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Time scales

• The climate system has a wide range of time scales for

important physical processes

• Boundary layer processes and convection on an hourly

time scale

• Synoptic weather systems on a daily time scale

• Extratropical low-frequency variability on

intraseasonal and interannual time scales

• Oscillations of the coupled atmosphere-ocean system

(El Nino-Southern Oscillation) on interannual to

decadal time scales

• Due to the nonlinearity of the equations of motion all of

these processes interact with each other
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North Atlantic Oscillation

Source: www.ldeo.columbia.edu/NAO

• NAO has strong impact on regional climate and surface weather

• NAO is related to global warming

• NAO is used for studies of past climates
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Why stochastic modeling?

• Time step in numerical GCMs is determined by fastest time

scale which is resolved (which is usually also the smallest

resolved spatial scale)

• Can we treat the fast components as a stochastic process?

• Computationally more efficient
• Long range weather and climate predictions
• Estimating climate sensitivity to changes in forcing

• Novel way to parameterize unresolved degrees of

freedom
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Why reduced models?

• State of the Art GCMs have∼ 106 − 107 degrees of

freedom.

This makes it hard to understand why something happens

• Reduced models help to understand complex models by

simplifying and capturing the essence of a phenomenon
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Outline

• The goal is to derive a reduced model for only the most

important teleconnection patterns

• Due to the nonlinearity of the equations the unresolved

modes interact with the resolved modes (Teleconnection

patterns): Closure problem

• These neglected interactions are accounted for in a

systematic way by usingstochasticmethods
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Equations of motion

• Symbolic form of equations of motion

∂x

∂t
= F + Lx +B(x,x)

• EOF expansion

x =
∑

ai(t)ei + x
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Expansion in Empirical Orthogonal Functions

• EOF expansion

ȧi = Hi +
∑

j

Lij aj(t) +
∑

jk

Bijk aj(t) ak(t)

Total energy norm EOFs ensure conservation of
total energy by the nonlinear operator.

• Separation of time scales: Now we split the
reduced model into climate modes,αi, which are
slowly evolving, and non-climate modes,βi,
which evolve considerably faster than the climate
modes.
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Formulation of the problem

dα(t)

dt
= G(α(t), β(t))

Question: Given the statistical behavior ofβ(t) can
we deduce in a effective way the statistical behavior
of the solutionα(t)?

dα(t) = Geff(α(t))dt+Deff(α(t))dW

W denotes Brownian motion (Stochastic Process)
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Slow and fast modes
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Effective equations

The MTV-theory (Majda et al. 1999 (PNAS), 2001 (CPAM), 2003 (JAS)) predicts the following

functional form of the effective equations:

dα = (Hα + Lααα+Bααα(α, α))dt

+(H̃ + L̃α+ B̃(α, α) + M̃(α, α, α))dt

+σ(1)dW (1) + σ(2)(α)dW (2)

Bare truncation
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Effective equations

The MTV-theory (Majda et al. 1999 (PNAS), 2001 (CPAM), 2003 (JAS)) predicts the following

functional form of the effective equations:

dα = (Hα + Lααα+Bααα(α, α))dt

+(H̃ + L̃α+ B̃(α, α) + M̃(α, α, α))dt

+σ(1)dW (1) + σ(2)(α)dW (2)

Deterministic correction terms
Constant forcing, linear and nonlinear
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Effective equations

The MTV-theory (Majda et al. 1999 (PNAS), 2001 (CPAM), 2003 (JAS)) predicts the following

functional form of the effective equations:

dα = (Hα + Lααα+Bααα(α, α))dt

+(H̃ + L̃α+ B̃(α, α) + M̃(α, α, α))dt

+σ(1)dW (1) + σ(2)(α)dW (2)

Stochastic correction terms
Additive and multiplicative noise
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Effective equations

• We assume that the dynamical system given only by the

unresolved modes with interactionBβββ is ergodic and

mixing and can be represented by a stochastic process

• We assume that all unresolved modes are quasi-Gaussian

distributed

• Correction terms and noises are determined by minimal

regression fitting of only the unresolved modes; Sole input

are the variances and correlation functions of the

unresolved modes (Different than regression fitting of

resolved modes directly (Penland and Sardeshmukh 1995;

Kravtsov et al. 2005))
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Which physical processes represent the noise and cor-

rection terms?

• Linear interaction of unresolved modes with the

mean state→ Additive noise and deterministic linear term

• Driving of the climate modes by unresolved

modes→ Additive noise and deterministic linear term

• Advection of climate modes by unresolved

modes→ Multiplicative noise and deterministic cubic term
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Stochastic Mode Reduction for Atmospheric Models

• Barotropic Model on the Sphere:
Franzke, C., A. J. Majda and E. Vanden-Eijnden, 2005:
Low-order stochastic mode reduction for a realistic
barotropic model climate. J. Atmos. Sci., 1722-1745.

• Three Layer Baroclinic Model on the Sphere:
Franzke, C. and A. J. Majda, 2006: Low-order stochastic
mode reduction for a prototype atmospheric GCM. J.
Atmos. Sci., 457-479.
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Quasi-geostrophic model

• Global spectral model (Marshall and Molteni,
JAS, 1993)

• T21 resolution (∼ 5.6◦ × 5.6◦)
• 3 Layers
• Topography
• Forcing determined from observations
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Total energy norm EOFs

EOF1 EV7% EOF2 EV5%

Number of EOFs PNA NAO

4 0.25 0.24
6 0.58 0.28
8 0.65 0.57
10 0.68 0.78

Projection of EOF subspace onto observed PNA and NAO.
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Autocorrelation time scale
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Geographical distribution

Variance: Pattern correlation

Mode 200 hPa 500 hPa

4 0.97 0.97

6 0.99 0.99

8 0.99 0.99

10 0.98 0.98

10 Modes

QG model Stochastic model
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Geographical distribution

Transient eddy forcing: Pattern correlation

Mode 200 hPa 500 hPa

4 0.83 0.69

6 0.93 0.86

8 0.88 0.71

10 0.84 0.74

10 Modes

QG model Stochastic model
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Autocorrelation function
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Black line: Stochastic model; Red line: Quasi-Geostrophicmodel.
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Budget Analysis

• Effective equations are nonlinear with both additive and

multiplicative noise

• Linear interaction of unresolved modes with the mean

state

• Advection of climate modes by unresolved modes

• Mode reduction:631 → 10
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Geographical distribution

Mean: Pattern correlation

Mode 200 hPa 500 hPa

4 -0.07 -0.13

6 0.04 -0.05

8 0.18 0.13

10 0.42 0.43

10 Modes

QG model Stochastic model
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Minimally fitted stochastic model

dαi(t) = λB(Hα
i +

X

j

Lαα
ij αj(t)dt+

X

jk

Bααα
ijk αj(t)αk(t)dt)

+λ2
A

X

j

L̃
(2)
ij αj(t)dt+ λA

√
2

X

j

σ
(2)
ij dW

(2)
j

+λ2
M

0

@

X

j

L̃
(3)
ij αj(t)dt+

X

jkl

M̃ijklαj(t)αk(t)αl(t)dt

1

A

+λ2
L

0

@

X

j

L̃
(1)
ij αj(t)dt

1

A + λMλL

0

@H̃
(1)
j dt+

X

jk

B̃ijkαj(t)αk(t)dt

1

A

+λAλF H̃
(2)
j dt+

√
2

X

j

σ
(1)
ij (α(t))dW

(1)
j ,

where the nonlinear noise matrixσ(1) satisfies,

λ2
LQ

(1)
ij + λLλM

X

k

Uijkαk(t) + λ2
M

X

kl

Vijklαk(t)αl(t) =
X

k

σ
(1)
ik

(α(t))σ
(1)
jk

(α(t)).
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Budget Analysis: No climate drift

λB = 0.1, λM = λL = 4.0, λA = λF = 0.0

Mean: Pattern correlation

Mode 200 hPa 500 hPa

4 0.98 0.97

6 0.97 0.99

8 0.99 0.98

10 0.99 0.99

10 Modes

QG model Stochastic model
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Budget Analysis: No climate drift
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Black line: Stochastic model; Red line: Quasi-Geostrophicmodel.
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Summary and Conclusions

• Systematic procedure for stochastic parameterization of

unresolved degrees of freedom

• Systematic derivation of reduced models of climate

variability

• Reduced models simulate the climate statistics well

• Barotropic model: Effective linear equation with additive

noise stemming from the augmented linearity

(Mode reduction: 231→ 4)

• Baroclinic model: Multiplicative triads and augmented

linearity are important correction terms

(Mode reduction: 693→ 10)

franzke@cims.nyu.edu – p.28



Distinct Metastable Atmospheric Regimes

Despite Nearly Gaussian Statistics:

A Paradigm Model

Christian Franzke

Andrew Majda, Alexander Fischer, and Daan Crommelin

Courant Institute of Mathematical Sciences, New York University

franzke@cims.nyu.edu – p.29



Metastable Atmospheric Regimes: A Paradigm Model

• The structure of the low-frequency regime transitions among persistent teleconnection

patterns (e.g. NAO and PNA) is of central importance for bothlong-range weather

prediction and climate change projection

• Multiple extrema in the PDF’s are usually associated with regime behavior

• BUT: Long integrations of GCM’s show nearly Gaussian statistics

• Are there distinct atmospheric regimes despite nearly Gaussian statistics?

• Previous approaches include Multivariate PDFs (Kimoto andGhil 1993; JAS), Cluster

analysis (Cheng and Wallace 1993; JAS) and Gaussian mixtures (Smyth et al. 1999; JAS)

• In this talk: Objective regime identification through HMM

• Paradigm model:
• Barotropic flow over topography
• Low-frequency waves: Blocked and Zonal states
• Nearly Gaussian behavior
• Truncated low-order model is Charney-DeVore model (1979; JAS)
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Metastable Atmospheric Regimes: A Paradigm Model

The barotropic quasi-geostrophic equations with a large scale

zonal mean flowU on a2π × 2π periodic domain are given by

∂q

∂t
+ ∇⊥ψ · ∇q + U ∂q

∂x
+ β ∂ψ

∂x
= 0

q = ∆ψ + h

dU
dt

= 1
4π2

∫

h∂ψ
∂x
dxdy

The model is truncated at|k|2 ≤ 17 (57 degrees of freedom).
Majda, A. J., I. Timofeyev and E. Vanden-Eijnden, 2003: Systematic Strategies for Stochastic

Mode Reduction in Climate, J. Atmos. Sci.

Majda, A. J., C. L. Franzke, A. Fischer, and D. T. Crommelin, 2006: Distinct Metastable Atmo-

spheric Regimes Despite Nearly Gaussian Statistics: A Paradigm Model, PNAS.
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Low-order Truncation and Steady States

ψ(x, y, t) = a(t) sin(x) + b(t) cos(x),

h(x, y) = H(sin(x) + cos(x))

yields an exact nonlinear solution, providedU , a, andb satisfy

ȧ = −UH + (U − β)b,

ḃ = UH − (U − β)a,

U̇ =
H

2
(a− b).

This truncated model is equivalent to the Charney-DeVore model

after a45◦ rotation ofa andb.
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Low-order Truncation and Steady States
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Hidden Markov Model (HMM)

X X X X1

1

2 3 N

N32Y Y Y Y

Graphical representation of a HMM.X1, . . . , XN andY1, . . . , YN are random variables, rectan-

gles denote hidden (unobservable) random variables, circles observable ones; the arrows specify

conditional independence relations.
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Hidden Markov Model (HMM)

The conditional independence relations betweenX andY are defined by the factorization

P (X1, . . . , XT , Y1, . . . , YT ) =

P (X1)P (Y1|X1)
T

Y

t=2

P (Xt|Xt−1)P (Yt|Xt)

A HMM is defined by the following components:

• N hidden StatesS = s1, s2, . . . , sN

• the observation spaceV ⊂ R
d

• a (N ×N) stochastic transition matrixA = (aij)

• a stochastic vectorπ = (π1, . . . , πN )

• probability distributionsBn, n = 1, . . . , N onV

Parameter estimation by EM and Viterbi algorithms

References: Rabiner (1989), Ghahramani (2001), Fischer etal. (2006)
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HMM Analysis for Metastable Regimes

A0.2 =





0.985 0.015

0.016 0.984



 ,

B1 = N (−0.035, 0.304), B2 = N (−0.789, 0.119)

eigenvalues ofA0.2:λ1(A
0.2) = 1, λ2(A

0.2) = 0.969

Invariant distribution ofA0.2:(0.529, 0.471) (1)

Autocorrelation time scale ofU : 5 time units

Residence time: H1 20 time units; H2 15 time units
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HMM Analysis for Metastable Regimes
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Climatological marginal PDF ofU (solid line) and weighted conditional PDF’s of hidden state1

(Blocked flow, dashed line) and hidden state 2 (Zonal flow, dashed-dotted line).
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HMM Analysis for Metastable Regimes

a) Hidden State 1: Blocked Flow b) Hidden State 2: Zonal Flow
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Velocity field conditioned on the Viterbi path of a HMM analysis in the subspaceU for a) hidden

state 1 (Blocked flow), and b) hidden state 2 (Zonal flow).
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HMM Analysis for Metastable Regimes
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U (upper panel) and Viterbi path (lower panel). ForU path black crosses and red circles denote

states which correspond to hidden state 1 (Blocked flow) and 2(Zonal flow), respectively.
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Why only 2 hidden states?

Analysis with 4 hidden states

eigenvalues ofA0.2:λ1(A
0.2) = 1, λ2(A

0.2) = 0.972,

λ3(A
0.2) = 0.930, λ4(A

0.2) = 0.731

Invariant distribution ofA0.2:(0.137, 0.125, 0.345, 0.393)
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Predicted nonlinear reduced equation forU

dU

dt
= −γ(U)U +

γ′(U)

αµ
+

√

2γ(U)

αµ
Ẇ (2)

whereγ′(U) = dγ/dU and

γ(U) = 2
∑

k

k
2
x |Hk|

2 γk

γ2
k

+
(

Ωk − kx(αµ)
1
2U

)2 (3)

Hk = hk

√

µ

|k|2(µ+ |k|2)

Ωk =
kxβ

|k|2
− Ukx

Majda, A. J., I. Timofeyev and E. Vanden-Eijnden, 2003 (JAS)

franzke@cims.nyu.edu – p.41



Empirical reduced equation for U

dU = B(U)dt+
√

A(U)dW

• B(U) is the drift coefficient

• A(U)
2

> 0 is the diffusion coefficient

• A andB are estimated from observedU

• W is Brownian motion.

Crommelin, D. T., and E. Vanden-Eijnden (J. Comp. Phys.; Comm. Math. Sci. 2006)
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Drift and Diffusion

a) Drift b) Diffusion
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Reconstructed a) DriftB and b) DiffusionA from time series variableU . The open circles are the

result of the reconstruction, carried out 10 times on 10 different (non-overlapping) segments of the

time series.
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Metastable Regimes

A0.2 =





0.990 0.010

0.016 0.984



 ,

B1 = N (−0.748, 0.086), B2 = N (0.209, 0.200)

eigenvalues ofA0.2:λ2(A
0.2) = 0.9744
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Summary and Conclusions

• HMM are utilized for objective atmospheric regime

identification

• Two regimes are identified, which correspond to blocked

and zonal flow

• Low-order stochastic models capture regime behavior

• This offers potential for using reduced stochastic models

for long-range predictability
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