Stochastic Mode-Reduction in Large Deterministic Systems

I. Timofeyev

University of Houston

With A. J. Majda and E. Vanden-Eijnden; NYU

- Mode-Elimination as a Limit of Infinite Separation of Time-Scales
- Mode-Elimination for Conservative Systems
- Example - Truncated Burgers-Hopf Equation
- Numerical Verification of the Limiting Behavior
- Conservative Mode-Elimination
- Comparison with Direct Numerical Simulations
- Balance of Terms

Essence of Mode-Reduction

Dynamical Variables:

$$
\dot{Z}=f(Z)
$$

Decomposition:

$$
\begin{aligned}
Z & =(\text { Essential, Non }- \text { Essential }) \\
& =(S L O W, F A S T)
\end{aligned}
$$

Goal: Eliminate Fast modes; Derive Closed-Form equation for Slow Dynamics

Motivation: Interested Only in Statistical Behavior of the Slow Dynamics

Asymptotic Approach:

$$
\text { Limit } \frac{\text { Time Scale }\{F A S T\}}{\text { Time Scale }\{S L O W\}} \rightarrow \infty
$$

Rewrite the Original System

$$
\dot{Z}=f(Z)
$$

Decomposition:

$$
Z=(S L O W, F A S T) \equiv(X, Y)
$$

Quadratic System:

$$
\begin{aligned}
\dot{X} & =\{X, X\}+\{Y, X\}+\{Y, Y\} \\
\dot{Y} & =\{X, X\}+\{Y, X\}+\{Y, Y\}
\end{aligned}
$$

Conservation of Energy:

$$
\begin{gathered}
\frac{d}{d t} E=\frac{d}{d t}\left(X^{2}+Y^{2}\right)=2 X \dot{X}+2 Y \dot{Y}= \\
\{X, X, X\}+\{X, X, Y\}+\{Y, Y, X\}+\{Y, Y, Y\}=0
\end{gathered}
$$

Modify the Original System

Main Idea: Introduce ε in the Equations

Preserve Conservation of Energy

Modified System

$$
\begin{aligned}
\dot{X} & =\{X, X\}+\frac{1}{\varepsilon}\{Y, X\}+\frac{1}{\varepsilon}\{Y, Y\} \\
\dot{Y} & =\frac{1}{\varepsilon}\{X, X\}+\frac{1}{\varepsilon}\{Y, X\}+\frac{1}{\varepsilon^{2}}\{Y, Y\}
\end{aligned}
$$

Conservation of Energy: $\quad \dot{E}=$

$$
\{X, X, X\}+\frac{1}{\varepsilon}\{X, X, Y\}+\frac{1}{\varepsilon}\{Y, Y, X\}+\frac{1}{\varepsilon^{2}}\{Y, Y, Y\}=0
$$

- $\varepsilon=1$ Corresponds to the Original System
- Conserves Energy
- $\dot{Y} \sim\{Y, Y\}$
- Numerical \& Analytical Approaches

Truncated Burgers-Hopf Model

Fourier-Galerkin Projection of

$$
u_{t}+u u_{x}=0
$$

onto a £nite number of Fourier modes

$$
u=\sum \widehat{u}_{k} e^{i k x}, \quad 1 \leq|k| \leq \Lambda
$$

2^-dimensional system of ODEs

$$
\frac{d}{d t} \widehat{u}_{k}=-\frac{i k}{2} \sum_{p+q+k=0} \widehat{u}_{p}^{*} \widehat{u}_{q}^{*}
$$

with Reality Condition $\widehat{u}_{k}^{*}=\widehat{u}_{-k}$
Main Features

- Conservation of Energy $\sum\left|\widehat{u}_{k}\right|^{2}$; Equipartition
- Correlation scaling Corr.Time $\left\{\widehat{u}_{k}\right\} \sim k^{-1}$
- Gaussian distribution in the limit $\wedge \rightarrow \infty$
- Hamiltonian $H=\frac{1}{6} \int u_{\wedge}^{3} d x$

\widehat{u}_{1} is the Slow Mode

Consider:

$$
S L O W=\widehat{u}_{1}, \quad F A S T=\left\{\widehat{u}_{2} \ldots \widehat{u}_{\wedge}\right\}
$$

Time-Scale Separation:

$$
\frac{\text { Corr.Time }\{S L O W\}}{\text { Corr.Time }\{F A S T\}}=2
$$

Modified System:

$$
\begin{aligned}
\frac{d}{d t} \widehat{u}_{1} & =-\frac{i}{2 \varepsilon} \sum_{\substack{p+q+1=0 \\
2 \leq p|,|q| \leq \Lambda}} \widehat{u}_{p}^{*} \widehat{u}_{q}^{*}, \\
\frac{d}{d t} \widehat{u}_{k} & =-\frac{i k}{2 \varepsilon}\left[\widehat{u}_{k+1} \widehat{u}_{1}^{*}+\widehat{u}_{k-1} \widehat{u}_{1}\right]-\frac{i k}{2 \varepsilon^{2}} \sum_{\substack{k+p+q=0 \\
2 \leq|p|,|q| \leq \Lambda}} \widehat{u}_{p}^{*} \widehat{u}_{q}^{*}
\end{aligned}
$$

Numerical Approach

Goal: Verify Existence of the Reduced Dynamics

Also: Understand the "shape" of the Limit

Approach: Simulate Modified System with

$$
\varepsilon=1,0.5,0.25,0.1
$$

PDF of $R e \widehat{u}_{1}$

Numerical Approach

More Severe Test: Behavior of the Two-Point Statistics

$$
\begin{aligned}
& \left\langle R e \widehat{u}_{1}(t) R e \widehat{u}_{1}(t+s)\right\rangle \\
& \varepsilon=1,0.5,0.25,0.1
\end{aligned}
$$

Corr. Function of $R e \widehat{u}_{1}$
Corr.Time ${ }_{\varepsilon=1}=2.64$, Corr. Time ${ }_{\varepsilon=0.1}=2.4$

Numerical Approach

Question: How fast the Bump Disappears

Approach: Simulate Modified System with

$$
\varepsilon=1,0.9,0.8,0.6
$$

Analytical Approach

Equation:

$$
\begin{aligned}
\dot{X} & =\frac{1}{\varepsilon} f(X, Y) \\
\dot{Y} & =\frac{1}{\varepsilon^{2}} g(X, Y)
\end{aligned}
$$

Effective Equation:

$$
d X=\bar{a}(X) d t+\bar{b}(X) d W
$$

$$
\bar{a}=\int_{0}^{\infty} d t \int d \mu(Y) f(X, Y(0)) \partial_{X} f(X, Y(t))
$$

$$
\bar{b}^{2}=\int_{0}^{\infty} d t \int d \mu(Y) f(X, Y(0)) f(X, Y(t))
$$

Overview of the Approach

Backward Equation

$$
-\frac{\partial p^{\varepsilon}}{\partial s}=\frac{1}{\varepsilon^{2}} L_{1} p^{\varepsilon}+\frac{1}{\varepsilon} L_{2} p^{\varepsilon}
$$

Represent formally as Power Series

$$
p^{\varepsilon}=p_{0}+\varepsilon p_{1}+\varepsilon^{2} p_{2}+\ldots
$$

Collect terms and impose solvability condition

$$
\frac{\partial p_{0}}{\partial s}=\mathbb{P} L_{2} L_{1}^{-1} L_{2} \mathbb{P} p_{0}
$$

$$
\mathbb{P} L_{2} \mathbb{P}=0
$$

Derivation of the Reduced Model

Consider a general quadratic system of equations for the variables $x=\left\{x_{i}\right\}$ and $y=\left\{y_{i}\right\}$

$$
\left\{\begin{array}{l}
\dot{x}_{i}=\varepsilon^{-1} \sum_{j, k} m_{i j k}^{x x y} x_{j} y_{k}+\varepsilon^{-1} \sum_{j, k} m_{i j k}^{x y y} y_{j} y_{k} \\
\dot{y}_{i}=\varepsilon^{-1} \sum_{j, k}^{y, k} m_{i j k}^{y x x} x_{j} x_{k}+\varepsilon^{-1} \sum_{j, k} m_{i j k}^{y x y} x_{j} y_{k}+\varepsilon^{-2} \sum_{j, k} m_{i j k}^{y y y} y_{j} y_{k}
\end{array}\right.
$$

Volume Preserving $=>$ Consider Liouville Equation

$$
\begin{gathered}
-\frac{\partial p^{\varepsilon}}{\partial s}=\frac{1}{\varepsilon^{2}} L_{1} p^{\varepsilon}+\frac{1}{\varepsilon} L_{2} p^{\varepsilon} \\
L_{1}=\sum_{i, j, k} m_{i j k}^{y y y} y_{j} y_{k} \frac{\partial}{\partial y_{i}} \\
L_{2}=\left[\sum_{i, j, k} m_{i j k}^{x x y} x_{j} y_{k}+\sum_{i, j, k} m_{i j k}^{x y y} y_{j} y_{k}\right] \frac{\partial}{\partial x_{i}}+ \\
{\left[\sum_{i, j, k} m_{i j k}^{y x x} x_{j} x_{k}+\sum_{i, j, k} m_{i j k}^{y x y} x_{j} y_{k}\right] \frac{\partial}{\partial y_{i}}}
\end{gathered}
$$

Derivation of the Reduced Model

$$
\text { Compute } \quad \bar{L}=\mathbb{P} L_{2} L_{1}^{-1} L_{2} \mathbb{P}
$$

$\mathbb{P}-\mathbb{I M}$ of the fast subsystem on $E^{\text {fast }}=E-|x|^{2}$
L_{1}^{-1} - Shift fast variables in time; Integrate for all times

$$
\bar{L}=\sum_{i} B_{i}(x) \frac{\partial}{\partial x_{i}}+\sum_{i, j} \frac{\partial}{\partial x_{i}} D_{i j}(x) \frac{\partial}{\partial x_{j}}
$$

Where

$$
\begin{gathered}
D_{i j}(x)=\mathcal{E}^{1 / 2}(x) \int_{0}^{\infty} d t \int d \mu_{N}(y) P_{i}(y(0)) P_{j}(y(t)) \\
P_{i}(y)=\sum_{j, k} m_{i j k}^{x x y} x_{j} y_{k}+\mathcal{E}^{1 / 2}(x) \sum_{j, k} m_{i j k}^{x y y} y_{j} y_{k} \\
\mathcal{E}(x):=\left(E-|x|^{2}\right) / N \\
B_{i}(x)=-\left(1-2 N^{-1}\right) \mathcal{E}^{-1}(x) \sum_{j} D_{i j}(x) x_{j}
\end{gathered}
$$

Reduced Model for \widehat{u}_{1}

$$
d \widehat{u}_{1}=B\left(\left|\widehat{u}_{1}\right|\right) \widehat{u}_{1} d t+\sigma\left(\left|\widehat{u}_{1}\right|\right) d W(t)
$$

Additional Assumptions: Ergodicity, Structure of the Correlation Matrix, etc.

$$
\begin{gathered}
B\left(\left|\widehat{u}_{1}\right|^{2}\right)=2 \sqrt{\mathcal{E}} I_{2}-\frac{I_{2}}{\sqrt{\mathcal{E}}}\left|\widehat{u}_{1}\right|^{2}-\left[1+\frac{2}{N}\right] \sqrt{\mathcal{E}} I_{f} \\
\sigma^{2}\left(\left|\widehat{u}_{1}\right|^{2}\right)=2 \sqrt{\mathcal{E}}\left|\widehat{u}_{1}\right|^{2} I_{2}+2(\sqrt{\mathcal{E}})^{3} I_{f} \\
\mathcal{E}=\mathcal{E}\left(\left|\hat{u}_{1}\right|^{2}\right)=\left(E-\left|\widehat{u}_{1}\right|^{2}\right) / N
\end{gathered}
$$

where
E - Total Energy of the System
N - Number of Fast Modes
I_{2} - Corr.Time (\widehat{u}_{2})
I_{f} - Corr.Time(RHS of \widehat{u}_{1} projected onto Fast Modes)

Reduced Model for u_{1}

Need to Know: Moments of Fast Modes

Simplification: Can be Recast as CF of RHS \widehat{u}_{1}
Approach: Compute Correlations from a single microcanonical realization of the fast subsystem $\left\{y_{k}\right\}$

$$
\begin{gathered}
d \hat{u}_{1}=B\left(\left|\hat{u}_{1}\right|\right) \widehat{u}_{1} d t+\sigma\left(\left|\widehat{u}_{1}\right|\right) d W(t) \\
B=2 \sqrt{\mathcal{E}} I_{2}-\frac{I_{2}}{\sqrt{\mathcal{E}}}\left|\widehat{u}_{1}\right|^{2}-\left[1+\frac{2}{N}\right] \sqrt{\mathcal{E}} I_{f}
\end{gathered}
$$

Drift Term $B\left(\left|\widehat{u}_{1}\right|\right) ;$ Total Energy $E=0.4$

$$
I_{2}=0.14, I_{f}=4.3
$$

Reduced Model for \widehat{u}_{1}

One-Point Statistics: Perfect Agreement

Reduced Model for \widehat{u}_{1}

Two Point Statistics: Cannot Reproduce DNS Exactly

Analytical vs Numerical: Should be Identical; It's the same Limit $\varepsilon \rightarrow 0$

\widehat{u}_{1} and \widehat{u}_{2} are the Slow Modes

Consider:

$$
S L O W=\left\{\widehat{u}_{1}, \widehat{u}_{2}\right\}, \quad F A S T=\left\{\widehat{u}_{3} \ldots \widehat{u}_{\wedge}\right\}
$$

Time-Scale Separation:

$$
\frac{\operatorname{Corr} \cdot \operatorname{Time}\{S L O W\}}{\operatorname{Corr} \cdot \operatorname{Time}\{F A S T\}}=\frac{3}{2}
$$

Modified System:

$$
\begin{aligned}
\frac{d}{d t} \widehat{u}_{1}= & -i \widehat{u}_{2} \widehat{u}_{1}^{*}-\frac{i}{2 \varepsilon} \sum_{\substack{p+q+1=0 \\
3 \leq|p|,|q| \leq \Lambda}} \widehat{u}_{p}^{*} \widehat{u}_{q}^{*}, \\
\frac{d}{d t} \widehat{u}_{2}= & -i \widehat{u}_{1}^{2}-\frac{i}{\varepsilon} \sum_{\substack{p+q+2=0 \\
3 \leq|p|,|q| \leq \Lambda}} \widehat{u}_{p}^{*} \widehat{u}_{q}^{*}, \\
\frac{d}{d t} \widehat{u}_{k}= & -\frac{i k}{2 \varepsilon}\left(\widehat{u}_{k+1} \widehat{u}_{1}^{*}+\widehat{u}_{k-1} \widehat{u}_{1}\right)-\frac{i k}{2 \varepsilon}\left(\widehat{u}_{k+2} \widehat{u}_{2}^{*}+\widehat{u}_{k-2} \widehat{u}_{2}\right)- \\
& -\frac{i k}{2 \varepsilon^{2}} \sum_{\substack{p+q+k=0 \\
3 \leq|p|,|q| \leq \Lambda}} \widehat{u}_{p}^{*} \widehat{u}_{q}^{*}
\end{aligned}
$$

Numerical Approach

Question: Can we recover Bump Structure with More Modes?

Approach: Simulate Modified System with

$$
\varepsilon=1,0.5,0.25,0.1
$$

Correlation Function of $\operatorname{Re} \widehat{u}_{1}$

Reduced Model for \widehat{u}_{1} and \widehat{u}_{2}

Analytical vs Numerical: Should be Identical; It's the same Limit $\varepsilon \rightarrow 0$

Correlation Function of \widehat{u}_{1} Blue - DNS with 20 Modes
Magenta - Reduced Equation
Black - Modified Equation with $\varepsilon=0.1$

Reduced Model for \widehat{u}_{1} and \widehat{u}_{2}

Include More Modes: Discrepancies are Larger for \widehat{u}_{2}

Correlation Function of \widehat{u}_{2} Blue - DNS with 20 Modes
Magenta - Reduced Equation
Black - Modified Equation with $\varepsilon=0.1$

Multiplicative Noise vs Additive Noise

$$
\begin{aligned}
\dot{X} & =\{X, X\}+\frac{1}{\varepsilon}\{Y, X\}+\frac{1}{\varepsilon}\{Y, Y\} \\
\dot{Y} & =\frac{1}{\varepsilon}\{X, X\}+\frac{1}{\varepsilon}\{Y, X\}+\frac{1}{\varepsilon^{2}}\{Y, Y\}
\end{aligned}
$$

Intuition: $Y \sim$ Noise

$\{Y, X\} \rightarrow$ Mult Noise + Cubic Damping
$\{Y, Y\} \rightarrow$ Additive Noise + Linear Damping

Additional Advantage: Can Analyze Balance of
 Various Terms

Mult. Noise: Contribution $\approx 6 \%$

Correlation Function of \widehat{u}_{1} Blue - DNS with 20 Modes
Magenta - Reduced Equation
Red - Reduced Equation without Mult. Noise Terms

Conclusions

- Effectively computable theory for deriving closed systems of reduced equations for slow variables
- No ad-hoc assumtions about the fast modes are necessary
- Parameters are Estimated from a single microcanonical simulation
- Necessary Information can be recast in terms of correlation functions of the RHS
- Numerical and Analytical Approaches
- Analyze the source of discrepancies
- Better understanding of the Limit
- Analyze Balance of Various Terms

