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Motivating examples

Consider the ODE

X = —Y3+4sin(nt) + cos(v2nt)  X(0) == (1)
{Y: —5_1(Y—X) Y (0) = .

If ek 1, Y is very fast and it will adjust rapidly to the current value
of X, i.e. we will have

Y = X 4+ O(e) at all times.
Then the equation for X reduces to

X = —X3 4 sin(nt) + cos(v/2rt). (2)
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The solution of (1) when e = 0.05 and we took X;—o = 2, Y;=0 = —1.
X is shown in blue, and Y in green. Also shown in red is the solution
of the limiting equation (2).



In contrast, consider the SDE
X = —Y3 +sin(nt) + cos(v2rnt), Xi—o==x (3)
Y = - (Y - X) 4+ 12W, Yi—0 = v.

The equation for Y at fixed X = x defines an Ornstein-Uhlenbeck
process whose equilibrium probability density is

e~ (y—2)°

VT
The limiting equation is obtained by averaging the right hand-side of
the equation for X in (3) with respect to this density:

X = —X3 - 3X +ssin(nt) 4+ cos(v2rt), Xo=uz. (4)

Note the new term —%aQX due to the noise in (3).

p(ylz) =



The solution of (3) with X;—0 =2, Yi—0 = —1 when e = 1073. X is
shown in blue, and Y in green. Also shown in red is the solution of
the limiting equation (4). Notice how noisy Y is.



Singular perturbations techniques for Markov processes

Consider the system

X:f(XaY)7 Xi—o=z €R" (5)
Y = 19(X,Y), Yi—0o =y € R™.
Assume that the equation for Y at fixed X = x defines an Markov

process which is ergodic for every x with respect to the probability
distribution

dpz(y)
If
F(z) = | f(z,y)du.(y) exists
Rm
then in the limit as ¢ — 0 the evolution for X solution of (5) is
governed by

X = F(X) X(0) ==z. (6)



Derivation. Let L be the infinitesimal generator of the Markov pro-
cess generated by (5)

1m = (B 6 (X0, Y) — 6(2,9)) = (L6) (2, 9) (7)

Then L = Lo+ e 1Ly, and u(x,y,t) = E,,¢(Y, X) satisfies the back-
ward Kolmogorov equation

ou
= = Lou 4+ e 1Lqu, Uli=0 = ¢ (8)
Look for a solution in the form of
u = ug + eui + O(&?) (9)

so that lim._ou = uo.



Inserting (9) into (8) and equating equal powers in ¢ leads to the
hierarchy of equations

(Ll’u,o — O,
Ouo
L = —— — [, : 10
§ Liug y 0Uo (10)
KLlu2 — ...

The first equation tells that ug belong to the null-space of Li. As-
suming that for every x, L1 is the generator of an ergodic Markov
process with equilibrium distribution u.(y), this null-space is spanned
by functions constant in vy, i.e. ug = uo(x,1t).

Since the null-space of Li is non-trivial, the next equations each
requires a solvability condition, namely that their right hand-side be-
longs to the range of L1.



To see what this solvability condition actually is, take the expectation
of both sides of the second equation in (10) with respect to du.(x).
This gives

. ouo
0=/ duuy) (55 — Louo) (11)
Explicitly, (11) is
% = F(2) - Vo (12)
where
F(x) = [ f(z,y)du.(y) (13)

Rm

(12) is the backward Kolmogorov equation of (6).



Remark: Computing the expectation with respect to u.(y) in prac-
tice. We have

(") (z,y) — | ¢(z,y)dp.(y) ast— oo

]Rm
In other words, if u(x,y,t) satisfies
ou
— = Lqu, Ult=0 =
ey 1 t=0 = ¢

so that formally u(x,y,t) = (e'¢)(x,vy), we have

limu(z,y,t) = [ &z, y)du(y)
—00 Rm
But since u(x,y,t) = E,¢(Y?*) where

Y =g(z,Y")

it follows that
d(x,y)dp(y) = im Eygb(Yf)
® (14)
— ||m —/ H(Y,2)dt



Example: the Lorenz 96 (L96) model

L96 consists of K slow variables X, coupled to J x K fast variables
Y, . whose evolution is governed by

( J

. R
X = —Xp1(Xp—o — Xpg1) = Xpo + Fo + — g Y
J 4

: 1
Yir = - (Y10 Ytk — Yicin) — Vi + hyXp) -

\
We will study (15) with F, = 10, hp, = -0.8, hy =1, K =9, J = 8§,
and two values of e ¢ =1/128 and ¢ = 1/1024,
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Typical time-series of the slow (black line) and fast (grey line) modes;
K =9, J=28,e=1/128. The subplot displays a typical snapshot of
the slow and fast modes at a given time.
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PDF of the slow variable; K = 9, J = 8, black line: ¢ = 1/16,
grey line: ¢ = 1/1024. The insensitivity in € of the PDFs indicates
that the slow variables have already converged close to their limiting
behavior when ¢ = 1/16.
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ACFs of the slow (thick line) and fast (thin line) variables; e = 1/128,
grey line: e = 1/1024. The subplot is the zoom-in of the main graph
which shows the transient decay of the ACFs of the fast modes
becoming faster as ¢ is decreased: this is the only signature in the
ACFs of the fact that the Y;,'s are faster.
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Typical PDFs of the coupling term (hy;/J) ijl Z; (x) for various
values of x. These PDFs are robust against variations in the initial
conditions indicating that the dynamics of the fast modes conditional
on the slow ones being fixed is ergodic.
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Comparison between the ACFs and PDFs; black line: limiting dy-
namics; full grey line: ¢ = 1/128. Also shown in dashed grey are the
corresponding ACF and PDF produced by the truncated dynamics
where the coupling of the slow modes X, with the fast ones, Y;;, is
artificially switched off.
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Black points: scatterplot of the forcing F(x) in the limiting dynamics.
Grey points: scatter plot of the bare coupling term (h,/J) 237:1 Y k(x)
when ¢ = 1/128.



Diffusive time-scales

Suppose that
F(z)= [ f(z,y)du.(y) = 0. (16)
]Rm
Then the limiting equation on the O(1) time-scale is trivial, X = 0,
and the interesting dynamics arises on the diffusive time-scale O(e™1).

Consider then

{X = e Hf(X,Y), Xi=0o =z € R" (17)

Y = 2¢9(X,Y), Yi—0o =y € R™.

Proceeding as before we arrive at the following limiting equation
when ¢ — O:

X =b(X) 4+ o(X) W, (18)
where
(Lp)(x) = b(x) - Vad(z) 4+ 5(00" ) (z) 1 VaVag(z)
0 . (19)
= [t [ ) V(B @) - Vad(@)
and

Y =g(x,Y")



Derivation. The backward Kolmogorov equation for wu(x,y,t) =

E.yf(X) is now

Ou ~1 -2
— = " Lou—+ ¢ “Liu.
5 ou + 1

Inserting the expansion u = ug + cu1 + %us + O(e?) (we will have to
go one order in ¢ higher than before) in this equation now gives

( Liug = 0,
Liu1 = —Loug,
< OJug (20)
Liu> = — — Louz,
1U2 5 oU1

The first equation tells that uo(x,y,t) = uo(x,t).

The solvability condition for the second equation is satisfied by as-
sumption because of (16). Therefore this equation can be formally

solved as

Uy = —LIlLQUO.

Inserting this expression in the third equation in (20) and considering
the solvability condition for this equation, we obtain the limiting

equation for ug:

where

ouo -
=L 21
ot uo, ( )

L= [ du()LoL; Lo,



To see what this equation is explicitly, notice that —LIlg(y) is the
steady state solution of

ov

a = Liv 4+ g(y).

The solution of this equation with the initial condition v(y,0) = 0O
can be represented by Feynman-Kac formula as

t
o(y,t) = E, / g(Y)ds,
0

Therefore

—Li'g(y) =Ey/ g(Y;")dt,
0
and the operator L in the limiting backward Kolmogorov equa-
tion (21) is (19).



Example: the Lorenz 96 (L96) model

Consider

( J

. Ry
X = —& (Xp—1(Xp—2 — Xp1) + Xi) + — g (Yks1 — Yir-1)
9

j=1
. 1
Y= - (—Yj+1,k(Yj+2,k: — Y1) —Yir+ Fy) + hy Xy,

\

(22)
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ACFs and PDFs (subplot) of the slow variable X, evolving under
(22). Grey line: e = 1/256; full black line: e = 1/128; dashed black
line: ¢ = 1/128 with time rescaled as t — 2t. The near perfect match
confirms that evolution of X, converges to some limiting dynamics
on the O(1/e) time-scale.



Coupled truncated Burgers-Hopf (TBH). I. Stable periodic orbits

’

\

. 1
X1 = gb1X2Y1 + aY1(R? — (X7 4 X3)) — bXo(a+ (X7 4+ X3)),

. 1
X, = ngXlYl + azo(R? — (X7 + X32)) + bX1(a+ (X7 4+ X3)),

. k 1

Yi = —Re - UrUr + Zb3dy X1 Xo,
p+atk=0 ©

. k

Zy=-Im = Y U
p+q+k=0

where U, = Y, + 1 4;..

Truncated system: stable periodic orbit (limit cycle)

(X1(t), X2(t)) = R(coswt,sinwt) with frequency w = b(a + R?).



NB: Truncated Burgers (Majda & Timofeyev, 2000)

Fourier-Galerkin truncation of the inviscid Burgers-Hopf equation,
ur + %(UQ);E = 0O:

Up = -7 g, k| < A
k~+p+q=0
Ipl,lg|<A

Features common with many complex systems. In particular:

e Display deterministic chaos.
e Ergodic on E =", |Us|°.
e Scaling law for the correlation functions with ¢, ~ O(k™1).

Here: Used as a model for unresolved modes.
Couple truncated Burgers with two resolved variables.



¢ . 1
X1 = 251X2Y1 + aY1(R? — (X7 + X3)) — bXo(a+ (X7 + X3)),

X = ébQlel + axa(R? — (X7 4+ X2)) + bX1(a + (X7 + X3)),

. 1
Yk —Re — Z U;U; —|— —b351’kX1X2,
2 ih=0 ¢

Limiting SDEs:

( Xl = b1bo X1 + N1X1X§ —+ OlXQW(t)
+ aX1(R? — (XT + X3)) — bXo(a + (XT + X3)),

XQ = b1bo X> + NQXQX% —+ O‘2X1W(t)
+ aXo(R? — (X7 + X3)) + bX1(a + X7 + X3)),




Contour plots of the joint probability density for the climate variables
X1 and Xs; (a) deterministic system with 102 variables; (b) limit
SDE. There only remains a ghost of the limit cycle.
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ministic system with 102 variables (DNS) and the limit SDE.
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Two-point statistics for X7 and X»5; solid lines - deterministic system
with 102 degrees of freedom; dashed lines - limit SDE; (a), (b)
correlation functions of X7 and X5, respectively; (c) cross-correlation
function of X7 and X5; (d) normalized correlation of energy,

(X3(t)X35(0))
(X3)2 4+ 2(X>(t) X2(0))2

Kg(t) =



Coupled truncated Burgers-Hopf (TBH). II. Multiple equilibria

/

. 1
X =Zh1YiZ1 + M1 — az?)z,
5

. ik e, 1
) Yi=—-Re = > UUr + ~b201 kX 2,

Limiting SDE:

X=-AAX4+oW((t)+ A1 -aX?)X
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PDF of X for the simulations of the deterministic model (solid lines)
and the limit SDE (dashed lines) in three regimes, A = 1.2, 0.5, 0.15.
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Two-point statistics of X in three regimes, A = 1.2, 0.5, 0.15 for the
deterministic equations (solid lines) and limit SDE (dashed lines) (a),
(b), (c) correlation function of x; (d), (e), (f) correlation of energy,
K(t), in x.



Generalizations

Let Z; € S be the sample path of a continuous-time Markov process
with generator

L=1ILo+e 'L

and assume that L1 has several ergodic components indexed by = € S’
with equilibrium distribution

Mm(z)
Then, as € — 0 there exists a limiting on S’ with generator

L=E,Lo

Similar results available on diffusive time-scales.

Can be applied to SDEs, Markov chains (i.e. discrete state-space),
deterministic systems (periodic or chaotic), etc.



Other situations with limiting dynamics?

Consider

Xt — f(Xta Y;f);

and denote by ¢(Xp4) the solution of the equation for Y at time ¢
assuming that X; is known on [0, t]

Observe that ¢(X[o4) is a functional of {X,s € [0,t]}.

Then X; satisfies the closed equation

X = f(Xe, 0 (Xj0)) (24)

In general, X; is not Markov!

It becomes Markov when Y; is faster, or ...7



Other possibility: Weak coupling

The system

N
. 1 .
Xt = an::lf(Xtay;f )
Y = g(X, V), (all the Y;” coupled only via X;)

may have a limit behavior as N — oo which is the same as the limit
behavior as

X = (X, Y2),
. 1
S/t — gg(XhYt)a

when ¢ — 0.



Asymptotic techniques for singularly perturbed Markov processes:

R. Z. Khasminsky, On Stochastic Processes Defined by Differential Equations with a
Small Parameter, Theory Prob. Applications, 11:211-228, 1966.

R. Z. Khasminsky, A Limit Theorem for the Solutions of Differential Equations with
Random Right-Hand Sides, Theory Prob. Applications, 11:390—406, 1966.

T. G. Kurtz, Semigroups of conditioned shifts and approximations of Markov processes,
Annals of Probability, 3:618—642, 1975.

G. Papanicolaou, Some probabilistic problems and methods in singular perturbations,
Rocky Mountain J. Math, 6:653—673, 1976.

M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 2nd
edition, Springer-Verlag, 1998.

Effective dynamics in L96:

E. N. Lorenz, Predictability — A problem partly solved, pp. 1-18 in: ECMWEF Seminar
Proceedings on Predictability, Reading, United Kingdom, ECMWF, 1995.

C. Rodenbeck, C. Beck, H. Kantz, Dynamical systems with time scale-separation:
averaging, stochastic modeling, and central limit theorems, pp. 187—209 in: Stochas-
tic Climate Models, P. Imkeller, J.-S. von Storch eds., Progress in Probability 49,
Birkhauser Verlag, Basel, 2001.

I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems
with applications to Lorenz 96 model, J. Comp. Phys. 200:605—638, 2004.



(Coupled) TBH:

A. J. Majda and I. Timofeyev, Remarkable statistical behavior for truncated Burgers-
Hopf dynamics, Proc. Nat. Acad. Sci. USA, 97:12413-12417, 2000.

A. J. Majda and I. Timofeyev, Statistical mechanics for truncations of the Burgers-
Hopf equation: a model for intrinsic stochastic behavior with scaling, Milan Journal
of Mathematics, 70(1):39—-96, 2002.

A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden, Systematic strategies for stochastic
mode reduction in climate. J. Atmos. Sci., 60(14):1705-1722, 2003.

A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden, Stochastic models for selected
slow variables in large deterministic systems, Nonlinearity, 19:769—794, 2006.



