left(\pi_{1} \mid \pi_{2}\right) & \geq & 0 \quad \text{and,} \\ \mathcal{R}\left(\pi_{1} \mid \pi_{2}\right) & = & 0 \quad \text{if and only if } \pi_{1}(\sigma) = \pi_{2}(\sigma) \text{ for all } \sigma \in \mathcal{S}. \end{array}$$

Bounds:

$$2||\pi_1 - \pi_2||_{TV}^2 \le \mathcal{R}(\pi_1 | \pi_2) \le ||\pi_1 - \pi_2||_{TV} + \frac{1}{2}||\frac{\pi_1}{\pi_2} - 1||_{\pi_2,2}^2$$

Other lower bounds from variational characterisation:

$$\mathcal{R}(\pi_1 | \pi_2) = \sup_{f \in L^{\infty}(\mathcal{S})} \left\{ \langle \pi_1, f \rangle - \log \langle \pi_2, e^f \rangle \right\}$$

Difficulty: $F(\sigma_t)(k) = \sum_{y \in D_k} \sigma_t(y)$. is not a Markov process.

Elements of the proof:

- 1. γ_t : Markovian reconstruction of the microscopic process σ_t from the coarse process η_t with controlled error:
- $(F(\gamma_t))_{t\geq 0}$ and $(\eta_t)_{t\geq 0}$ have the same distribution
- Since σ_t, γ_t are Markov, the Radon-Nikodym derivative of their distributions is:

$$\frac{d\mathcal{D}^{\sigma}_{[0,T]}}{d\mathcal{D}^{\gamma}_{[0,T]}}((\rho_t)_{t\in[0,T]}) = \exp\left\{\int_0^T [\lambda_{\sigma}(\rho_s) - \lambda_{\gamma}(\rho_s)]ds - \sum_{s\leq T} \log\frac{\lambda_{\sigma}(\rho_{s-})p_{\sigma}(\rho_{s-},\rho_s)}{\lambda_{\gamma}(\rho_{s-})p_{\gamma}(\rho_{s-},\rho_s)}\right\}$$

2. Variational formulation of the relative entropy and contraction:

$$R(\mu oF \,|\, \nu oF) \leq R(\mu \,|\, \nu)$$

3. Error estimation in the rates from coarse-graining of interactions.

Remark: Reconstruction processes have computational interest, e.g. adaptivity, etc.

Error Control II – Error Estimates for observable

-with: P. Plechac (Warwick), A. Sopasakis; A. Szepessy (KTH).

- ϕ : micorscopic observable
- ψ : coarse grained observables

such that $\phi(\sigma) := \psi(F(\sigma))$ e.g. $\phi(\sigma) =$ average over lattice

microscopic process: σ ,

reconstructed process: γ (still in the microscopic lattice)

coarse-grained process: η

Then for any $0 < T < \infty$

$$|E\phi(\sigma_T) - E\phi(\gamma_T)| \leq C_T (\frac{q}{L})^2$$
,

and

$$|E\psi(F(\sigma_T)) - E\psi(\eta_T)| \leq C_T(rac{q}{L})^2,$$

where the constant C_T is independent of q and L but depends on T.

Demonstration: Rare events and metastability

c_a		q = 5	q = 10	q = 20
	100	.0591	.0733	.1134
.07	40	.0820	.0880	.1113
	20	.1508	.2214	.1832
	100	.0186	.0563	.0480
.09	40	.0678	.0749	.1064
	20	.1760	.1767	.1812
	100	.0010	.0010	.0025
1	40	.0036	.0040	.0054
	20	.0016	.0043	.0065

errctable

TABLE 7.2 Approximation of $\bar{\tau}_T$, $\mathcal{R}\left(
ho_{\tau}^q \mid \mathbf{T}_* \rho_{\tau}\right)$ and relative error.

	L	q	$ar{ au}_T$	$\mathcal{R}\left(ho_{ au}^{q} \mathbf{T}_{*} ho_{ au} ight)$	Rel. Err.	CPU [s]
	100	1	532	0.0	0	309647
	100	2	532	0.003	0.01%	132143
	100	4	530	0.001	0.22%	86449
٦	100	5	534	0.003	0.38%	58412
	100	10	536	0.004	0.82%	38344
	100	20	550	0.007	3.42%	16215
	100	25	558	0.010	4.91%	7574
	100	50	626	0.009	17.69%	4577
	100	100	945	0.087	77.73%	345

table21

Probability Density Function (PDFs) comparisons between different coarse graining q. The mean times for each PDF are shown in the figures. All PDFs comprised of 10000 samples.

Error Analysis III: beyond the interaction range?

[with Rey-Bellet, Plechac, Tsagkarogiannis]

Cluster expansions around the coarse Hamiltonian $\bar{H}=\bar{H}^0$

Higher-order corrections: multi-body interactions, relation to Renormalization Group calculations.

• explicit expressions for higher order corrections

$$\bar{H}^{(0)}(\eta) + \bar{H}^{(1)}(\eta) \dots \bar{H}^{(\alpha)}(\eta) + \mathcal{O}(\epsilon^{\alpha+1})$$

1. A priori error estimate

$$\begin{split} &\frac{1}{N} \mathcal{R} \left(\bar{\mu}_{M,q,\beta}^{(\alpha)} \,|\, \mu_{N,\beta} oF \right) := \\ &\frac{1}{N} \sum_{\eta \in \mathcal{S}_{M,q}^c} \log \left(\frac{\mu_{M,q,\beta}^{(\alpha)}(\eta)}{\mu_{N,\beta}(\{\sigma \,|\, \mathbf{T}\sigma = \eta\})} \right) \mu_{M,q,\beta}^{(\alpha)}(\eta) = \mathsf{O} \left(\epsilon^{\alpha+2} \right) \,. \end{split}$$

2. A posteriori error estimate-Adaptivity in CG

Cluster expansions \rightarrow sharp a posteriori estimates for the relative entropy. The residuum operator R(.) is given by the terms $\overline{H}^{(1)}$ and depends only on the coarse variable η :

$$\mathcal{R}\left(\mu_{m,q}^{(0)} \mid \mu_N oF\right) = E_{\bar{G}^{(0)}}[R(\eta)] + \log\left(E_{\mu_{m,q}^{(0)}}[e^{R(\eta)}]\right) + O\left(\frac{q}{L}\right)^3$$

II. Stochastic coarse-graining in hybrid systems

Deterministic closures fail in long time intervals, or when phase transitions are present; revisit the earlier examples:

1. Blow-up:

2. Bistable ODE:

3. Phase transitions in hybrid systems: strong particle/particle interactions:

Fitzhugh-Nagumo type system; comparison of

DNS of the hybrid system, q = 1

VS.

Coarse-Grainings q = 50

Space/Time time series analysis:

Excitable regime:

Hybrid Stochastic/Deterministic systems

- 1. Khouider, Majda, K., PNAS (2003).
- 2. K., Majda, Sopasakis, Comm. Math. Sci. (2004)/(2005).
- 3. Lam, Vlachos, Phys. Rev. B (2001).
- 4. Rodgers, Jensen, J. Appl. Phys. (1998)

Coarse-grained models

- 1. K., Majda, Vlachos, J. Comp. Phys. (2003)
- 2. K., Majda, Vlachos, PNAS (2003).
- 3. K., Vlachos, J. Chem. Phys. (2003).
- 4. K., Trashorras, J. Stat. Phys., (2006).

Adaptivity within the coarse-grained hierarchy

- 1. Chaterjee, K., Vlachos, Phys. Rev. E (2005).
- 2. Chaterjee, Vlachos, K., J. Chem. Phys. (2004).

Related CG approaches-Renormalization Group

primarily equilibrium

- L.P. Kadanoff, Physic, 2 (1966), 263.
- G.S. Pawley, R.H. Swendsen, D.J. Wallace, K.G. Wilson, Phys. Rev. B, 29 (1984), 4030
- A. Brandt, Nucl. Phys. B, **26**, (1992)
- R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett., 58 (1987), 86
- A. Sokal, Phys. Rev. E 58 (2000)
- A. Brandt, D. Ron, J. Stat. Phys. **102** (2001)
- Q. Hou, N. Goldenfeld and A. McKane, Phys. Rev. E 63, 6125 (2001).
- A. E. Ismail, G. C. Rutledge, and G. Stephanopoulos, J. Chem. Phys. **118** (2003), 4414, J. Chem. Phys. **118**, (2003) 4424.