The Role of Intraseasonal Atmospheric Forcing in ENSO

Paul E. Roundy NOAA/CIRES Earth System Research Laboratory Paul.roundy@noaa.gov

Critical Variables

TAO dynamic height, sea level height records

Reconstruction

Outgoing longwave radiation (OLR)
Zonal Wind Stress (TAO and NCEP)

ENSO indices

Nino3.4 dynamic height
Sea level height records

Thermal Structure of Equatorial Pacific

El Niño: Warm Phase

La Niña: Cold Phase

Roundy & Kiladis 2006

Roundy & Kiladis 2006

Equatorial OLR Anomaly and Positive 20-100 Day Dynamic Height

Total TAO SST and Positive 20-100 Day Dynamic Height

How General is the Pattern?

Apply a variety of composite techniques

 Composite average
 Regression

Composite Average

- Find dates of all Kelvin wave crests at the dateline
- Average data fields over those dates and lags

 The set of dates may subset to selected background states

Linear Regression

 Regress OLR, dynamic height, and wind stress onto Kelvin wave index at lag

• $y=a_1x+a_2$

 Substitute time series for y and let x=time index of Kelvin waves at dateline, solve, and substitute

Power Series Regression

Fits a polynomial to a scatterplot

$$y = a_1 + a_2 x + a_3 x^2 + a_4 x^3 \dots$$

 Useful for diagnosing relationships between waves of different shapes and frequencies

Cross-Product Regression

Diagnoses Modulation
Let k=Kelvin wave index
Let e=ENSO index

y=...+ake+...

MJO/Kelvin Wave/ENSO Combined Regression Approach

$$y = a_0 + a_1 e + a_2 \dot{e} + a_3 k + a_4 k^2 + a_5 k^3 + a_6 k^4 + a_7 e \cdot k + a_8 \dot{e} \cdot k + a_8 \dot{e} \cdot k + a_{13} (\dot{e} k^2) + a_{14} (\dot{e} k^3) + \varepsilon$$

MJO/Kelvin Wave/ENSO Combined Regression Approach

 $y = a_0 + a_1 e + a_2 \dot{e} + a_3 k + a_4 k^2 +$ $a_5k^3 + a_6k^4 + a_7e \cdot k + a_8\dot{e} \cdot k$ $+a_{13}(\dot{e}k^2) + a_{14}(\dot{e}k^3) + \varepsilon$

MJO/Kelvin Wave/ENSO Combined Regression Approach

 $y = a_0 + a_1 e + a_2 \dot{e} + a_3 k + a_4 k^2 +$ $a_5k^3 + a_6k^4 + a_7e \cdot k + a_8\dot{e} \cdot k$ $+a_{13}(\dot{e}k^2) + a_{14}(\dot{e}k^3) + \varepsilon$

MJO/Kelvin Wave/ENSO **Combined Regression Approach**

 $y = a_0 + a_1 e + a_2 \dot{e} + a_3 k + a_4 k^2 +$ $a_{5}k^{3} + a_{6}k^{4} + a_{7}e \cdot k + a_{8}\dot{e} \cdot k$ $+a_{13}(\dot{e}k^2) + a_{14}(\dot{e}k^3) + \varepsilon$

MJO/Kelvin Wave/ENSO **Combined Regression Approach**

 $y = a_0 + a_1 e + a_2 \dot{e} + a_3 k + a_4 k^2 +$ $a_5k^3 + a_6k^4 + a_7e \cdot k + a_8\dot{e} \cdot k$ $+a_{13}(\dot{e}k^2) + a_{14}(\dot{e}k^3) + \varepsilon$

MJO/Kelvin Wave/ENSO **Combined Regression Approach**

 $y = a_0 + a_1 e + a_2 \dot{e} + a_3 k + a_4 k^2 +$ $a_{5}k^{3} + a_{6}k^{4} + a_{7}e \cdot k + a_{8}\dot{e} \cdot k$ $+a_{13}(\dot{e}k^2) + a_{14}(\dot{e}k^3) + \varepsilon$

Nino 3.4 Dynamic Height Anomaly (Blue), and SST Anomaly (Red)

Has the Pattern Changed with the Climate?

- Apply same regression model and interannual pattern
- Train model 1988-2002 and 1974-1987 periods

Conclusions

- Intraseasonal wind stress triggers Kelvin waves in the ocean
- The forcing sometimes couples to Kelvin waves
- The waves sometimes continue to amplify, cross the basin, and subsequently raise East Pacific SST
- Trade surges develop along and to the east of the crests of other Kelvin waves, attenuating the waves and upwelling cold water across the east

MJO/Kelvin Wave/ENSO **Combined Regression Approach**

 $y = a_0 + a_1 e + a_2 \dot{e} + a_3 k + a_4 k^2 +$ $a_5k^3 + a_6k^4 + a_7e \cdot k + a_8\dot{e} \cdot k$ $+a_{13}(\dot{e}k^2) + a_{14}(\dot{e}k^3) + \varepsilon$

Zonal Wind Anomaly and 20-100 Day Dynamic Height

Regressed NCEP Zonal Wind Stress and Reconstructed Dynamic Ht., Month 10 15 10 5 0 -5 -10 -15 120E 140E 160E 180 160W 140W 120W 100W Longitude

