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Outline of Talk

• Motivation: physical/statistical models

• Bayesian Statistics

– Simple Example

• Hierarchical Bayesian Models

– Simple Example (cont.)

• Examples

– Advection-Diffusion: physical space
∗ Application: invasive species

– Advection-Diffusion: spectral space
∗ Application: tropical winds
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Geophysical Analysis

Two types of geophysical models?

• Physical:

– Laws of classical physics
– Uncertainties: e.g., representativeness; neglecting higher order

terms; choice of space-time averaging (subgrid-scale parame-
terizations); linking systems (e.g., atmosphere/ocean coupling),
etc.

• Statistical:

– Descriptive
– Uncertainties: inefficient in complex settings; data not repre-

sentative of full dynamics; application under system changes;
estimation

3



Simple Illustration

PDE:
∂u

∂t
= M(u, w, γ),

where M is a function (e.g., spatial derivatives) of the variable of interest, u, other
potential variables, w, and parameters γ.

Numerical Model:
Simple finite difference representations suggest an approximate difference equation
model,

ut+∆t = M(ut,wt, γ, δ),

where ∆t is the selected time step, M is based onM, and δ involves the spatial grid
sizes.

Statistical Model:

ut+∆t = F(ut,wt, θ) + et,

where F is an unknown operator and θ are unknown parameters. The additive error
term et represents model and discretization errors.
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“Physical/Statistical Models”

Better to consider a “spectrum of models” (e.g., Berliner, 2003)

Deterministic ⇐⇒ Stochastic

e.g., Hybrid Physical/Statistical Model:

ut+∆t = M̃(ut,wt, θ) + et,

where M̃ is an approximation to the “true” discretized model physics
(M) and θ are unknown, but random parameters. The additive error
term et represents additional model errors.

5



Physical/Statistical Model Estimation

Uncertainties in the Physical/Statistical Model Framework:

• Data/Model agreement

• model representativeness

• parameter uncertainty

How do we accommodate these sources of uncertainty in a coherent, probabilistic
framework?

Bayesian Approach:

• Natural for combining information sources while managing their uncertainties.

– Multiple data sources
– Uncertain model
– Stochastic parameters
– Expert opinion

• Obtain predictive distributions of quantities of interest, conditioned on

observations
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Distributional Notation

We use the short-hand notation [ ] for probability distribution.

Given random variables A and B, represent:

• Joint distribution of A and B: [A, B]

• Conditional distribution of A given B: [A|B]

• Marginal distribution of A: [A]

Also, note the following are equivalent:

Y |µ, σ2 ∼ N(µ, σ2)

Y = µ + ε, ε ∼ N(0, σ2)

where “∼” means “is distributed as”.
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Bayesian Viewpoint

Bayes’ Theorem:

[Y |Z] =
[Y, Z]

[Z]
=

[Z|Y ][Y ]∫
[Z|Y ][Y ]dY

For random variables with known distributions, this is a “fact” from
probability theory. It is not controversial!

Bayesian Statistics:

Modeling unknown distributions and updating those models based on
data. Might be controversial!

8



Bayesian Statistics

[Y |Z] =
[Z|Y ][Y ]∫

[Z|Y ][Y ]dY
∝ [Z|Y ][Y ]

• Want to make inference about Y but we only observe Z

• We update our uncertainty about Y after observing Z

• [Y ] reflects our prior knowledge of Y

• [Z|Y ] is the “likelihood” or “data model”
• [Y |Z] is the posterior distribution

Bayesian Modeling:
Treat all unknowns as if they are random and evaluate
probabilistically

[Process|Data] ∝ [Data|Process][Process]
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Simple Example I

• Temperature observations: DT (s1), DT (s2), . . . , DT (sn)

• These are observations of the true (unknown) temperature process:
T , at ”locations” (or replicates) s1, . . . , sn; measurement error vari-
ance σ2

• We have prior information about T , say T0 from a “numerical model”
but we don’t believe our model is perfect (τ 2).

Probabilistically, we may believe:

[Data|Process] : DT (si)|T, σ2 ∼ N(T, σ2)

[Process] : T |T0, τ
2 ∼ N(T0, τ

2)
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We want the posterior: [Process|Data], i.e.,

[T |DT (s1), . . . , DT (sn)] ∝ [DT (s1), . . . , DT (sn)|T, σ2][T |T0, τ
2]

where for simplicity, we assume T0, τ
2, σ2 are known. Then,

T |DT (s1), . . . , DT (sn) ∼ N(wD̄T + (1− w)T0,
σ2τ 2

σ2 + nτ 2
)

where

D̄T =
1

n

n∑
i=1

DT (si) and w =
τ 2

τ 2 + σ2/n
.

Note: this is a weighted average of the sample mean and the prior
mean, where the weights are related to our certainty about the obser-
vations and prior.
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Basic Bayes is Not New to Atmospheric Science

• Epstein, early 1960’s used Bayesian decision making in applied
meteorology

• Weather Modification Research in 1970’s (e.g., Simpson et al. 1973,
JAS)

• Data Assimilation can be viewed from Bayesian viewpoint (e.g.,
Lorenc 1986, Q. J. Roy. Met. Soc.)

– Kalman filter is Bayesian (e.g., Meinhold and Singpurwalla,
1983)

– Ensemble Kalman Filters (Sequential Monte Carlo); e.g., Evensen
and van Leeuwen, 2000, MWR

• Climate Change (e.g., Solow 1988; J. Clim.; Leroy 1998, J. Clim.)

• Satellite Retrieval (many!)

Hierarchical Bayes is new to meteorology!
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Hierarchical Bayesian Viewpoint

Cornerstone of hierarchical modeling is conditional thinking.

Joint distribution can be represented as products of conditionals. e.g.,

[A, B, C] = [A|B, C][B|C][C]

NOTE: Our choice for this decomposition is based on what we know
about the process, and what assumptions we are willing and able to
make for simplification:

e.g., conditional independence: [A|B,C]=[A|B].

Often easier to express conditional models than full joint models.
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Hierarchical Bayesian Modeling of Geophysical Processes

Separate unknowns into two groups:

• process variables: actual physical quantities of interest (e.g., tem-
perature, pressure, wind)

• model parameters: quantities introduced in model development
(e.g., propagator matrices, measurement error and sub-grid scale
variances, unknown physical constants, etc.)

Basic Hierarchical Model

1. [data|process, parameters]

2. [process|parameters]

3. [parameters]

The posterior [process,parameters|data] is proportional to the
product of these three distributions!
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Simple Example I (cont.)

Say that in Example I, we believe that the numerical model value of T
is biased. We do not know exactly the bias, but suspect it is related to
known factors x ≡ (x1, x2, . . . , xk)

′ (e.g., MOS). Then, our hierarchi-
cal model has the following stages:

• Data Model:

DT (si)|T, σ2 ∼ N(T, σ2)

• Process Model:

T |T0,x, β, τ 2 ∼ N(T0 + x′β, τ 2)

• Parameter Model:

β|β0,Σ ∼ N(β0,Σ)

We then seek the posterior distribution: [T, β|DT (s1), . . . , DT (sn)]
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Complicated Processes

Usually, we can’t find analytically the normalizing constant in Bayes’
theorem. Thus we can’t easily get the posterior distribution.

• Numerical integration (o.k. for low dimensions)

• Use Monte Carlo methods to sample from the posterior.

– Markov Chain Monte Carlo (MCMC)
∗ Sample from a Markov Chain that has the same ergodic dis-

tribution as the posterior
∗ Don’t need to know normalizing constant
∗ e.g., Metropolis (1950s), Gibbs sampler (1980s) algorithms
∗ revolutionized Bayesian statistics in the early 1990’s

– Can be very computationally intensive

• Importance Sampling Monte Carlo (ISMC) (tomorrow’s talk)
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Simple Example II: Advection/Diffusion

Assume an advection-diffusion equation is fairly representative of the
true physics of the system of interest:

∂u

∂t
= −u0

∂u

∂x
+ A

∂2u

∂x2

where our uncertainty is primarily related to the unknown parameters
u0, A.

Finite Difference Approximation:

ut+1(x)− ut(x)

δt
≈ −u0

ut(x + 1)− ut(x− 1)

δx

+A

ut(x + 1)− 2ut(x) + ut(x− 1)

δ2
x


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Difference Equation Representation

Collecting terms in the finite difference representation:

ut(x) = θ1ut−1(x) + θ2ut−1(x + 1) + θ3ut−1(x− 1)

where θi are functions of δx, δt, A, and u0.

In vector form, for locations s1, . . . , sn (sj = (xj, yj)):

ut = Mut−1 + Mbu
b
t−1

where M, Mb are functions of θ1, . . . , θ3; ub corresponds to the bound-
ary process.
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ADE Based Hierarchical Model: Physical Space

Data Model: Observations Zt

Zt|ut, σ
2
ε ∼ N(Htut, σ

2
εI), t = 1, . . . , T

where Zt is mt× 1, ut is n× 1, and Ht is an mt× n matrix that maps
data to prediction locations.

Process Model:

ut|ut−1, θ,Σ(γ) ∼ N(M(θ)ut−1 + Mb(θ)ub
t−1,Σ(γ)),

for t = 1, . . . , T . (For now, assume boundary process ub
t is known;

note: random boundaries fit nicely in the hierarchical framework!)
Also, need distribution for initial condition : u0 ∼ N(µ0,Σ0)
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ADE Hierarchical Model: Parameter Models

Priors for θi could be based on relationships suggested by the finite difference:

θi ∼ N(θ̃i, σ
2
i ),

where
θ̃1 = 1− 2δtA

δ2
x

θ̃2 =
δtA

δ2
x

− δtu0

δx

θ̃3 =
δtA

δ2
x

+
δtu0

δx

Note: One could also put a distribution on A and u0 directly and/or allow them to
vary spatially (e.g., forthcoming Ecology example).
Note: One may need to constrain these distributions to ensure stability. However, not
as important as in numerical solutions to PDEs because data is available to naturally
constrain. Also, in some cases, it is nice to have the flexibility!
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Reaction-Diffusion Application: (Wikle 2003; Ecology)

Spread of invasive species on landscape scale:
Breeding Bird Survey (BBS) counts for house finch

(Carpodacus mexicanus) [substantial observer error and bias!]
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Typical Invasions

Invasive species phases:

• Introduction

• Establishment

• Range Expansion

• Saturation

Ecological Models (dispersal and growth)
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Ecology Example: Process Model Motivation

Skellam’s (1951) Model (Diffusion plus Malthusian growth):

∂u

∂t
= δ

∂2u

∂x2
+

∂2u

∂y2

 + αu.

Over large spatial scales, constant diffusion rate is not realistic. Spread
will not be spatially homogeneous! e.g., a better model would be:

∂u

∂t
=

∂

∂x

δ(x, y)
∂u

∂x

 +
∂

∂y

δ(x, y)
∂u

∂y

 + αu,

• No general analytical solution

• Although this can be solved numerically, we still don’t expect it to be exactly appropriate

• Growth process naive

• How do we estimate the spatial process δ(x, y)?

• How do we account for the measurement/sampling errors (e.g., BBS data)?
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Ecology Example: Hierarchical Model (Sketch)

• Data Model: Zt(si) observed BBS count
Zt(si)|λt(si) ∼ iid Poisson(λt(si))

• Process Models:
log(λt(si)) = µt + h′itut + ηt(si), ηt(si) ∼ iid N(0, σ2

η)

µt = µt−1 + εt, εt ∼ iid N(0, σ2
ε )

ut = M(δ, α)ut−1 + γt, γt ∼ iid N(0,Σ(θγ))

• Parameter Models:
δ|β, σ2

δ ,Rδ ∼ N(Φβ, σ2
δRδ),

α ∼ N(α̃0, σ̃
2
α)

Others: u0, β, variances

24



Ecological Example Posteriors: Growth
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Ecological Example: (log) Growth Ensembles from Posterior
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Ecological Example Posterior: Diffusion Parameter
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Ecological Example Results: Process
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Advection/Diffusion Example Revisited: Spectral

Again, consider the advection/diffusion equation:

∂u

∂t
= −u0

∂u

∂x
+ A

∂2u

∂x2

Assume solutions are a superposition of wave modes of the form:

ut(x) =
∑
j
[a1j(t) cos(ωjx) + a2j(t) sin(ωjx)]

where ωj = 2πj/Dx is the spatial frequency of a wave with wave num-
ber j over domain Dx.

Thus, for all spatial locations of interest, ut = Φat where Φ is made
up of the Fourier basis functions, and at is the collection of all wave-
mode coefficients.
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ADE Spectral (cont.)

The deterministic solution gives formulae for a1j(t), a2j(t) (exponen-
tially decaying sinusoids in time):

a1j(t) = exp(−Aω2
j t) sin(u0ωjt)

a2j(t) = exp(−Aω2
j t) cos(u0ωjt)

Note time evolution:
 e−Aω2

j (t+δ) sin{ωj(t + δ)}
e−Aω2

j (t+δ) cos{ωj(t + δ)}

 = Gj

 e−Aω2
j t sin{ωjt}

e−Aω2
j t cos{ωjt}



where

Gj =

 e−Aω2
j δ cos{ωjδ} e−Aω2

j δ sin{ωjδ}
−e−Aω2

j δ sin{ωjδ} e−Aω2
j δ cos{ωjδ}


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Thus (deterministic) linear wave theory suggests:

aj(t + δ) = Gjaj(t)

However, we don’t expect the true process to behave exactly as the
linear wave theory suggests!

• Let a1j(t), a2j(t) be stochastic

• Add noise term ηj(t) to account for uncertainty

• Let the propagator be Mj with prior mean Gj

at+δ = Mat + ηt+δ

where at ≡ [a1(t)
′ . . . aJ(t)′]′ and M is block diagonal with blocks

Mj, j = 1, . . . , J , where J is number of wave modes.
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Hierarchical Spectral Spatio-Temporal Model
• Stage 1:

Zt = Htut + εt, εt ∼ N(0, σ2
εI)

• Stage 2: (truncated modes)
ut = Φat + γt, γt ∼ N(0,Σγ)

• Stage 3:
at = Mat−1 + ηt, ηt ∼ N(0,Ση)

• Stage 4:

vec(Mj) ∼ N(vec(Gi),Σm)

Σ−1
η (j) ∼ W ((νjSj)

−1, νj)

σ2
ε ∼ IG(qε, rε)

Σγ(θ)is a stationary spatial cov matrix
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Spectral Application: Tropical Ocean Winds

Problem: Blending tropical surface winds given high-resolution satel-
lite scatterometer observations and low-resolution assimilated model
output. (Wikle, Milliff, Nychka, Berliner, 2001; JASA)
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Wind Problem: Process Model Motivation I

Consider the linear shallow water equations (on an equatorial beta-plane):

∂u

∂t
− β0yv + g

∂h

∂x
= 0

∂v

∂t
+ β0yu + g

∂h

∂y
= 0

∂h

∂t
+ h̄(

∂u

∂x
+

∂v

∂y
) = 0

• u, v: east-west, north-south wind components at location (x,y)

• h: deviation of the fluid depth about its mean

• h̄: mean fluid depth

• β0: constant related to rotation of earth

• g: gravitational acceleration

This linear system can be solved analytically, giving a series of traveling waves
(equatorial normal modes) - Observed in tropics!
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Wind Problem: Process/Parameter Model Motivation II

Empirical results suggest turbulent scaling behavior for near surface
tropical winds (e.g., Wikle, Milliff and Large, 1999; JAS)

In particular:

Sv(ω) ∝ σ2
v

|ω|κ

where κ = 5/3, and ω is the spatial frequency.
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Wind Model: Hierarchical Model Sketch (v-Component)

• Data Model: Change of support

[Zs
′
t Za

′
t]
′ = Htvt + εt, εt ∼ N(0,Σε)

• Process Model:
vt = µ + Φat + Ψbt,

µ - mean vector reflecting “climatological” winds
Φ - matrix containing “important” normal mode basis functions
(importance determined from empirical studies, e.g., Wheeler and
Kiladis, 1999)
at - time-varying equatorial mode spectral coefficients
Ψ - matrix containing multiresolution (wavelet) basis functions
(representing small/meso-scale variability)
bt - time-varying multiresolution coefficients
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µ|β,Σµ ∼ N(Xβ,Σµ)

β - “regression” coefficients for climatological covariates X

at = M(θ)at−1 + ηt, ηt ∼ N(0,Ση)

θ - informative priors based on equatorial wave theory and empir-
ical studies

bt = Mb(θb)bt−1 + γt, γt ∼ N(0,Σγ)

Mb(θ) - diagonal propagator (AR(1))
Σγ - diagonal, but informative priors to suggest empirical power-
law scaling relationships

• Parameter Models:
Parameter distributional choices reflect theoretical and empirical
science related to equatorial normal modes and spectral scaling re-
lationships.
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Wind Problem Results: Tropical Cyclone Dale

38



Wind Blending: “Operational”

Tim Hoar, IMAGe, NCAR has made this model “operational” on 1/2
deg grid
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Conclusion

• Hierarchical Bayesian methods allow one to quantify uncertainty
in all aspects of the problem (data, process, parameters) and distri-
butional output reflects the quantification of uncertainty

• Hierarchical Bayesian methods allow one to decompose the prob-
lem into a series of simpler conditional models

– Can accommodate data of different sources/resolution/alignment
– Can accommodate complicated spatio-temporal dependence
– Can accommodate physics (e.g., shallow water PDE; reaction-

diffusion)
– Can accommodate empirical results (e.g., turbulent scaling laws)
– Can accommodate stochastic parameterizations!

• Downside: Complicated and computationally intense
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Tomorrow’s Talk: Preview

Realistic Implementation of BHM Parameterization

• Qualitative Dynamics

– Long Lead Forecast of SST
– Nowcast of Radar Reflectivities

• Coupling Systems

– Air/Sea Interaction

• Stochastic Parameterization in Climate Models

– Convective Initiation in Mesoscale Forecast Model
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