Bayesian Hierarchical Parameterizations

Christopher K. Wikle Department of Statistics University of Missouri-Columbia

0.4

0.2

-106 -105 -104 -103 -102 -101 -100

IMAGE TOY2006 Workshop III: February 28, 2006

39

38

37

- Bayesian Hierarchical Models (BHMs)
- BHM Parameterizations with Qualitative Dynamics
 - Application: Long Lead Prediction: SST
 - Application: Nowcasting Radar Reflectivities
- BHM Parameterizations in Coupled Systems
 - Application: Air/Sea Experiment
- BHM Parameterizations in Regional Climate Models

- Application: Stochastic Trigger Function in Climate Model

```
Data \rightarrow D Process \rightarrow U Parameters \rightarrow \theta
```

• Data Model(s): $[D \mid U, \theta]$

Simpler dependence structures through conditioning. e.g.,

 $[D_a, D_b | U, \theta] = [D_a | U, \theta] [D_b | U, \theta]$

• Process Model(s): $[U \mid \theta]$

Can build-up complicated dependence by conditional models. e.g.,

 $[U_2, U_1|\theta] = [U_2|U_1, \theta][U_1|\theta]$

Incorporate science!! (e.g., PDEs)

• Parameter Model(s): $\begin{bmatrix} \theta \end{bmatrix}$ Further conditioning; Incorporate science

Bayes:

 $[U,\theta|D] \propto [D|U,\theta][U|\theta][\theta]$

Process Model: (linear in Y)

$\mathbf{Y}_t = \mathbf{M}_t(\boldsymbol{\theta}) \mathbf{Y}_{t-1} \ (+\boldsymbol{\eta}_t)$

Efficient Parameterization when M_t is unknown:

- Dimension reduction in the state process, $\mathbf{Y}_t = \mathbf{\Phi} \mathbf{a}_t + \boldsymbol{\nu}_t$
- Low-dimensional parameterization of \mathbf{M}_t

Examples:

- Long Lead Prediction of Pacific SST
- Nowcasting Weather Radar Reflectivities

Application: Long Lead Prediction of SST

Goal: Predict Pacific SST anomalies $(2^{\circ} \times 2^{\circ} \text{ resolution})$ 7 months in advance while realistically accounting for uncertainty. [Berliner,Wikle, Cressie, 2000, *J. Climate*]

Consider data $\{Z(\mathbf{s}_i; t)\}$ to be *anomalies* from monthly means.

Want to predict $Z(\mathbf{s}_0; T + \tau)$; for $\tau = 7$ months, from space-time data $\mathcal{D}(T) \equiv \{\mathbf{Z}_T, \mathbf{Z}_{T-1}, \dots, \mathbf{Z}_1\}.$ **Dimension Reduction:**

$$\mathbf{Z}_t = \mathbf{\Phi} \mathbf{a}_t + \boldsymbol{\nu}_t,$$

where

- $\nu_t \sim Gau(0, \Sigma_{\nu})$; measurement error and small-scale spatial variability that is uncorrelated in time (includes information related to the "unresolved" modes in Σ_{ν}).
- Φ ; truncated **empirical orthogonal function** basis set (not optimal in the dynamical context, but historical precedent), obtained from SVD of $\mathbf{Z} \equiv (\mathbf{Z}_1, \dots, \mathbf{Z}_T)$.

$$\mathbf{a}_{t+\tau} = \boldsymbol{\mu}_t + \mathbf{M}_t \mathbf{a}_t + \boldsymbol{\eta}_{t+\tau},$$

where, $\eta_t \sim Gau(\mathbf{0}, \Sigma_{\eta})$ for all *t*.

Critical modeling assumption: Let \mathbf{M}_t and $\boldsymbol{\mu}_t$ be dependent on *both the current and future climate regimes*:

 $\mathbf{M}_t = \mathbf{M}(I_t, J_t)$ $\boldsymbol{\mu}_t = \boldsymbol{\mu}(I_t, J_t),$

where,

- *I_t* classifies the current regime as "warm" (2), "normal" (1), or "cold" (0)
- J_t anticipates a transition to one of the three regimes at time $t + \tau$

Current, I_t : [Threshold Model, e.g., Tong 1990]

- $I_t = 0$, if $SOI_t >$ low threshold
 - = 1, if otherwise
 - = 2, if $SOI_t < upper threshold$,

where SOI_t is the Southern Oscillation Index (assumed "known"). Future, J_t : [Latent (hidden) Process Model]

> $J_t = 0$, if $W_t >$ low threshold = 1, if otherwise = 2, if $W_t <$ upper threshold,

where W_t is a latent process which anticipates the future climate regime.

$$W_t | \boldsymbol{\beta}_w, \sigma_w^2 \sim Gau(\mathbf{x}_t' \boldsymbol{\beta}_w, \sigma_w^2)$$

where,

$$\mathbf{x}_t = (1, U_t, U_t sin(\frac{2\pi m_t}{12}), U_t cos(\frac{2\pi m_t}{12}), U_t^2)',$$

where

- U_t the lowpass filtered E-W component of the wind at 10 meters above the surface at 5° N and 157° E. (This is absolutely critical!)
- m_t index of month (0 11) at time t

At next stage of hierarchy:

$$\begin{split} \boldsymbol{\beta}_{w} &\sim Gau(\hat{\boldsymbol{\beta}}_{SOI}, c_{\beta} \mathrm{var}(\hat{\boldsymbol{\beta}}_{SOI})), \\ \sigma_{w}^{2} &\sim IG(q, r) \end{split}$$

where the mean and variance and IG ("Inverse Gamma") parameters are obtained from fitting

$$SOI_{t+\tau} = \mathbf{x}_t' \boldsymbol{\beta}_{SOI} + e_t$$

(gives $R^2 \approx .7$!)

- $vec(H_j)$, j = 1, 2, 3 Multivariate Normal distributions
- μ_j , j = 1, 2, 3 Multivariate Normal distributions
- Covariance matrices Wishart distributions

("Empirical Bayes" priors)

Results: Niño 3.4 Prediction of 10/97 from 3/97

Results: Posterior Predictions for 10/97

Results: Posterior Predictions for 10/98

Operational Forecasts Generated Each Month:

Spatial Statistics and Environmental Sciences (SSES) program at Ohio State University

http://www.stat.ohio-state.edu/~sses/collab_enso.php

Application: Radar Nowcasting

Short-term forecast (nowcast) of radar reflectivities based on recent past. (Xu, Wikle, and Fox, 2005; *J. Amer. Stat. Assoc.*)

09:05

09:15

09.25

60
50
40
30
20
10

Model Assumption: linear at short time scales; spatially explicit

Ideally, would like to estimate the propagator matrix \mathbf{M} in:

 $\mathbf{Y}_{t+1} = \mathbf{M}\mathbf{Y}_t + \boldsymbol{\eta}_{t+1}$

where \mathbf{Y}_t is *n*-dimensional and t = 1, ..., T corresponds to the data periods.

In principle, this is easy. In practice, it is NOT (Large n, small T problem)!

Consider the linear IDE model:

 $Y_{t+1}(s) = \gamma \int k_s(r;\theta_s) Y_t(r) dr$

The key to modeling dynamical processes is $k_s(r; \theta_s)$, the redistribution kernel.

- Has been shown to model diffusive wave fronts (e.g., Kot et al. 1996); shape and speed of diffusion depends on kernel width and tail behavior (dilation)
- Can also model non-diffusive propagation via the relative displacement of kernel (translation) (Wikle, 2001; 2002)

Kernel Properties and Dynamics

NOTE: If dilation and translation parameters are allowed to vary with space, then complicated (advection/diffusion) dynamics can be modeled with relatively few parameters.

Stochastic IDE:

$$Y_{t+1}(s) = \gamma \int k_s(r;\theta_s) Y_t(r) dr + \tilde{\eta}_t(s), \quad \tilde{\boldsymbol{\eta}}_t \sim N(\boldsymbol{0}, \boldsymbol{\Sigma}_{\tilde{\eta}})$$

Consider the spectral expansion of the kernel and process in terms of orthonormal spectral basis functions, $\phi_j(s)$:

$$egin{aligned} k_s(r; heta_s) &= \sum\limits_j b_j(s; heta_s) \phi_j(r) \ Y_t(s) &= \sum\limits_j a_j(t) \phi_j(s) \end{aligned}$$

Substituting these into the IDE for spatial locations s_1, \ldots, s_n leads to a spectral representation of the model:

$$\boldsymbol{a}_{t+1} = \gamma \boldsymbol{\Phi}' \mathbf{B}'_{\boldsymbol{\theta}} \boldsymbol{a}_t + \boldsymbol{\eta}_{t+1}, \quad \boldsymbol{\eta}_t \sim N(\mathbf{0}, \boldsymbol{\Sigma}_{\eta})$$

where $[\Phi]_{ij} = \phi_j(\mathbf{s}_i), \quad [\mathbf{B}_{\boldsymbol{\theta}}]_{kl} = b_k(\mathbf{s}_l; \boldsymbol{\theta}_{s_l}), \text{ and } \boldsymbol{\Sigma}_{\eta} = \Phi' \boldsymbol{\Sigma}_{\tilde{\eta}} \boldsymbol{\Phi}.$

Let $\phi_i(\mathbf{s})$ be Fourier basis functions.

The kernel spectral coefficients, $b_j(\mathbf{s}; \boldsymbol{\theta}_s)$ are then known if the kernel is a pdf since the Fourier transform of the pdf kernel is its characteristic function. (Can lead to dimension reduction)

Thus, $\mathbf{B}_{\boldsymbol{\theta}}$ is completely defined if we know the kernel translation and dilation parameters ($\boldsymbol{\theta}_{s}$).

Critically, the kernel parameters are assumed to be spatially-varying, and are assigned spatial random field priors at the next level of the hierarchy.

Example Posterior Mean: Kernel Translation (Implied Propagation)

Implied Propagation by Posterior Kernels

Nowcast Results: Data, Posterior Mean, Samples

Post. Forecast Sample 1

Post Forecast Sample 1

Post Forecast Sample 1

Pest. Forecast Sample 1

Post. Forecast Sample 2

Post Forecast Sample 2.

Post Forecast Sample 2.

Pest. Forecast Sample 2

Uncertainty Characterization: Posterior Standard Deviation

Observed - Forecast T + 20 mins: 09:35

Observed - Forecast T + 30 mins: 09:45

Observed - Forecast T + 40 mins: 09:55

Example: Bayesian Hierarchical Modeling of Air-Sea Interaction

(Berliner, Milliff, Wikle, 2003: Journal of Geophysical Research: Oceans)

- Couple models of interacting spatio-temporal processes (atmosphere and ocean)
 - Hierarchical coupling of complicated systems; each of which is also modeled hierarchically
 - Use approximate dynamics; physical-statistical models
- Incorporate diverse datasets
- Include stochastic elements to adjust for model uncertainty, unmodeled components, etc.
- Quantify uncertainty in each phase

Data

- * D_a Atmospheric data (scatterometer)
- * *D*_o Ocean data (altimeter)

HBM Skeleton

- 1. $[D_a, D_o | \text{Atm}, \text{Ocean}, \theta_a, \theta_o]$
- 2. [Atm, Ocean $|\eta_a, \eta_{o|a}$]
- 3. $[\theta_a, \theta_o, \eta_a, \eta_{o|a}]$

Parameters

 $heta_a, heta_o,\eta_a,\eta_{o|a}$

BHM Keys

- 1. $[D_a, D_o | \text{Atm}, \text{Ocean}, \theta_a, \theta_o] = [D_a | \text{Atm}, \theta_a] [D_o | \text{Ocean}, \theta_o]$
- 2. $[Atm, Ocean | \eta_a, \eta_{o|a}] = [Ocean | Atm, \eta_{o|a}] [Atm | \eta_a]$

- Atm & Ocean data are conditionally independent
- Parameterized air-sea model is stochastic atmospheric model coupled to stochastic Ocean-given-Atmospheric model
- * <u>Posterior</u>: [Atm, Ocean, $\eta_a, \eta_{o|a} | D_a, D_o$]

"Full" coupling of Atmosphere and Ocean

Observation Simulation System Experiment (OSSE)

- Ocean truth simulation driven by idealized wind fields
 - primitive equation, shallow water approximation (Milliff and McWilliams, 1994) [This is more complicated than the PDE prior we will use!]
- 10-day forcing with intense idealized atmospheric cyclone (emulating polar low)
- Sample winds (scatterometer sampling) and altimetry (e.g., TOPEX) corrupted with noise
- Compare BHM based on simple ocean and atmosphere models and sparsely sampled, corrupted data to shallow-water truth

Wind Driven Ocean Process Model

Prior Based on "Simple" Physics: Quasigeostrophy (Ψ - streamfunction)

$$\begin{split} (\nabla^2 - \frac{1}{r^2}) \frac{\partial \psi}{\partial t} \; = \; -J(\psi, \nabla^2 \psi) - \beta \frac{\partial \psi}{\partial x} \\ &+ \frac{1}{\rho H} \operatorname{curl}_z \tau - \gamma \nabla^2 \psi - a_H \nabla^4 \psi \end{split}$$

where J is the Jacobian, τ the wind-stress, and r, β , ρ , H, γ , a_H are parameters. Using traditional finite difference approximations to time- and space-derivatives:

$$\Psi_{t+1}^{I} = \{\mathbf{I} + \Delta \,\tilde{\mathbf{G}} \,(-\beta \,\mathbf{D}_{x} - \gamma \mathbf{G} - a_{H} \,\mathbf{G}^{2})\} \,\Psi_{t}^{I} \\ + \Delta \,\tilde{\mathbf{G}} \,(-\mathcal{J} + \frac{1}{\rho H} \,\mathcal{C}(\mathbf{U}_{t}, \mathbf{V}_{t})) + \mathbf{B} \Psi_{t+1}^{B}$$

where: Ψ_t^I - vectorization of interior streamfunction; Ψ_t^B - boundary streamfunction values; Δ - time step; **G** - discretized 2-d Laplacian; \mathcal{J} - discretized Jacobian; $\mathcal{C}(\mathbf{U}_t, \mathbf{V}_t)$ - discretized wind stress curl; $\tilde{\mathbf{G}} = (\mathbf{G} - r^{-2}\mathbf{I})^{-1}$

$$\Psi_{t+1} = \mathbf{P}(\mathbf{L}) \Psi_t - j \tilde{\mathbf{G}} \mathcal{J} + c \tilde{\mathbf{G}} \mathcal{C}(\mathbf{U}_t, \mathbf{V}_t) + b \mathbf{B} \Psi_{t+1}^B + \mathbf{e}_{t+1},$$

where

 $\mathbf{e}_{t+1} \sim N(\mathbf{0}, \boldsymbol{\Sigma}_e),$

and

$$\mathbf{P}(\mathbf{L}) = l_1 \mathbf{I} + l_2 \tilde{\mathbf{G}} \mathbf{D}_x + l_3 \tilde{G} \mathbf{G}^2.$$

Critically: $\mathbf{L} = (l_1, l_2, l_3)'$ and (j, c, b) are random parameters with prior means are suggested by the deterministic model, but they can be informed by the data! For example:

Prior mean of $l_1: 1 - \gamma$

Also, we have hierarchical boundary conditions (e.g., Wikle, Berliner, Milliff, 2003): $[\Psi_I, \Psi_B] = [\Psi_I | \Psi_B] [\Psi_B]$

• Atmospheric Process: Stochastic Geostrophy (Royle et al. 1999)

$$\begin{split} \mathbf{U}_{t}, \mathbf{V}_{t} | \mathbf{P}_{t}, \boldsymbol{\theta}_{w} &\sim N(\mathbf{K}(\boldsymbol{\theta}_{w})\mathbf{P}_{t}, \boldsymbol{\Sigma}_{w}) \\ \mathbf{P}_{t} &\sim N(\boldsymbol{\mu}_{p}, \boldsymbol{\Sigma}_{p}) \quad \text{(hidden process!)} \\ \boldsymbol{\theta}_{w} &\sim N(\boldsymbol{\mu}_{\theta}, \boldsymbol{\Sigma}_{\theta}) \end{split}$$

- Data Models:
 - Scatterometer:

$$\begin{pmatrix} \mathbf{D}_{u}^{t} \\ \mathbf{D}_{u}^{t} \end{pmatrix} = \mathbf{K}_{w}^{t} \begin{pmatrix} \mathbf{U}^{t} \\ \mathbf{V}^{t} \end{pmatrix} + \boldsymbol{\epsilon}_{w}^{t},$$

– Altimetry:

 $\mathbf{D}_{\Psi}^{t} = \mathbf{K}_{o}^{t} \boldsymbol{\Psi}^{t} + \boldsymbol{\epsilon}_{o}^{t},$

Posterior Computation

For ease of notation, let $\mathbf{u} = {\mathbf{U}^t : t \in \mathcal{T}}, \mathbf{v} = {\mathbf{V}^t : t \in \mathcal{T}}, \boldsymbol{\psi} = {\boldsymbol{\Psi}^t : t \in \mathcal{T}}$

Posterior:

$$\begin{split} [\mathbf{u}, \mathbf{v}, \boldsymbol{\Psi}, \theta_w, \theta_\psi, \eta_w, \eta_\psi | D_\psi, D_w] &\propto & [D_\psi | \boldsymbol{\psi}, \theta_\psi] \\ & \Pi[\boldsymbol{\Psi}_{t+1} | \boldsymbol{\Psi}_t, \mathbf{u}, \mathbf{v}, \eta_\psi] [\Psi_1 | \mathbf{u}, \mathbf{v}, \eta_\psi] [\eta_\psi, \theta_\psi] \\ & [\mathbf{u}, \mathbf{v}, \theta_w, \eta_w | D_w]. \end{split}$$

Since the proportionality constant intractable we use a **combination MCMC- Importance Sampling MC (ISMC) approach**.

- MCMC Atmospheric Model: $[\mathbf{u}, \mathbf{v}, \theta_w, \eta_w | D_w]$
- Use MCMC samples, and samples from prior dist. on parameters to get MC samples for streamfunction: Π[Ψ^{t+1}|Ψ^t, u, v, η_ψ][Ψ¹|u, v, η_ψ][η_ψ, θ_ψ]
- Use Importance Sampling with weights proportional to $[D_\psi | \boldsymbol{\psi}, \theta_\psi]$

RESULTS: Testbed Initial Conditions

RESULTS: Simulated Data

RESULTS: Comparison Between Truth and Posterior Mean

-2 0 2

RESULTS: Difference Between Truth and Posterior Mean

-2 0 2

RESULTS: Posterior Distributions of Parameters

RESULTS: Posterior Distribution of Kinetic Energy

Time (Day)

Time (Day)

3

Density (alt) Density (no alt) PE/SWE Truth

Bayesian Stochastic Parameterization in Regional Climate Models

Joint work with Yong Song (UMC-Stat), Chris Anderson (NOAA, ESRL)

Stochastic Convective Initiation in MM5

Kain-Fritsch (KF) Trigger Function:

 $(T_{i,LCL} + \alpha_i) - T_{i,ENV} > 0 \longrightarrow$ convective initiation

where for the *i*-th horizontal grid box,

- $T_{i,LCL}$ parcel temperature at lifted condensation level (LCL)
- $T_{i,ENV}$ ambient environmental temperature
- $\alpha_i = 4.64 \bar{w}_i^{1/3}$, where \bar{w}_i is the average vertical velocity in the i-th column

Assume that convective initiation follows an independent Bernoulli process in each (horizontal) grid box:

$$y_i = \begin{cases} 1, & \text{if convection initiates} \\ 0, & \text{otherwise} \end{cases}$$

$$p(y_i = 1) = p_i$$
 $p(y_i = 0) = 1 - p_i$

where

$$p_i = \Phi(\theta_0 + \theta_1 T_{i,LCL} + \theta_2 \bar{w}_i^{\theta_3} - \theta_4 T_{i,ENV}),$$

where Φ is the standard normal cumulative distribution function (i.e., probit), and θ are random parameters:

$$\theta_k \sim N(\mu_k, \sigma_k^2), \quad k = 0, \dots, 4$$

where $\mu = (-2, 1, 4.64, 1/3, 1)'$ (based on climatology and original KF), with σ_k^2 chosen to give fairly vague prior distributions.

- $\mathbf{z}_p = (z_p(s_1), \dots, z_p(s_n))'$ observed cumulative "precipitation" (normalized) over domain of interest with *n* gridboxes.
- $\mathbf{x} = (x(s_1), \dots, x(s_n))'$ true (model) cumulative precipitation (normalized) at *n* gridboxes.

Interest in Posterior Distribution:

 $[\mathbf{x}, oldsymbol{ heta} | \mathbf{z}_p] \propto [\mathbf{z}_p | \mathbf{x}] [\mathbf{x} | oldsymbol{ heta}] [oldsymbol{ heta}]$

We can't evaluate this posterior analytically, nor can we do MCMC due to the complicated non-linear dependencies and high-dimensionality.

Use Importance Sampling Monte Carlo (ISMC)

Interest in $f(\boldsymbol{\theta}, \mathbf{x})$

Note:

•

$$E(f(\boldsymbol{\theta}, \mathbf{x})|\mathbf{z}_p) = \int f(\boldsymbol{\theta}, \mathbf{x}) p(\mathbf{x}, \boldsymbol{\theta}|\mathbf{z}_p) d\boldsymbol{\theta} d\mathbf{x}$$

Monte Carlo Estimate:

Sample
$$\boldsymbol{\theta}^{j}, \mathbf{x}^{j}, j = 1, ..., N$$
 from $p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{z}_{p})$, then
 $\hat{E}_{N}(f(\boldsymbol{\theta}, \mathbf{x}) | \mathbf{z}_{p}) = (1/N) \sum_{j=1}^{N} f(\boldsymbol{\theta}^{j}, \mathbf{x}^{j})$

In our example, we can't sample from this distribution!

Sample from proposal distribution: $q(\mathbf{x}, \boldsymbol{\theta} | \mathbf{Z}_p)$, then

$$\begin{split} E(f(\boldsymbol{\theta}, \mathbf{x}) | \mathbf{z}_p) \ &= \ \int f(\boldsymbol{\theta}, \mathbf{x}) \frac{p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{z})}{q(\mathbf{x}, \boldsymbol{\theta} | \mathbf{z})} q(\mathbf{x}, \boldsymbol{\theta} | \mathbf{z}_p) d\boldsymbol{\theta} d\mathbf{x} \\ &= \ \int f(\boldsymbol{\theta}, \mathbf{x}) \ w \ q(\mathbf{x}, \boldsymbol{\theta} | \mathbf{z}_p) d\boldsymbol{\theta} d\mathbf{x}, \end{split}$$

where unnormalized importance weights are:

 $w = p(\mathbf{x}, \boldsymbol{\theta} | \mathbf{z}_p) / q(\mathbf{x}, \boldsymbol{\theta} | \mathbf{z}_p)$

Taking samples \mathbf{x}^{j} , $\boldsymbol{\theta}^{j}$ from the proposal, the ISMC estimate is $\hat{E}_{N}(f(\mathbf{x}, \boldsymbol{\theta}) | \mathbf{z}_{p}) = \frac{1}{N} \sum_{j=1}^{N} \tilde{w}_{j} f(\mathbf{x}^{j}, \boldsymbol{\theta}^{j}),$

where normalized ISMC weights are:

$$\tilde{w}_j \equiv \frac{w_j}{\sum_{k=1}^N w_k}$$

Analogous to particle filtering, We choose proposal distribution:

 $q(\boldsymbol{\theta}, \mathbf{x} | \mathbf{z}_p) = p(\mathbf{x}, \boldsymbol{\theta}) = m(\mathbf{x} | \boldsymbol{\theta}) p(\boldsymbol{\theta})$

- Sample θ^{j} , j = 1, ..., N from prior $p(\theta)$
- Obtain samples \mathbf{x}^{j} by running MM5 with parameters $\boldsymbol{\theta}^{j}$
- Unnormalized ISMC weights are given by data model: $w_j = p(\mathbf{z}_p | \mathbf{x}^j)$ In our stochastic model, data model is:

$$w_j \propto \exp\{-\frac{1}{2\tau}tr\{(\mathbf{Z}_p - \mathbf{X}_j\mathbf{Q}_j)'(\mathbf{Z}_p - \mathbf{X}_j\mathbf{Q}_j)\}\}$$

where

- $-\mathbf{Z}_p, \mathbf{X}_j$ are matrix forms of $\mathbf{z}_p, \mathbf{x}^j$
- $-Q_j$ is the Procrustes transformation matrix

Posterior Distributions and Implementation

With ISMC weights, we can obtain estimates of moments of the posterior distribution of $\boldsymbol{\theta}$ and \mathbf{x} : e.g., $\hat{E}(\theta_i | \mathbf{z}_p) = \frac{1}{N} \sum_{j=1}^N \tilde{w}_j \theta_i^j$

Or, we can use kernel density estimation to approximate the posteriors: e.g.,

$$p(\theta_i | \mathbf{z}_p) \approx \frac{1}{N} \sum_{j=1}^N \tilde{w}_j k(\theta_i^j, \gamma)$$

where $k(\theta_i^j, \gamma)$ is a kernel function centered at θ_i^j with kernel bandwidth γ .

Two approaches for utilizing these posteriors:

- brute force: Run model many times, one for each sample $\theta^k \sim [\theta | \mathbf{z}_p]$ (measures of uncertainty/ expensive)
- time step: Sample θ^k from posterior at each time step in a single model run. (no measure of uncertainty/ cheap)

MM5:

- Initialization: IHOP (International H2O Project), May 15, 2002
- Centered on Goodland, KS
- Domain: 70×70 (10-km resolution)
- Vertical: 38 sigma levels
- 4 hour run, 40 s time steps
- Simple moisture scheme

Radar Data: NWS Goodland, KS

Prior and Posterior Parameter Distributions

Radar, Posterior Mean, Simulation, Original Model

05/15/02 Posterior Mean of Cumulative Precipitation

05/15/02 Original Model output of Cumulative Precipitation

Forecast ("Hindcast") Example

05/15/02 Unmodified KF

- The hierarchical Bayesian paradigm is ideal for managing uncertainty in data, process and parameters.
- Over the last 5-10 years we have demonstrated that, in the presence of data, HBM can be an effective approach for accounting for statistical parameterization in dynamical models.
- We are just now being able to apply this methodology to "realistic" problems in the atmospheric (and other) sciences.
- Much work needs to be done with regards to:
 - extensions to 4-d domains
 - multivariate systems
 - parallelization
 - Importance Sampling degeneracy problem
- The future of HBM is bright!