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Motivating examples

Consider the ODE
{

Ẋ = −Y 3 + sin(πt) + cos(
√

2πt) X(0) = x

Ẏ = −ε−1(Y −X) Y (0) = y.
(1)

If ε # 1, Y is very fast and it will adjust rapidly to the current value
of X, i.e. we will have

Y = X + O(ε) at all times.

Then the equation for X reduces to

Ẋ = −X3 + sin(πt) + cos(
√

2πt). (2)
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The solution of (1) when ε = 0.05 and we took Xt=0 = 2, Yt=0 = −1.
X is shown in blue, and Y in green. Also shown in red is the solution
of the limiting equation (2).



In contrast, consider the SDE
{

Ẋ = −Y 3 + sin(πt) + cos(
√

2πt), Xt=0 = x

Ẏ = −ε−1(Y −X) + ε−1/2Ẇ , Yt=0 = y.
(3)

The equation for Y at fixed X = x defines an Ornstein-Uhlenbeck
process whose equilibrium probability density is

ρ(y|x) =
e−(y−x)2

√
π

.

The limiting equation is obtained by averaging the right hand-side of
the equation for X in (3) with respect to this density:

Ẋ = −X3 − 3
2X + sin(πt) + cos(

√
2πt), X0 = x. (4)

Note the new term −3
2α2X due to the noise in (3).
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The solution of (3) with Xt=0 = 2, Yt=0 = −1 when ε = 10−3. X is
shown in blue, and Y in green. Also shown in red is the solution of
the limiting equation (4). Notice how noisy Y is.



Singular perturbations techniques for Markov processes

Consider the system
{

Ẋ = f(X, Y ), Xt=0 = x ∈ Rn

Ẏ = ε−1g(X, Y ), Yt=0 = y ∈ Rm.
(5)

Assume that the equation for Y at fixed X = x defines an Markov
process which is ergodic for every x with respect to the probability
distribution

dµx(y)

If

F (x) =
∫

Rm

f(x, y)dµx(y) exists

then in the limit as ε → 0 the evolution for X solution of (5) is
governed by

Ẋ = F (X) X(0) = x. (6)



Derivation. Let L be the infinitesimal generator of the Markov pro-
cess generated by (5)

lim
t→0+

1

t

(
Ex,yφ(Xt, Yt)− φ(x, y)

)
= (Lφ)(x, y) (7)

Then L = L0 + ε−1L1, and u(x, y, t) = Ex,yφ(Y, X) satisfies the back-
ward Kolmogorov equation

∂u

∂t
= L0u + ε−1L1u, u|t=0 = φ (8)

Look for a solution in the form of

u = u0 + εu1 + O(ε2) (9)

so that limε→0 u = u0.



Inserting (9) into (8) and equating equal powers in ε leads to the
hierarchy of equations






L1u0 = 0,

L1u1 =
∂u0

∂t
− L0u0,

L1u2 = · · ·

(10)

The first equation tells that u0 belong to the null-space of L1. As-
suming that for every x, L1 is the generator of an ergodic Markov
process with equilibrium distribution µx(y), this null-space is spanned
by functions constant in y, i.e. u0 = u0(x, t).

Since the null-space of L1 is non-trivial, the next equations each
requires a solvability condition, namely that their right hand-side be-
longs to the range of L1.



To see what this solvability condition actually is, take the expectation
of both sides of the second equation in (10) with respect to dµx(x).
This gives

0 =
∫

Rm

dµx(y)
(∂u0

∂t
− L0u0

)
(11)

Explicitly, (11) is
∂u0

∂t
= F (x) ·∇xu0 (12)

where

F (x) =
∫

Rm

f(x, y)dµx(y) (13)

(12) is the backward Kolmogorov equation of (6).



Remark: Computing the expectation with respect to µx(y) in prac-
tice. We have

(eL1tφ)(x, y) →
∫

Rm

φ(x, y)dµx(y) as t →∞

In other words, if u(x, y, t) satisfies

∂u

∂t
= L1u, u|t=0 = φ

so that formally u(x, y, t) = (eL1tφ)(x, y), we have

lim
t→∞

u(x, y, t) =
∫

Rm

φ(x, y)dµx(y)

But since u(x, y, t) = Eyφ(Y x) where

Ẏ x = g(x, Y x)

it follows that
∫

Rm

φ(x, y)dµx(y) = lim
t→∞

Eyφ(Y x
t )

= lim
T→∞

1

T

∫ T

0
φ(Y x

t )dt

(14)



Example: the Lorenz 96 (L96) model

L96 consists of K slow variables Xk coupled to J ×K fast variables
Yj,k whose evolution is governed by






Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + Fx +
hx

J

J∑

j=1

Yj,k

Ẏj,k =
1

ε

(
−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + hyXk

)
.

(15)

We will study (15) with Fx = 10, hx = −0.8, hy = 1, K = 9, J = 8,
and two values of ε: ε = 1/128 and ε = 1/1024.
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Fig. 1. Typical time-series of the slow (black line) and fast (grey line) modes; K = 9,
J = 8, ε = 1/128. The subplot displays a typical snapshot of the slow and fast modes
at a given time.

3.1 Properties of the system and existence of a limiting dynamics

In the parameter setting that we use, the solutions of (19) are chaotic. Typical
time-series of a slow variable Xk and a fast variable Yj,k in the associated sub-
sector are shown in figure 1; the subplot displays a snapshot of the amplitude
of the modes at a given time. The chaotic behavior can be inferred from the
high sensitivity of the system to perturbations in the initial conditions, and
further quantified by the statistical tests described next.

The numerical experiments show that the solutions of (19) settle on an attrac-
tor. One way to visualize (part of) this attractor is to look at the marginal
probability density functions (PDFs) of the slow variable Xk (any k since the
PDFs are all identical by symmetry) shown in figure 2. The mixing character
of the dynamics can be inferred from the decay in time of the auto-correlation
functions (ACFs) defined as (assuming ergodicity)

Ck,k′(t) = lim
T→∞

1

T

∫ T

0
(Xk(t + s) − X̄)(Xk′(s) − X̄)ds, (20)

where

X̄ = lim
T→∞

1

T

∫ T

0
Xkdt, (21)

and similarly for the fast variables – see figure 3. The ACFs of the slow modes
Xk can be fit with great precision by

Ck,k(t) ≈ C0 cos(ωt)e−νt, (22)

17

Typical time-series of the slow (black line) and fast (grey line) modes;
K = 9, J = 8, ε = 1/128. The subplot displays a typical snapshot of
the slow and fast modes at a given time.
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Fig. 2. PDF of the slow variable; K = 9, J = 8, black line: ε = 1/128, grey line:
ε = 1/1024. The insensitivity in ε of the PDFs indicates that the slow variables
have already converged close to their limiting behavior when ε = 1/128.

with appropriate ν, ω, and C0 ≈ Ck,k(0).

Even though there is a separation of time-scales between the slow evolution of
the Xk’s and the fast evolution of the Yj,k’s since ε = 1/128, such separation
is not obviously apparent from the correlation functions of these modes. In
particular, figure 3 shows that, after a short transient decay, the correlation
function of Yj,k decays and oscillates with about the same rate and frequency
as the correlation function of Xk. In fact this short transient decay, which
becomes shorter and shorter as ε is decreased, is the only signature on the
ACFs that Yj,k is faster. This feature should be taken as a warning against
simple procedure to identify fast modes based on computing their correlation
time – here, the correlation time of the Yj,k’s are comparable to the one of
Xk and, in particular, independent of ε. In fact, the unambiguous test to
determine if the Y ′

j,ks are fast is to compute their ACFs at fixed X = x (i.e.
compute the ACFs of the variables Zj,k’s solution of (23) below). These ACFs
decay on a O(ε)-time-scale.

Next we check the existence of a limiting dynamics for the Xk’s as ε → 0.
A necessary condition is that marginal PDFs and correlations functions have
a limit as ε → 0. This is consistent with the numerical experiments – see
figures 2 and 3 and compare black and grey lines. This also indicates that the
value we take, ε = 1/128, is small enough so that the statistical properties
of the slow variables Xk are very close to their limit. Now, the existence of
a limit for the law of the Xk’s as ε → 0 is necessary but not sufficient in
order that these variables also have a limiting dynamics. For this we need to
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PDF of the slow variable; K = 9, J = 8, black line: ε = 1/16,
grey line: ε = 1/1024. The insensitivity in ε of the PDFs indicates
that the slow variables have already converged close to their limiting
behavior when ε = 1/16.
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Fig. 3. ACFs of the slow (thick line) and fast (thin line) variables; K = 9, J = 8,
black line: ε = 1/128, grey line: ε = 1/1024. The insensitivity in ε of the ACFs
for the slow modes indicates that the slow variables have already converged close
to their limiting behavior when ε = 1/128. The subplot is the zoom-in of the main
graph which shows the transient decay of the ACFs of the fast modes becoming
faster as ε is decreased: this is the only signature in the ACFs of the fact that the
Yj,k’s are faster.

check the ergodicity of the fast modes at fixed Xk = xk, – i.e. the solution of
the following equation corresponding to the equation (4) which we use in the
micro-solver of the multiscale scheme:

Żj,k(x) =
1

ε

(

−Zj+1,k(x)(Zj+2,k(x) − Zj−1,k(x)) − Zj,k(x) + Fy + hyxk

)

. (23)

Figure 4 shows the PDF of

hx

J

J
∑

j=1

Zj,k(x) (24)

for some typical values of x. This is the quantity whose average gives the
effective forcing. The PDFs of (24) are robust against variations in initial
conditions for Zj,k which confirm the ergodicity of (23). It is however worth
noting how different these PDFs look for different x, which indicates that the
back reaction of the slow variables Xk on the fast ones Yj,k is significant in
L96. This can also be seen in the time-series shown in figure 1: for some values
of Xk, the fast variables are locked, whereas they vary widely for other values
of Xk.
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ACFs of the slow (thick line) and fast (thin line) variables; ε = 1/128,
grey line: ε = 1/1024. The subplot is the zoom-in of the main graph
which shows the transient decay of the ACFs of the fast modes
becoming faster as ε is decreased: this is the only signature in the
ACFs of the fact that the Yj,k’s are faster.
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Fig. 4. Typical PDFs of the coupling term (hx/J)
∑J

j=1 Zj,k(x) for various values
of x. These PDFs are robust against variations in the initial conditions for (23)
indicating that the dynamics of the fast modes conditional on the slow ones being
fixed is ergodic. Notice however how different these PDFs look: this indicates that
the feedback of the slow variables Xk on the fast ones Yj,k is significant in L96.

3.2 Direct-solvers versus the multiscale scheme

For the direct-solver we use the classical fourth-order Runge-Kutta method
with time-step δt. We need to take δt = 2−11 at most for stability, and at
this value of δt we achieve reasonable accuracy (i.e. eyeball insensitivity of
the results on the figures under further refinement of δt and changes in initial
conditions). Thus, the direct simulation has a cost, taken as the number of
time-steps of the fast variables per unit of time, given by

cost(direct) = !1/δt" = 211 = 2048. (25)

To compute the PDFs and the correlation functions of the slow variables we
use a total window of averaging of T = 218. The PDFs are computed from the
time-series by bin-counting. The correlation functions are computed by direct
summation:

Ck,k′(m∆t) =
1

M − m

M−m
∑

m′=1

Xk(m
′∆t)Xk′((m′ + m)∆t) − X̄2, (26)

where

X̄ =
1

M

M
∑

m=1

Xk(m∆t), (27)

20

Typical PDFs of the coupling term (hx/J)
∑J

j=1 Zj,k(x) for various
values of x. These PDFs are robust against variations in the initial
conditions indicating that the dynamics of the fast modes conditional
on the slow ones being fixed is ergodic.
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Fig. 5. Comparison between the ACF obtained via the multiscale scheme (black
line) and via the direct-solver with ε = 1/128 (full grey line); K = 9, J = 8. The
curves are so closed that it is difficult to distinguish them. The subplot displays
the PDF of the slow mode obtained via the multiscale scheme (black line) and
via the direct-solver with ε = 1/128 (full grey line). Here ∆t = 2−7 = 1/128,
N1 = 1, and R = 1. Thus cost(multiscale) = 27 = 128 and the multiscale scheme is
cost(direct)/cost(multiscale) = 24 = 16 times more efficient than the direct-solver.
Also shown in dashed grey are the corresponding ACF and PDF produced by the
truncated dynamics where the coupling of the slow modes Xk with the fast ones,
Yj,k, is artificially switched off. The discrepancy indicates that the effect of the fast
modes on the slow ones is significant in L96.

functions of the slow variables. Figure 5 shows a run with ∆t = 2−7 = 1/128,
N1 = 1, and R = 1, for which cost(multiscale) = 27 = 128, and hence the mul-
tiscale scheme is cost(direct)/cost(multiscale) = 24 = 16 times more efficient
than the direct-solver. And this happens even though the time series for Xk

that we generate with the multiscale scheme is much smaller than the one we
generate in the direct simulations, since Xk is sampled every macro-time-step
∆t in the former case, and every micro-time-step δt in the latter case. This
simply means that even though the sample from the direct-solver is much big-
ger, it is not more significant statistically due to the large correlation between
the slow variables at successive time-steps δt.

3.3 Effective forcing

The results of the last subsection clearly show that the forcing does not need
to be computed accurately at each macro-time-step (which is the case since
we can take R = 1) for the multiscale scheme to apply, as anticipated from

22

Comparison between the ACFs and PDFs; black line: limiting dy-
namics; full grey line: ε = 1/128. Also shown in dashed grey are the
corresponding ACF and PDF produced by the truncated dynamics
where the coupling of the slow modes Xk with the fast ones, Yj,k, is
artificially switched off.



Fig. 7. Black points: scatterplot of the forcing F (x) produced by the multi-
scale scheme (R = 4096). Grey points: scatter plot of the bare coupling term
(hx/J)

∑J
j=1 Zj,k(x) produced by the direct-solver when ε = 1/128. K = 9,

J = 8. The width of the cloud obtained via the multiscale scheme indicates that
Fk(x) ≈ F (xk) is a rather bad approximation. In contrast, the width of the cloud
obtained via the direct-solver is more difficult to interpret since it is also due to
statistical fluctuation.

without wasting time evaluating Fk(x) in regions that are not visited by the
dynamics anyway). On the other hand, one may think of making additional
assumptions about Fk(x), the simplest of which being that it only depends on
the slow variable xk it corresponds to, i.e. Fk(x) ≈ F (xk) – the next natural
approximation would be to assume that Fk(x) ≈ F (xk−1, xk) (using the fact
that the slow variables sustain wave propagating primarily from left to right),
and so on. Testing Fk(x) ≈ F (xk) is elementary since it amounts to verifying
that the scatter-plot of Fk(X) versus Xk defines a function. Such a scatter-
plot is shown in figure 7, which clearly shows that Fk(x) ≈ F (xk) is a bad
approximation. Also shown is the scatter-plot of the bare forcing, which is even
wider since (hx/J)

∑J
j=1 Yj,k is (for all practical purposes at least) a random

quantity – the width of the cloud now corresponds to statistical fluctuations in
(hx/J)

∑J
j=1 Yj,k which arise independently on whether its conditional average

Fk(x) depends or not on xk only. This indicates that the multiscale scheme is
useful in checking assumptions on the effective forcing which are more difficult
to verify from direct numerical simulations due to statistical fluctuations.
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Black points: scatterplot of the forcing F (x) in the limiting dynamics.
Grey points: scatter plot of the bare coupling term (hx/J)

∑J
j=1 Yj,k(x)

when ε = 1/128.



Diffusive time-scales

Suppose that

F (x) =
∫

Rm

f(x, y)dµx(y) = 0. (16)

Then the limiting equation on the O(1) time-scale is trivial, Ẋ = 0,
and the interesting dynamics arises on the diffusive time-scale O(ε−1).

Consider then
{

Ẋ = ε−1f(X, Y ), Xt=0 = x ∈ Rn

Ẏ = ε−2g(X, Y ), Yt=0 = y ∈ Rm.
(17)

Proceeding as before we arrive at the following limiting equation
when ε → 0:

Ẋ = b(X) + σ(X) Ẇt, (18)

where

(L̄φ)(x) ≡ b(x) ·∇xφ(x) + 1
2(σσT)(x) : ∇x∇xφ(x)

=
∫ ∞

0
dt

∫

Rm

dµx(y)f(x, y) ·∇x
(
Eyf(x, Y x

t ) ·∇xφ(x)
) (19)

and

Ẏ x = g(x, Y x)



Derivation. The backward Kolmogorov equation for u(x, y, t) =
Ex,yf(X) is now

∂u

∂t
= ε−1L0u + ε−2L1u.

Inserting the expansion u = u0 + εu1 + ε2u2 + O(ε2) (we will have to
go one order in ε higher than before) in this equation now gives






L1u0 = 0,

L1u1 = −L0u0,

L1u2 =
∂u0

∂t
− L0u1,

L1u3 = · · ·

(20)

The first equation tells that u0(x, y, t) = u0(x, t).

The solvability condition for the second equation is satisfied by as-
sumption because of (16). Therefore this equation can be formally
solved as

u1 = −L−1
1 L2u0.

Inserting this expression in the third equation in (20) and considering
the solvability condition for this equation, we obtain the limiting
equation for u0:

∂u0

∂t
= L̄u0, (21)

where

L̄ =
∫

Rm

dµx(y)L0L
−1
1 L0.



To see what this equation is explicitly, notice that −L−1
1 g(y) is the

steady state solution of

∂v

∂t
= L1v + g(y).

The solution of this equation with the initial condition v(y,0) = 0
can be represented by Feynman-Kac formula as

v(y, t) = Ey

∫ t

0
g(Y x

s )ds,

Therefore

−L−1
1 g(y) = Ey

∫ ∞

0
g(Y x

t )dt,

and the operator L̄ in the limiting backward Kolmogorov equa-
tion (21) is (19).



Example: the Lorenz 96 (L96) model

Consider





Ẋk = −ε (Xk−1(Xk−2 −Xk+1) + Xk) +
hx

J

J∑

j=1

(
Yj,k+1 − Yj,k−1

)

Ẏj,k =
1

ε

(
−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + Fy

)
+ hyXk,

(22)
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Fig. 14. ACFs and PDFs (subplot) of the slow variable Xk evolving under (57).
Grey line: ε = 1/256; full black line: ε = 1/128; dashed black line: ε = 1/128 with
time rescaled as t → 2t consistent with (56). The near perfect match confirms that
evolution of Xk converges to some limiting dynamics on the O(1/ε) time-scale.

is satisfied. Indeed, the conditional measure entering (51) does not depend on
x since the equation used in the microsolver is

Żj,k =
1

ε
(−Zj+1,k(Zj+2,k − Zj−1,k) − Zj,k + Fy) . (58)

In addition the statistics of Zj,k does not depend on k by periodicity and
therefore the conditional averages of Yj,k+1 and Yj,k−1 at x fixed are the same,
and the correspond term involving their difference in (57) cancels to leading
order.

We study (57) by the multiscale scheme described above by performing two
simulations with J = 2, K = 4, Fy = 10, hx = −0.8, Hy = 1, and ε = 1/256
and 1/128, and comparing the solution using the proper rescaling of time given
in (56). The results are displayed on figure 14 and show the almost perfect
agreement in PDFs and ACFs. The simulation with ε = 1/128 is performed
with a micro-time-step which is twice as big as the one used in the simulation
with ε = 1/256 and therefore corresponds to an efficiency gain ratio of 2.
Notice that, in the present situation, the use of the multiscale scheme can be
bypassed since the dependency in ε is explicit in (57). But this need not be the
case, and the poor man’s multiscale scheme used here can be straightforwardly
generalized to systems such as the one considered in section 5 which contain
hidden slow variables.

38

ACFs and PDFs (subplot) of the slow variable Xk evolving under
(22). Grey line: ε = 1/256; full black line: ε = 1/128; dashed black
line: ε = 1/128 with time rescaled as t → 2t. The near perfect match
confirms that evolution of Xk converges to some limiting dynamics
on the O(1/ε) time-scale.



Coupled truncated Burgers-Hopf (TBH). I. Stable periodic orbits






Ẋ1 =
1

ε
b1X2Y1 + aY1(R2 − (X2

1 + X2
2))− bX2(α + (X2

1 + X2
2)),

Ẋ2 =
1

ε
b2X1Y1 + ax2(R2 − (X2

1 + X2
2)) + bX1(α + (X2

1 + X2
2)),

Ẏk = −Re
ik

2

∑

p+q+k=0

U∗
pU∗

q +
1

ε
b3δ1,kX1X2,

Żk = −Im
ik

2

∑

p+q+k=0

U∗
pU∗

q ,

where Uk = Yk + iZk.

Truncated system: stable periodic orbit (limit cycle)

(X1(t), X2(t)) = R (cosωt, sinωt) with frequency ω = b(α + R2).



NB: Truncated Burgers (Majda & Timofeyev, 2000)

Fourier-Galerkin truncation of the inviscid Burgers-Hopf equation,
ut + 1

2(u
2)x = 0:

U̇k = −
ik

2

∑

k+p+q=0

|p|,|q|≤Λ

U∗
pU∗

q , |k| < Λ

Features common with many complex systems. In particular:

• Display deterministic chaos.
• Ergodic on E =

∑
k |Uk|2.

• Scaling law for the correlation functions with tk ≈ O(k−1).

Here: Used as a model for unresolved modes.
Couple truncated Burgers with two resolved variables.








Ẋ1 =
1

ε
b1X2Y1 + aY1(R2 − (X2

1 + X2
2))− bX2(α + (X2

1 + X2
2)),

Ẋ2 =
1

ε
b2X1Y1 + ax2(R2 − (X2

1 + X2
2)) + bX1(α + (X2

1 + X2
2)),

Ẏk = −Re
ik

2

∑

p+q+k=0

U∗
pU∗

q +
1

ε
b3δ1,kX1X2,

Żk = −Im
ik

2

∑

p+q+k=0

U∗
pU∗

q ,

Limiting SDEs:






Ẋ1 = b1b2X1 + N1X1X
2
2 + σ1X2Ẇ (t)

+ aX1(R2 − (X2
1 + X2

2))− bX2(α + (X2
1 + X2

2)),

Ẋ2 = b1b2X2 + N2X2X
2
1 + σ2X1Ẇ (t)

+ aX2(R2 − (X2
1 + X2

2)) + bX1(α + X2
1 + X2

2)),
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Contour plots of the joint probability density for the climate variables
X1 and X2; (a) deterministic system with 102 variables; (b) limit
SDE. There only remains a ghost of the limit cycle.
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Coupled truncated Burgers-Hopf (TBH). II. Multiple equilibria






Ẋ =
1

ε
b1Y1Z1 + λ(1− αx2)x,

Ẏk = −Re
ik

2

∑

p+q+k=0

U∗
pU∗

q +
1

ε
b2δ1,kXZk,

Żk = −Im
ik

2

∑

p+q+k=0

u∗pu
∗
q +

1

ε̄
b3δ1,kXYk,

Limiting SDE:

Ẋ = −γX + σẆ (t) + λ(1− αX2)X
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Generalizations

Let Zt ∈ S be the sample path of a continuous-time Markov process
with generator

L = L0 + ε−1L1

and assume that L1 has several ergodic components indexed by x ∈ S′

with equilibrium distribution

µx(z)

Then, as ε → 0 there exists a limiting on S′ with generator

L̄ = EµxL0

Similar results available on diffusive time-scales.

Can be applied to SDEs, Markov chains (i.e. discrete state-space),
deterministic systems (periodic or chaotic), etc.



Other situations with limiting dynamics?

Consider {
Ẋt = f(Xt, Yt),
Ẏt = g(Xt, Yt),

(23)

and denote by ϕ(X[0,t]) the solution of the equation for Y at time t
assuming that Xt is known on [0, t]

Observe that ϕ(X[0,t]) is a functional of {Xs, s ∈ [0, t]}.

Then Xt satisfies the closed equation

Ẋt = f(Xt, ϕ(X[0,t])) (24)

In general, Xt is not Markov!

It becomes Markov when Yt is faster, or ...?



Other possibility: Weak coupling

The system




Ẋt =

1

N

N∑

n=1

f(Xt, Y
n
t ),

Ẏ n
t = g(Xt, Y n

t ), (all the Y n
t coupled only via Xt)

may have a limit behavior as N → ∞ which is the same as the limit
behavior as 




Ẋt = f(Xt, Yt),

Ẏt =
1

ε
g(Xt, Yt),

when ε → 0.
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