
Models of the
Probability Distribution

of Sea-Surface Wind Speeds
Adam Monahan
monahana@uvic.ca

School of Earth and Ocean Sciences
University of Victoria

Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 1/44



Outline
Motivation

Characterisation of wind speed pdfs
Empirical models of wind speed pdfs
Mechanistic Model
Conclusions

Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 2/44



Outline
Motivation
Characterisation of wind speed pdfs

Empirical models of wind speed pdfs
Mechanistic Model
Conclusions

Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 2/44



Outline
Motivation
Characterisation of wind speed pdfs
Empirical models of wind speed pdfs

Mechanistic Model
Conclusions

Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 2/44



Outline
Motivation
Characterisation of wind speed pdfs
Empirical models of wind speed pdfs
Mechanistic Model

Conclusions

Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 2/44



Outline
Motivation
Characterisation of wind speed pdfs
Empirical models of wind speed pdfs
Mechanistic Model
Conclusions

Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 2/44



Motivation: Air/sea fluxes
Ocean and atmosphere interact through respective
boundary layers, exchanging

momentum
energy
freshwater
gases & aerosols

Sea surface winds (“eddy averaged”) are an
important determinant of turbulence in both
boundary layers
Turbulence feeds back on surface winds, primarily
through surface momentum flux
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Motivation: GCMs
Calculation of air/sea fluxes in GCMs requires:

timestep/gridbox averaged fluxes
in terms of
timestep/gridbox averaged winds

Bulk formulae for air/sea fluxes generally have
nonlinear dependence on sea-surface wind
Averaged surface winds not enough for calculating
averaged surface fluxes
Calculation of averaged fluxes requires full surface
wind pdf
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Motivation: Further Complications

Further Complications:

1. surface fluxes require surface wind speeds
but
GCMs give space-time averaged vector winds

⇒ Motivates development of parameterisation of wind
speed pdf in terms of vector winds

2. Wind speed pdf arises from vector wind pdf through
nonlinear coordinate transformation

⇒ higher order vector wind moments may affect lower
order wind speed moments
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Skewness and Kurtosis
Skewness: measure of asymmetry of pdf

skew(x) =

〈(
x− 〈x〉

std(x)

)3
〉

Kurtosis: measure of flatness of pdf

skew(x) =

〈(
x− 〈x〉

std(x)

)4
〉
− 3
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Sea-Surface Winds: Notation
Notation:

u vector wind (u, v)

u along mean wind component
v cross mean wind component
w wind speed

(
u2 + v2

)1/2
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Sea-Surface Winds: Data
Will consider 6-hourly 10m ocean winds from
NCEP/NCAR Reanalysis (1948-2005)

Essentially identical results obtained using:
6-hourly ERA-40 Reanalysis 10m winds
6-hourly SSM/I satellite 10m winds
Daily SeaWinds satellite 10m winds
Hourly buoy 10m winds
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Sea-Surface Wind Speeds: Moments
mean(w) (ms−1)
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Wind Speed pdfs: Weibull

The pdf of wind speed w has traditionally been
represented by 2-parameter Weibull distribution:

pw(w) =

{
b
a

(
w
a

)b−1
exp

(
−
(
w
a

)b)
w > 0

0 w < 0

a is the scale parameter (pdf centre)
b is the shape parameter (pdf tilt)

pw(w) is unimodal
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Wind Speed pdfs: Weibull

Weibull pdfs for a = 8
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Wind Speed pdfs: Weibull

For a Weibull distribution, skew(w) is a decreasing
function of mean(w)/std(w)
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Wind Speed pdfs: Observed

Observed speed moments fall around Weibull curve

mean(w)/std(w)

sk
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Wind Speed pdfs: Observed

Observed speed moments fall around Weibull curve
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Wind Speed pdfs: Not exactly Weibull

Observed distribution of wind speed moments
displays non-Weibull structure

Degree of “non-Weibullness” can be measured by
relative entropy:

ρ =

∫
pw(w) ln

(
pw(w)

qw(w)

)
dw

where:
pw(w) = observed wind speed pdf
qw(w) = best-fit Weibull pdf
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Wind Speed pdfs: Relative Entropy
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Wind Speed pdfs: Empirical Models

Strategy: systematically construct wind speed pdfs
from joint pdf of vector components, puv(u, v)

pw(w) = w

∫ π

−π
puv(w cos θ, w sin θ)dθ

Approach simplified by assuming u, v independent,
so

puv(u, v) = pu(u)pv(v)
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Wind Speed pdfs: Gaussian Vector Winds

Simplest model assumes isotropic Gaussian
fluctuations in vector winds:

pu(u) =
1√

2πσ2
exp

(
−(u− u)2

2σ2

)

pv(v) =
1√

2πσ2
exp

(
− v2

2σ2

)

Integrating over wind direction:

pw(w) =
w

σ2
exp

(
−w

2 + u2

2σ2

)
I0

(
wu

σ2

)
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Wind Speed pdfs: Gaussian Vector Winds

Model
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Wind Speed pdfs: Gaussian Vector Winds

Isotropic Gaussian model⇒ large biases

Relax assumption of isotropy:
σu = std(u), σv = std(v)⇒

pw(w) =
w

σuσv
exp

(
−w

2 + u2

2σ2
u

)
×

{
I0

(
wu

σ2
u

)
+
∞∑

k=1

[
w

u

(
1− σ2

u

σ2
v

)]k
Γ(k + 1/2)√

πk!
Ik

(
uw

σ2
u

)}

Actually makes approximation somewhat worse
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Wind Speed pdfs: Gaussian Vector Winds
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Wind Speed pdfs: What now?

Gaussian vector winds unable to model skewness of
speed pdfs in tropics and Southern Ocean

In fact, vector winds are manifestly non-Gaussian
Along-mean-wind component characterised by
anticorrelated mean and skewness fields
Coupling of moments follows from nonlinear
dependence of surface drag on surface winds
Symmetric fluctuations in forcing
⇒ asymmetric response, skewed toward rest
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Vector Wind Moments

mean(u) (ms−1)
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Vector Wind pdfs: Skewed pdfs

Need skewed pdf to model u (still assuming v is
Gaussian)

Will explore different models:
1. “Bigaussian” pdf
2. Centred Gamma pdf
3. Gram-Charlier expansion of Gaussian
4. Maximum entropy pdf

Question is: how important are details of skewed pdf
of u for pdf of w?
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Bigaussian pdf

Two half-Gaussians:

pu(u) =
1√

2πσ2





exp
(
− (u−µ)2

2σ2(1−ε)2

)
u < µ

exp
(
− (u−µ)2

2σ2(1+ε)2

)
u > µ

Moments:

mean(u) = µ+

√
8

π
σε

std(u) = σ

[
1 +

(
3− 8

π

)
ε2
]1/2

skew(u) '
√

8

π

ε

std3(u)
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Centred Gamma pdf

With z = (u− u)/σ:

pu(u) =





|β|
σΓ(β2)

[β(z + β)]β
2−1 exp [−β(z + β)] z + β > 0

0 z + β < 0

Moments:

mean(u) = u

std(u) = σ

skew(u) = 2/β
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Gram-Charlier Expansion

With z = (u− u)/σ:

pu(u) =
1√

2πσ2

[
1 +

ν

6
H3(z) +

κ

24
H4(z)

]
exp

(
−z

2

2

)

Moments:

mean(u) = u

std(u) = σ

skew(u) = ν

kurt(u) = κ
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Maximum Entropy pdf

Subject to the constraints:
mean(u) = u

std(u) = σ

skew(u) = ν

kurt(u) = κ

find the pdf pu(u) which maximises the entropy

H = −
∫
pu(u) ln pu(u)du
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Maximum Entropy pdf

Solution takes the form

pu(u) =
1

Z
exp

(
4∑

i=1

λiu
i

)

Lagrange multipliers {λi} found as solutions to
unconstrained dual variational problem
Maximum entropy pdf is “least biased” among all
pdfs with given moments, in a rigorous information
theoretic sense
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Empirical Wind Speed pdfs: Intercomparison

Skew(u) from observations, no kurt(u) information
Bigaussian

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Gram−Charlier

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Centred Gamma

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Maximum Entropy

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Modelled skew(w) - observed skew(w)
Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 30/44



Empirical Wind Speed pdfs: Intercomparison

Incorporating observed skew(u) information⇒

pdf parameterisation improves over Gaussian
model
Bigaussian, centred gamma better than
Gram-Charlier, maximum entropy

BUT: for Gram-Charlier & maximum entropy pdfs,
have set kurt(u) = 0
In fact, kurtosis of along-mean-wind component
non-trivial
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Skew(u) vs. Kurt(u)
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Empirical Wind Speed pdfs: Intercomparison

Skew(u) and kurt(u) from observations
Bigaussian

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Gram−Charlier

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Centred Gamma

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Maximum Entropy

 

 

0 100 200 300

−50

0

50

−0.5 0 0.5

Modelled skew(w) - observed skew(w)
Models of theProbability Distributionof Sea-Surface Wind Speeds – p. 33/44



Empirical Wind Speed pdfs: Intercomparison

Isotropic fluctuations
Bigaussian
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Empirical Wind Speed pdfs: Intercomparison

Relationships between moments
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Wind Speed pdfs

Non-Gaussian structure in vector wind important for
accurate simulation of wind speed pdf

Parameterisation requires more input information:
4 moments rather than 2
However:

skew(u), kurt(u)

can be parameterised in terms of
mean(u), std(u)

Relationship between moments can be found
empirically or mechanistically
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Mechanistic Model
Mechanistic model follows from boundary-layer
dynamics

Horizontal momentum equation:

∂u

∂t
+ u · ∇u = −1

ρ
∇p− f k̂× u− 1

ρ

∂(ρu′u′3)

∂z
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Mechanistic Model: Assumptions

Integrating from z = 0 to z = h

Neglecting advection (“single column model”)
Monin-Obukhov formulation of surface drag
Downwards mixing of momentum from above
z = h with “finite-differenced” eddy viscosity

du

dt
= −1

ρ
∇p− f k̂× u− cd

h
wu +

K

h2
(U− u)
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Mechanistic Model: SDE
Define:

Π = −1

ρ
∇p− f k̂× u +

K

h2
U

Assume fluctuations in Π:

Πu(t) = 〈Πu〉+ σẆ1(t)

Πv(t) = σẆ2(t)

Finally, we obtain stochastic differential equation

du

dt
= 〈Πu〉 −

cd
h
wu− K

h2
u+ σẆ1

dv

dt
= −cd

h
wv − K

h2
v + σẆ2
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dv

dt
= −cd

h
wv − K

h2
v + σẆ2
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dv

dt
= −cd

h
wv − K

h2
v + σẆ2
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Mechanistic Model: pdf

The stochastic differential equation has an
associated Fokker-Planck equation for the stationary
pdf, which yields the analytic solution:

puv(u, v) = N1 exp

(
2

σ2

{
〈Πu〉 u−

K

2h2
(u2 + v2)

−1

h

∫ √u2+v2

0

cd(w
′)w′2 dw′

})
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Mechanistic Model: Predictions
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Mechanistic Model: Predictions
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Mechanistic Model: Comparison with Observations
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Mechanistic Model: Limitations
Relationships between moments predicted
qualitatively, not quantitatively

“Slab model”; oversimplified treatment of BL
turbulence
Neglect of other sources of variability, e.g.:

stratification
sea state

Isotropic, independent fluctuations
Qualitative success of model suggests it has captured
essential physics: still improvements to be made
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Conclusions
Accurate parameterisations of wind speed pdfs can
be developed from pdfs of vector wind

Non-Gaussian structure of vector winds important
for pdf of speed, especially skewness & kurtosis of
along-mean-wind component
Of all empirical models considered, maximum
entropy pdfs performed best
Mechanistic model: first step in parameterising
higher-order vector wind moments in terms of lower
Results provide parameterisation of pdf of wind
speed in terms of (space/time) gridscale-averaged
quantities
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