Systematic Stochastic Modeling of Climate Variability

Christian Franzke

Andrew J. Majda, and Eric Vanden-Eijnden

Courant Institute of Mathematical Sciences New York University

franzke@cims.nyu.edu - p.1

Time scales

- The climate system has a wide range of time scales for important physical processes
 - Boundary layer processes and convection on an hourly time scale
 - Synoptic weather systems on a daily time scale
 - Extratropical low-frequency variability on intraseasonal and interannual time scales
 - Oscillations of the coupled atmosphere-ocean system (El Nino-Southern Oscillation) on interannual to decadal time scales

Due to the nonlinearity of the equations of motion all of these processes interact with each other

Macherio

 $\rho = \rho(T,S,p)$

North Atlantic Oscillation

Source: www.ldeo.columbia.edu/NAO

- NAO has strong impact on regional climate and surface weather
- NAO is related to global warming
 - NAO is used for studies of past climates

Why stochastic modeling?

- Time step in numerical GCMs is determined by fastest time scale which is resolved (which is usually also the smallest resolved spatial scale)
- Can we treat the fast components as a stochastic process?
 - Computationally more efficient
 - Long range weather and climate predictions
 - Estimating climate sensitivity to changes in forcing
 - Novel way to parameterize unresolved degrees of freedom

Why reduced models?

• State of the Art GCMs have $\sim 10^6 - 10^7$ degrees of freedom.

This makes it hard to understand why something happens

• Reduced models help to understand complex models by simplifying and capturing the essence of a phenomenon

Outline

- The goal is to derive a reduced model for only the most important teleconnection patterns
- Due to the nonlinearity of the equations the unresolved modes interact with the resolved modes (Teleconnection patterns): Closure problem
- These neglected interactions are accounted for in a systematic way by using **stochastic** methods

Equations of motion

• Symbolic form of equations of motion

$$\frac{\partial \mathbf{x}}{\partial t} = F + L\mathbf{x} + B(\mathbf{x}, \mathbf{x})$$

• EOF expansion

$$\mathbf{x} = \sum a_i(t)\mathbf{e}_i + \overline{\mathbf{x}}$$

Expansion in Empirical Orthogonal Functions

• EOF expansion

$$\dot{a}_i = H_i + \sum_j L_{ij} a_j(t) + \sum_{jk} B_{ijk} a_j(t) a_k(t)$$

Total energy norm EOFs ensure conservation of total energy by the nonlinear operator.

Separation of time scales: Now we split the reduced model into climate modes, α_i, which are slowly evolving, and non-climate modes, β_i, which evolve considerably faster than the climate modes.

Formulation of the problem

$$\frac{d\alpha(t)}{dt} = G(\alpha(t), \beta(t))$$

Question: Given the statistical behavior of $\beta(t)$ can we deduce in a effective way the statistical behavior of the solution $\alpha(t)$?

$$d\alpha(t) = G_{\text{eff}}(\alpha(t))dt + D_{\text{eff}}(\alpha(t))dW$$

W denotes Brownian motion (Stochastic Process)

Slow and fast modes

The MTV-theory (Majda et al. 1999 (PNAS), 2001 (CPAM), 2003 (JAS)) predicts the following functional form of the effective equations:

$$d\alpha = (H^{\alpha} + L^{\alpha\alpha}\alpha + B^{\alpha\alpha\alpha}(\alpha, \alpha))dt + (\tilde{H} + \tilde{L}\alpha + \tilde{B}(\alpha, \alpha) + \tilde{M}(\alpha, \alpha, \alpha))dt + \sigma^{(1)}dW^{(1)} + \sigma^{(2)}(\alpha)dW^{(2)}$$

Bare truncation

The MTV-theory (Majda et al. 1999 (PNAS), 2001 (CPAM), 2003 (JAS)) predicts the following functional form of the effective equations:

$$d\alpha = (H^{\alpha} + L^{\alpha\alpha}\alpha + B^{\alpha\alpha\alpha}(\alpha, \alpha))dt + (\tilde{H} + \tilde{L}\alpha + \tilde{B}(\alpha, \alpha) + \tilde{M}(\alpha, \alpha, \alpha))dt + \sigma^{(1)}dW^{(1)} + \sigma^{(2)}(\alpha)dW^{(2)}$$

Deterministic correction terms Constant forcing, linear and nonlinear

The MTV-theory (Majda et al. 1999 (PNAS), 2001 (CPAM), 2003 (JAS)) predicts the following functional form of the effective equations:

$$d\alpha = (H^{\alpha} + L^{\alpha\alpha}\alpha + B^{\alpha\alpha\alpha}(\alpha, \alpha))dt + (\tilde{H} + \tilde{L}\alpha + \tilde{B}(\alpha, \alpha) + \tilde{M}(\alpha, \alpha, \alpha))dt + \sigma^{(1)}dW^{(1)} + \sigma^{(2)}(\alpha)dW^{(2)}$$

Stochastic correction terms Additive and multiplicative noise

- We assume that the dynamical system given only by the unresolved modes with interaction $B^{\beta\beta\beta}$ is ergodic and mixing and can be represented by a stochastic process
- We assume that all unresolved modes are quasi-Gaussian distributed
- Correction terms and noises are determined by minimal regression fitting of only the unresolved modes; Sole input are the variances and correlation functions of the unresolved modes (Different than regression fitting of resolved modes directly (Penland and Sardeshmukh 1995; Kravtsov et al. 2005))

Which physical processes represent the noise and correction terms?

- Linear interaction of unresolved modes with the mean state → Additive noise and deterministic linear term
- Driving of the climate modes by unresolved modes → Additive noise and deterministic linear term
- Advection of climate modes by unresolved modes → Multiplicative noise and deterministic cubic term

Stochastic Mode Reduction for Atmospheric Models

- Barotropic Model on the Sphere: Franzke, C., A. J. Majda and E. Vanden-Eijnden, 2005: Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci., 1722-1745.
- Three Layer Baroclinic Model on the Sphere: Franzke, C. and A. J. Majda, 2006: Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci., 457-479.

Quasi-geostrophic model

- Global spectral model (Marshall and Molteni, JAS, 1993)
- T21 resolution ($\sim 5.6^{\circ} \times 5.6^{\circ}$)
- 3 Layers
- Topography
- Forcing determined from observations

Total energy norm EOFs

Projection of EOF subspace onto observed PNA and NAO.

0.65

0.68

0.57

0.78

8

10

franzke@cims.nyu.edu – p.18

Autocorrelation time scale

Geographical distribution

Mode	200 hPa	500 hPa
4	0.97	0.97
6	0.99	0.99
8	0.99	0.99
10	0.98	0.98

Variance: Pattern correlation

QG model

Stochastic model

Geographical distribution

Transient eddy forcing: Pattern correlation

Mode	200 hPa	500 hPa
4	0.83	0.69
6	0.93	0.86
8	0.88	0.71
10	0.84	0.74

QG model

Stochastic model

Autocorrelation function

franzke@cims.nyu.edu - p.22

Budget Analysis

- Effective equations are nonlinear with both additive and multiplicative noise
 - Linear interaction of unresolved modes with the mean state
 - Advection of climate modes by unresolved modes
- Mode reduction: $631 \rightarrow 10$

Geographical distribution

Mode	200 hPa	500 hPa
4	-0.07	-0.13
6	0.04	-0.05
8	0.18	0.13
10	0.42	0.43

Mean: Pattern correlation

QG model

Stochastic model

Minimally fitted stochastic model

$$\begin{aligned} d\alpha_i(t) &= \lambda_B (H_i^{\alpha} + \sum_j L_{ij}^{\alpha\alpha} \alpha_j(t) dt + \sum_{jk} B_{ijk}^{\alpha\alpha\alpha} \alpha_j(t) \alpha_k(t) dt) \\ &+ \lambda_A^2 \sum_j \tilde{L}_{ij}^{(2)} \alpha_j(t) dt + \lambda_A \sqrt{2} \sum_j \sigma_{ij}^{(2)} dW_j^{(2)} \\ &+ \lambda_M^2 \left(\sum_j \tilde{L}_{ij}^{(3)} \alpha_j(t) dt + \sum_{jkl} \tilde{M}_{ijkl} \alpha_j(t) \alpha_k(t) \alpha_l(t) dt \right) \\ &+ \lambda_L^2 \left(\sum_j \tilde{L}_{ij}^{(1)} \alpha_j(t) dt \right) + \lambda_M \lambda_L \left(\tilde{H}_j^{(1)} dt + \sum_{jk} \tilde{B}_{ijk} \alpha_j(t) \alpha_k(t) dt \right) \\ &+ \lambda_A \lambda_F \tilde{H}_j^{(2)} dt + \sqrt{2} \sum_j \sigma_{ij}^{(1)} (\alpha(t)) dW_j^{(1)}, \end{aligned}$$

where the nonlinear noise matrix $\sigma^{(1)}$ satisfies,

$$\lambda_L^2 Q_{ij}^{(1)} + \lambda_L \lambda_M \sum_k U_{ijk} \alpha_k(t) + \lambda_M^2 \sum_{kl} V_{ijkl} \alpha_k(t) \alpha_l(t) = \sum_k \sigma_{ik}^{(1)}(\alpha(t)) \sigma_{jk}^{(1)}(\alpha(t)).$$
Franzke@cims.nyu.edu - p.

Budget Analysis: No climate drift

 $\lambda_B = 0.1, \lambda_M = \lambda_L = 4.0, \lambda_A = \lambda_F = 0.0$

Mean: Pattern correlation

Mode	200 hPa	500 hPa
4	0.98	0.97
6	0.97	0.99
8	0.99	0.98
10	0.99	0.99

10 Modes

QG model

Stochastic model

Budget Analysis: No climate drift

franzke@cims.nyu.edu - p.27

Summary and Conclusions

- Systematic procedure for stochastic parameterization of unresolved degrees of freedom
- Systematic derivation of reduced models of climate variability
- Reduced models simulate the climate statistics well
- Barotropic model: Effective linear equation with additive noise stemming from the augmented linearity (Mode reduction: 231 → 4)
- Baroclinic model: Multiplicative triads and augmented linearity are important correction terms
 (Mode reduction: 693 → 10)

Distinct Metastable Atmospheric Regimes Despite Nearly Gaussian Statistics: A Paradigm Model

Christian Franzke

Andrew Majda, Alexander Fischer, and Daan Crommelin

Courant Institute of Mathematical Sciences, New York University

Metastable Atmospheric Regimes: A Paradigm Model

- The structure of the low-frequency regime transitions among persistent teleconnection patterns (e.g. NAO and PNA) is of central importance for both long-range weather prediction and climate change projection
- Multiple extrema in the PDF's are usually associated with regime behavior
- BUT: Long integrations of GCM's show nearly Gaussian statistics
- Are there distinct atmospheric regimes despite nearly Gaussian statistics?
- Previous approaches include Multivariate PDFs (Kimoto and Ghil 1993; JAS), Cluster analysis (Cheng and Wallace 1993; JAS) and Gaussian mixtures (Smyth et al. 1999; JAS)
- In this talk: Objective regime identification through HMM
- Paradigm model:
 - Barotropic flow over topography
 - Low-frequency waves: Blocked and Zonal states
 - Nearly Gaussian behavior
 - Truncated low-order model is Charney-DeVore model (1979; JAS)

Metastable Atmospheric Regimes: A Paradigm Model

The barotropic quasi-geostrophic equations with a large scale zonal mean flow U on a $2\pi \times 2\pi$ periodic domain are given by

$$\frac{\partial q}{\partial t} + \nabla^{\perp}\psi \cdot \nabla q + U\frac{\partial q}{\partial x} + \beta\frac{\partial\psi}{\partial x} = 0$$
$$q = \Delta\psi + h$$
$$\frac{dU}{dt} = \frac{1}{4\pi^2}\int h\frac{\partial\psi}{\partial x}dxdy$$

The model is truncated at $|\mathbf{k}|^2 \leq 17$ (57 degrees of freedom). Majda, A. J., I. Timofeyev and E. Vanden-Eijnden, 2003: Systematic Strategies for Stochastic Mode Reduction in Climate, J. Atmos. Sci.

Majda, A. J., C. L. Franzke, A. Fischer, and D. T. Crommelin, 2006: Distinct Metastable Atmo-

spheric Regimes Despite Nearly Gaussian Statistics: A Paradigm Model, PNAS.

Low-order Truncation and Steady States

$$\psi(x, y, t) = a(t)\sin(x) + b(t)\cos(x),$$

$$h(x, y) = H(\sin(x) + \cos(x))$$

yields an exact nonlinear solution, provided U, a, and b satisfy

$$\dot{a} = -UH + (U - \beta)b,$$

$$\dot{b} = UH - (U - \beta)a,$$

$$\dot{U} = \frac{H}{2}(a - b).$$

This truncated model is equivalent to the Charney-DeVore model

after a 45° rotation of a and b.

Low-order Truncation and Steady States

Hidden Markov Model (HMM)

Graphical representation of a HMM. X_1, \ldots, X_N and Y_1, \ldots, Y_N are random variables, rectangles denote hidden (unobservable) random variables, circles observable ones; the arrows specify conditional independence relations.

Hidden Markov Model (HMM)

The conditional independence relations between X and Y are defined by the factorization

$$P(X_1, \dots, X_T, Y_1, \dots, Y_T) =$$
$$P(X_1)P(Y_1|X_1)\prod_{t=2}^T P(X_t|X_{t-1})P(Y_t|X_t)$$

A HMM is defined by the following components:

- N hidden States $S = s_1, s_2, \ldots, s_N$
- the observation space $V \subset \mathbb{R}^d$
- a $(N \times N)$ stochastic transition matrix $A = (a_{ij})$
- a stochastic vector $\pi = (\pi_1, \ldots, \pi_N)$
- probability distributions B_n , n = 1, ..., N on V

Parameter estimation by EM and Viterbi algorithms

References: Rabiner (1989), Ghahramani (2001), Fischer et al. (2006)

$$A^{0.2} = \left(\begin{array}{cc} 0.985 & 0.015\\ 0.016 & 0.984 \end{array} \right),$$

$$B_1 = \mathcal{N}(-0.035, 0.304), B_2 = \mathcal{N}(-0.789, 0.119)$$

eigenvalues of
$$A^{0.2}:\lambda_1(A^{0.2}) = 1, \lambda_2(A^{0.2}) = 0.969$$

Invariant distribution of $A^{0.2}$:(0.529, 0.471) (1)

Autocorrelation time scale of U: 5 time units

Residence time: H1 20 time units; H2 15 time units

Climatological marginal PDF of U (solid line) and weighted conditional PDF's of hidden state 1

(Blocked flow, dashed line) and hidden state 2 (Zonal flow, dashed-dotted line).

a) Hidden State 1: Blocked Flow b) Hidden State 2: Zonal Flow

Velocity field conditioned on the Viterbi path of a HMM analysis in the subspace U for a) hidden

state 1 (Blocked flow), and b) hidden state 2 (Zonal flow).

U (upper panel) and Viterbi path (lower panel). For U path black crosses and red circles denote

states which correspond to hidden state 1 (Blocked flow) and 2 (Zonal flow), respectively.

Why only 2 hidden states?

Analysis with 4 hidden states

eigenvalues of
$$A^{0.2}:\lambda_1(A^{0.2}) = 1, \lambda_2(A^{0.2}) = 0.972,$$

$$\lambda_3(A^{0.2}) = 0.930, \lambda_4(A^{0.2}) = 0.731$$

Invariant distribution of $A^{0.2}$: (0.137, 0.125, 0.345, 0.393)

Predicted nonlinear reduced equation for U

$$\frac{dU}{dt} = -\gamma(U)U + \frac{\gamma'(U)}{\alpha\mu} + \sqrt{\frac{2\gamma(U)}{\alpha\mu}}\dot{W}$$
(2)

where $\gamma'(U) = d\gamma/dU$ and

$$\gamma(U) = 2\sum_{\mathbf{k}} \frac{\mathbf{k}_x^2 \left| H_{\mathbf{k}} \right|^2 \gamma_{\mathbf{k}}}{\gamma_{\mathbf{k}}^2 + \left(\Omega_{\mathbf{k}} - k_x (\alpha \mu)^{\frac{1}{2}} U \right)^2}$$

$$H_{\mathbf{k}} = h_{\mathbf{k}} \sqrt{\frac{\mu}{|\mathbf{k}|^2(\mu + |\mathbf{k}|^2)}}$$
$$\Omega_{\mathbf{k}} = \frac{k_x \beta}{|\mathbf{k}|^2} - \overline{U}k_x$$

Majda, A. J., I. Timofeyev and E. Vanden-Eijnden, 2003 (JAS)

(3)

Empirical reduced equation for U

$$dU = B(U)dt + \sqrt{A(U)}dW$$

- B(U) is the drift coefficient
- $\frac{A(U)}{2} > 0$ is the diffusion coefficient
- A and B are estimated from observed U
- W is Brownian motion.

Crommelin, D. T., and E. Vanden-Eijnden (J. Comp. Phys.; Comm. Math. Sci. 2006)

Drift and Diffusion

Reconstructed a) Drift B and b) Diffusion A from time series variable U. The open circles are the

result of the reconstruction, carried out 10 times on 10 different (non-overlapping) segments of the time series.

Metastable Regimes

$$A^{0.2} = \left(\begin{array}{cc} 0.990 & 0.010\\ 0.016 & 0.984 \end{array}\right),$$

$$B_1 = \mathcal{N}(-0.748, 0.086), B_2 = \mathcal{N}(0.209, 0.200)$$

eigenvalues of
$$A^{0.2}:\lambda_2(A^{0.2}) = 0.9744$$

Summary and Conclusions

- HMM are utilized for objective atmospheric regime identification
- Two regimes are identified, which correspond to blocked and zonal flow
- Low-order stochastic models capture regime behavior
- This offers potential for using reduced stochastic models for long-range predictability

