COARSE GRAINED STOCHASTIC BIRTH-DEATH PROCESSES FOR TROPICAL CONVECTION AND CLIMATE

> B. Khouider University of Victoria

NCAR: IMAGE WORKSHOP, Feb. 27 - Mar. 3, 2006

A. Majda (NYU), M. Katsoulakis (UMASS)

OUTLINE

- Part I:
 - Introduction, unresolved features (CAPE and CIN)
 - Stochastic spin/flip model and coarse-graining
 - Deterministic model and coupling
 - Walker cell simulations: stochastic effect on climate
 - Summary
- Part II: (Aquaplanet setup)
 - Mean field/Stochastic RCE's
 - Selecting stochastic regimes and RCEs
 - Intermittency in single column
 - Effect of CIN on deep convective activity and convectively coupled waves
- Conclusion

Relevant papers

• Atmospheric science:

Khouider, Majda, & Katsoulakis (2003), PNAS: Coarse grained stochastic models for tropical convection and climate.
Majda & Khouider (2002), PNAS: Stochastic and mesoscopic models for tropical convections.

 Coarse Graining (Material Science): Katsoulakis, Majda, & Vlachos (2003), JCP: Katsoulakis, Majda, & Vlachos (2003), PNAS

• Multiscale Coupling and Phase Transition

Katsoulakis, Majda, & Sopasakis (2004): Deterministic closures Katsoulakis, Majda, & Sopasakis (2005): Stochastic closures Katsoulakis, M. A., A. J. Majda, and A. Sopasakis, (2005b), *Intermittency, metastability, ...*

Introduction

- Moist convection: Transport of latent heat.
- Source of energy for local and large scale circulation.
- Generates and maintains tropical waves and storms.
- Organized tropical convection ranges from mesoscale individual clouds (1-10 km) to large scale superclusters (1000-10,000 km).
- Poorly represented by GCM's despite Today's supercomputers.
- Major contemporary problem: How large-scale circulation supplies energy and maintains deep convection?
- Convective Inhibition (CIN): Energy Barrier for spontaneous convection

Motivation

- Can Stochastic parametrizations alter tropical Climatology?
- Can they increase the wave fluctuations?
- Lin & Neelin: suggest plausible influence of stochastic convective parametrizations on the variability in GCM's.

Static stability of Lifted parcel

- Negative area (CIN)

Convective Inhibition (CIN): Energy Barrier for spontaneous convection.

Sounding (black)

Lifted parcel (blue line) cools by expansion,

at LCL: warms by latent heat release of condensation

Source: Internet.

• (Thermal) Buoyancy of a lifted parcel:

$$B = g \frac{\theta_{e,p} - \theta_{e,a}}{\theta_{e,a}}$$

 $\theta_e = \text{temperature} + \text{moisture content} \times \text{latent heat}$

• Potential energy of lifted parcel

$$E_p = \int_0^{LNB} g \frac{\theta_{e,p} - \theta_{e,a}}{\theta_{e,a}} dz$$
$$= \int_0^{LFC} - dz + \int_{LFC}^{LNB} - dz$$
$$= -\text{CIN} + \text{CAPE}$$

• When (how) parcel has (could have) enough energy to overcome CIN and reach LFC?

Microscopic stochastic Model for CIN

- CIN: Energy Barrier for spontaneous convection
- Observationally, factors for CIN complex: gust fronts, gravity waves, turbulent fluctuations in boundary layer equivalent potential temperature, etc.
- Our point of view:

Too complex to model in detail; instead, borrow ideas from statistical physics and material science of representing these effects by an order parameter, σ_I

- Order parameter, σ_I , sites (1-10 km apart)
 - $\sigma_I = 1$ if deep convection is inhibited: a CIN site
 - $\sigma_I = 0$ if there is potential for deep convection: a PAC site

• Coarse Mesh: Average CIN $j\Delta x, \Delta x = O(100, 200 \text{ km}) \text{ (mesoscopic scale)}$

$$\bar{\sigma}_I(j\Delta x, t) = \frac{1}{\Delta x} \int_{(j-1/2)\Delta x}^{(j+1/2)\Delta x} \sigma_I(x, t) \, dx$$

100-200 km

Intuitive Stochastic Rules for Interaction of Order Parameter, σ_I

- A) If CIN site is surrounded mostly by CIN sites, should remain so with high probability
- B) If PAC site is surrounded by CIN sites, should have high probability to switch to CIN site
- C) The external large scale mesoscopic mesh values, \vec{u}_j , should supply external potential, $h(\vec{u}_j)$, which modifies dynamics in A) and B) according to whether external conditions favor CIN or PAC

Stochastic Model

- View boundary layer as heat bath with External Potential: Ising model (magnetization and phase transition) Materials science: Souganidis, Katsoulakis, etc.
- Microscopic energy for CIN:

$$H_h(\sigma_I) = \sum_{x \neq y} J(\frac{|x - y|}{L}) \sigma_I(x) \sigma_I(y) + h \sum_x \sigma_I(x)$$

- J: microscopic interaction potential: (Currie-Weiss)
$$J(r) = \begin{cases} U_0, & r < r_0 \\ 0, & r > r_0 \end{cases}$$

-h: external potential. $H_h \nearrow h$

• Invariant Gibbs measure: $G = (Z_{\Lambda})^{-1} \exp[\beta H_h(\sigma)] d\sigma$ Z_{Λ} : partition function.

• Spin flip rule:
$$\sigma_I^x(y) = \begin{cases} 1 - \sigma_I(x), & y = x \\ \sigma_I(y), & y \neq x \end{cases}$$

• Arrhenius dynamics:

Rate: $c(x, \sigma_I) = \begin{cases} \tau^{-1} \exp[-\beta V(x)], & x = 1\\ \tau^{-1}, & x = 0 \end{cases}$ $V(x) \equiv \Delta H = \sum_{z \neq x} J(x - z)\sigma_I + h(x) \text{ (detailed balance)}$

 τ_I : CIN characteristic time O(days)

- With $U_0 > 0$: if a CIN site is mostly surrounded by CIN sites, then it needs to overcome a larger energy barrier.
- External field also builds/destroys energy for CIN: $H_h \nearrow h$

Coarse-Graining

• Coarse-grained stochastic process:

$$\eta_t(k) = \sum_{x \in D_k} \sigma_{I,t}(x); \qquad \eta(k) \in \{0, 1, \cdots, q\}$$

average CIN on coarse-mesh:
$$\bar{\sigma}_I[D_k] = \frac{1}{q}\eta(k)$$

Features of coarse-grained process

• Canonical invariant Gibbs measure: $C = \frac{1}{\beta \bar{H}(n)} D = \frac{\beta \bar{H}(n)}{\beta \bar{H}(n)} D$

$$G_{m,q,\beta}(\eta) = \frac{1}{Z_{m,q,\beta}} e^{\beta H(\eta)} P_{m,q}(d\eta)$$

- Coarse grained Hamiltonian $\bar{H}(\eta) = \frac{U_0}{q-1} \sum_{l \in \Lambda_c} \eta(l) \left(\eta(l) - 1 \right) + h \sum_{l \in \Lambda_c} \eta(l)$
- Arrhenius Dynamics lead to birth/death process with Adsorption/Desorption rates:

$$\begin{aligned} C_a(k,n) &= \frac{1}{\tau_I} [q - \eta(k)] \\ C_d(k,n) &= \frac{1}{\tau_I} \eta(k) e^{-\beta \bar{V}(k)} \\ \text{with } \bar{V}(\eta) &= \Delta \bar{H}(\eta) = \frac{2U_0}{q - 1} (\eta(k) - 1) + h \end{aligned}$$

Stochastic model for CIN coupled into a one-and-half layer model convective parametrization (toy GCM)

The Deterministic Model (Toy GCM): model convective parametrization

• Prognostic Eqns: One vertical baroclinic mode, no rotation

$$\frac{\partial u}{\partial t} - \bar{\alpha} \frac{\partial \theta}{\partial x} = -Friction \qquad \qquad \frac{\partial \theta}{\partial t} - \bar{\alpha} \frac{\partial u}{\partial x} = Q_c - Q_R$$
$$h \frac{\partial \theta_{eb}}{\partial t} = -D + E \qquad \qquad H \frac{\partial \theta_{em}}{\partial t} = D - Q_R$$

Convective heating:

$$Q_c = M\sigma_c ((\text{CAPE})^+)^{1/2}$$

CAPE $\propto \theta_{eb} - \gamma \theta$.

 σ_c called *area fraction of deep convection*, plays key role in linear stability.

Coupling Stochastic model into toy GCM

• Order parameter modifies CAPE flux:

$$\sigma_c = (1 - \overline{\sigma}_I)\sigma_c^+; \ \sigma_c^+ = .002$$

• External potential depends on large scale dynamics and thermodynamics: (Good guess)

 $h \propto m_{-},$

Downward mass flux \propto Convective mass flux

- convective events build CIN by downdraft cooling of boundary layer and/or convective heating of middle troposphere (stabilization)
- Other choices of h are also considered (Part 2).

Nonlinear Simulations with Toy GCM

Walker circulation set-up:

mimicking the Indian Ocean/Western Pacific warm pool

- Periodic geometry, $\Delta x = 80$ km
- Initial data: RCE + small random perturbation
- Integrate to statistical equilibrium
- Effects of stochastic model on waves and climate?
- Vary stochastic parameters, βU_0 , τ_I , and A_0

Table 1: Effect of stochastic parameters on climatology and fluctuations, with heating strength $A_0 = .5$.

Intera	c. $ au_I$				$(m \ s^{-1})$		Std.
βU_0	(days)	$ar{u}$	$ar{u}_+$	u'_	u'_+	$ar{\sigma}_c$	Dev.
1	5	856	.855	207	.214	4.55 E - 04	3.00E-04
1	20	855	.856	214	.208	4.55 E - 04	2.96E - 04
.01	5	-1.047	1.046	508	.486	$9.96 \text{E}{-04}$	3.18E - 04
.01	20	-1.048	1.040	804	.676	9.96 E - 04	3.15E - 04
01	5	-1.047	1.049	603	.572	1.00E - 03	3.15E - 04
01	10	923	.920	-4.497	4.429	1.00E - 03	3.14E - 04
1	5	816	.867	-4.820	4.727	1.04 E - 03	3.11E-04
1	10	824	.877	-4.861	4.737	1.04 E - 03	3.12E - 04

Interac. τ_{I}					(Std.
pot.	' 1				(m s -)		Dev.
βU_0	(days)	$ar{u}$	$ar{u}_+$	u'_{-}	u'_+	$ar{\sigma}_c$	
1	5	-1.417	1.417	536	.436	4.56E - 04	$3.00 \text{E}{-04}$
1	20	-1.415	1.417	330	.546	4.56E - 04	3.00E - 04
.01	5	-1.692	1.691	-1.196	1.603	9.96E - 04	3.17E - 04
.01	20	-1.692	1.691	-1.180	1.266	9.96E - 04	3.17E - 04
01	5	-1.693	1.693	-1.421	1.470	1.00E - 03	3.15E - 04
01	10	-1.693	1.693	-1.277	1.243	1.00E - 03	3.16E - 04
1	5	-1.700	1.699	990	1.092	1.04E-03	3.10E-04
1	10	-1.700	1.700	-1.447	1.269	1.04E-03	3.07 E - 04

Table 2: Same as in Table 1, except for $A_0 = 1$.

Typical case: $\beta U_0 = 1, \tau_I = 20$ days, $A_0 = .5$

Il set up: CWV, With WISHE, ENO OFF, detrministic σ_{cd} =.001, Δ x=80 km, u₀=2 m/s, A₀=.5, µ=

Constant area fraction: $\sigma_c = .001, A_0 = .5$

IP: CWV, With WISHE, ENO OFF g_c^+ =.002, Δ x=80 km, u_0^- =2 m/s, A_0^- =.5, tau_1^- =5 days, beta J_0^- =-

up: CWV, With WISHE, ENO OFF σ_c^+ =.002, Δ x=80 km, u_0 =2 m/s, A_0 =.5, τ_1 =10 days,beta J_0 =-.

- Strong forcing $(A_0 = 1)$: Walker cell climatology + weak gravity waves (except for deterministic case)
- Moderate forcing $(A_0 = .5)$:
 - Deterministic case: one large scale wave propagating around globe, no Walker cell
 - CIN favoring interaction potential ($\beta U_0 > 0$): Walker cell forms + moderate small scale squall line-like waves
 - As interaction potential decreases strength and length scale of convective waves increases
 - Also sensitive to CIN charac. time (τ_I)
 - PAC favoring int. pot. ($\beta U_0 < 0$): Walker cell destroyed and two symmetric waves propagating far from source
- Stochastic (noise) creates and maintains Walker cell and
- Affects wavelength and strength of waves

Mean field/Stochastic RCE's

• Large scale variable equations

$$\frac{\partial v}{\partial t} - \frac{\partial \theta}{\partial x} = -\frac{C_d(u_0)}{h_b}v - \frac{1}{\tau_D}v$$

$$\frac{\partial \theta}{\partial t} - \frac{\partial v}{\partial x} = Q_c - Q_R^0 - \frac{1}{\tau_R}\theta$$

$$\frac{\partial \theta_{eb}}{\partial t} = -\frac{1}{\tau_{eb}}D(\theta_{eb} - \theta_{em}) + \left[\frac{1}{\tau_e} + \delta_{wishe}\frac{C_\theta}{h_b}(|v|)\right](\theta_{eb}^* - \theta_{eb})$$

$$\frac{\partial \theta_{em}}{\partial t} = \frac{1}{\tau_{em}}D(\theta_{eb} - \theta_{em}) - Q_R^0 - \frac{1}{\tau_R}\theta$$
(1)

$$Q_c = (1 - \sigma_I) \sqrt{R(\theta_{eb} - \gamma \theta)^+}.$$

$$D = \epsilon_p \left(Q_c + \frac{\partial v}{\partial x}\right)^+ + (1 - \epsilon_p) Q_c$$

• Dominant time scales: $\tau_e = 8$ hours, $\tau_{eb} = 45$ mn, $\tau_{em} = 12$ hr.

• Stochastic Birth-death process

$$\sigma_{I} = \eta_{t}/q; \quad 0 \leq \eta_{t} \leq q; \quad q = 10-100$$

$$Prob\{\eta_{t+\Delta t} = k+1/\eta_{t} = k\} = C_{a}\Delta t + O(\Delta t)$$

$$Prob\{\eta_{t+\Delta t} = k-1/\eta_{t} = k\} = C_{d}\Delta t + O(\Delta t)$$

$$C_{a}(t) = \frac{1}{\tau_{I}}(q-\eta_{t}) \quad C_{d}(t) = \frac{1}{\tau_{I}}\eta_{t}\exp(-\bar{J}_{0}(\eta_{t}-1)-h) \quad (2)$$
where $\bar{J}_{0} = 2\beta J_{0}/(q-1)$ and $h = -\tilde{\gamma}\theta_{eb}$

• Mean field Equation

$$\frac{\partial \sigma_I}{\partial t} = \frac{1}{\tau_I} (1 - \sigma_I) - \frac{1}{\tau_I} \sigma_I \exp(-\beta J_0 \sigma_I - h)$$

- External potential $h = -\tilde{\gamma}\theta_{eb}$
- Time scale: $\tau_I = 2$ hours

Mean field RCE's

 $\bar{v} = 0,$ $(\bar{\theta}, \bar{\theta}_{eb}, \bar{\theta}_{em}, \bar{\sigma}_I)$ solve

$$\begin{aligned} (1-\bar{\sigma}_I)\sqrt{R(\bar{\theta}_{eb}-\gamma\bar{\theta})} - Q_R^0 - \frac{1}{\tau_R}\bar{\theta} &= 0\\ -\frac{1}{\tau_{eb}}(1-\bar{\sigma}_I)\sqrt{R(\bar{\theta}_{eb}-\gamma\bar{\theta})}(\bar{\theta}_{eb}-\bar{\theta}_{em}) + \frac{1}{\tau_e}(\theta_{eb}^*-\bar{\theta}_{eb}) &= 0\\ \frac{1}{\tau_{em}}(1-\bar{\sigma}_I)\sqrt{R(\bar{\theta}_{eb}-\gamma\bar{\theta})}(\bar{\theta}_{eb}-\bar{\theta}_{em}) - Q_R^0 - \frac{1}{\tau_R}\bar{\theta} &= 0\\ \frac{1}{\tau_I}(1-\bar{\sigma}_I) - \frac{1}{\tau_I}\bar{\sigma}_I \exp(-\beta J_0\bar{\sigma}_I + \tilde{\gamma}\bar{\theta}_{eb}) &= 0 \end{aligned}$$

$$\theta = \frac{\tau_R}{\tau_e} \frac{\tau_{eb}}{\tau_{em}} (\theta_{eb}^* - \theta_{eb}) - \tau_R Q_R^0$$
$$F(\theta_{eb}, \sigma_I) = (1 - \sigma_I) \sqrt{R(\theta_{eb} - \gamma \theta)^+} - \frac{\tau_{eb}}{\tau_{em}} \frac{1}{\tau_e} (\theta_{eb}^* - \theta_{eb}) = 0$$
$$G(\sigma_I, \theta_{eb}) = 1 - \sigma_I - \sigma_I \exp(-\beta J_0 \sigma_I + \tilde{\gamma} \theta_{eb}) = 0$$

PAC — > CIN, $\beta J_0 \nearrow$

Single (PAC) RCE for $\beta J_0 \leq 7$ Three RCE's $\beta J_0 \geq 7$

Stability of mean-field RCE's.

NO WISHE:

- Single RCEs are stable
- Multiple RCEs: PAC and CIN stable
- 3rd RCE: σ_I -mode is unstable at all wavenumbers

With WISHE: Nonlinear growth of convectively coupled waves (WISHE waves).

Stochastic dynamics of RCE's:

Mainly three regimes with different levels of intermittency

(mostly CIN) RCE — Large variance

Single column model

$$\begin{aligned} \frac{d\theta}{dt} &= (1 - \sigma_I)\sqrt{R(\theta_{eb} - \gamma\theta)^+} - Q_R^0 - \frac{1}{\tau_R}\theta \\ \frac{d\theta_{eb}}{dt} &= -\frac{1}{\tau_{eb}}(1 - \sigma_I)\sqrt{R(\theta_{eb} - \gamma\theta)^+}(\theta_{eb} - \theta_{em}) + \frac{1}{\tau_e}(\theta_{eb}^* - \theta_{em}) \\ \frac{d\theta_{em}}{dt} &= \frac{1}{\tau_{em}}(1 - \sigma_I)\sqrt{R(\theta_{eb} - \gamma\theta)^+}(\theta_{eb} - \theta_{em}) - Q_R^0 - \frac{1}{\tau_R}\theta \end{aligned}$$

Plus

Stochastic birth-death process for σ_I .

Run in three different regimes.

PAC RCE regime: Rapid but weak oscillations

Stochastic: ICAPE a_{tilde} =0; γ_{t} =1; β J0=5; initial σ_{l} (bar)=0.010589; μ_{0} =1 € 40 € 20 0.0 θ_{eb} (K) 40 L 0 θ_{em} (K) 20 L 0 П mass flux: $\sigma_{c} W_{c}$ (m/s) CIN: Σ_{l} 0.5 0.4 0.2 **k** 0 time (days)

Multiple equilibria regime: Highly intermittent, large amplitude oscillations

Mostly CIN RCE regime: Rapid and large amplitude oscillations, intermittent

Full 2D simulations

Consider only two regimes.

- Multiple equilibria regime, $\beta J_0 = 5, \tilde{\gamma} = 1$
- Mostly CIN RCE regime, $\beta J_0 = 1, \tilde{\gamma} = 0.1$
- Switch on and off, both WISHE and CIN

Why use WISHE?

- Amplification and propagation of convectively coupled waves. Otherwise the ICAPE model with single baroclinic mode is linearly and nonlinearly stable.
- How realistic? Not sure.
- Better convective instability mechanisms?
- Stratiform (Majda and Shefter), Multicloud interactions (Khouider and Majda).

WISHE Waves. CIN is OFF (frozen)

300 2 ۵) 1.5 290 1 280 0.5 0 time (days) 500 500 15 m/s -0.5 **s/u** -1 5 -1.5 250 -2 240 -2.5 230 √₀ -3 ²⁰ X (1000 km) 0 5 10 15 25 30 35

V1: WISHE = 1, CIN = OFF , $\boldsymbol{a}_t^{}=\boldsymbol{0}$

CIN is ON. Mostly CIN RCE regime, $\beta J_0 = 1, \tilde{\gamma} = 0.1$.

V1: $\gamma_t{=}0.1,\,\beta$ J_0=1, WISHE = 1 , $a_t{=}0$ 14 m/s time (days) 120 140 s/m -1 -2 -3 5 20 X (1000 km)

Reduced phase speed.

Intermittent bursts of convection. Phase reduced even more 8 m/s.

Multiple RCE, $\beta J_0 = 5, \tilde{\gamma} = 1$

Highly intermittent strong bursts.

Is this the MJO?

Concluding Remarks

- Coarse graining of systematic microscopic lattice model
- Birth-death process for CIN within a coarse (GCM) grid cell
- Toy GCM: Effects both tropical waves and climate
- Mean field RCEs: PAC, CIN, multiple equilibria, different stability features and Stochastic dynamics, 3 regimes
- Multiple RCEs, statistically CIN state, intrmittent long excurtions to PAC RCE
- CIN (dominated, single) RCE regimes: Highly intermittent with strong oscillations
- Bursts of strong convective events in an environment which is otherwise dominated by CIN
- Effect on WISHE waves: intermittency, reduced phase speed, increased wave amplitude.