
Bayesian Hierarchical Parameterizations

Christopher K. Wikle
Department of Statistics

University of Missouri-Columbia

IMAGE TOY2006 Workshop III: February 28, 2006

1



Outline of Talk

• Bayesian Hierarchical Models (BHMs)

• BHM Parameterizations with Qualitative Dynamics

– Application: Long Lead Prediction: SST
– Application: Nowcasting Radar Reflectivities

• BHM Parameterizations in Coupled Systems

– Application: Air/Sea Experiment

• BHM Parameterizations in Regional Climate Models

– Application: Stochastic Trigger Function in Climate Model
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Bayesian Hierarchical Modeling: Think Conditionally!!

Data → D Process → U Parameters → θ

• Data Model(s): [D | U, θ ]

Simpler dependence structures through conditioning. e.g.,

[Da, Db|U, θ] = [Da|U, θ][Db|U, θ]

• Process Model(s): [U | θ ]

Can build-up complicated dependence by conditional models. e.g.,

[U2, U1|θ] = [U2|U1, θ][U1|θ]

Incorporate science!! (e.g., PDEs)

• Parameter Model(s): [ θ ] Further conditioning; Incorporate science

Bayes:
[U, θ|D] ∝ [D|U, θ][U |θ][θ]
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BHM Parameterizations for Qualitative Dynamics

Process Model: (linear in Y )

Yt = Mt(θ)Yt−1 (+ηt)

Efficient Parameterization when Mt is unknown:

• Dimension reduction in the state process, Yt = Φat + νt

• Low-dimensional parameterization of Mt

Examples:

• Long Lead Prediction of Pacific SST

• Nowcasting Weather Radar Reflectivities
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Application: Long Lead Prediction of SST

Goal: Predict Pacific SST anomalies (2◦× 2◦ resolution) 7 months in advance while
realistically accounting for uncertainty. [Berliner,Wikle, Cressie, 2000, J. Climate]

Consider data {Z(si; t)} to be anomalies from monthly means.

Want to predict Z(s0;T + τ ); for τ = 7 months, from space-time data
D(T ) ≡ {ZT ,ZT−1, . . . ,Z1}.
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Data Model

Dimension Reduction:

Zt = Φat + νt,

where

• νt ∼ Gau(0,Σν); measurement error and small-scale spatial vari-
ability that is uncorrelated in time (includes information related to
the ”unresolved” modes in Σν).

• Φ; truncated empirical orthogonal function basis set (not optimal
in the dynamical context, but historical precedent), obtained from
SVD of Z ≡ (Z1, . . . ,ZT ) .
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Process Model

at+τ = µt + Mtat + ηt+τ ,

where, ηt ∼ Gau(0,Ση) for all t.
Critical modeling assumption: Let Mt and µt be dependent on both
the current and future climate regimes:

Mt = M(It, Jt)

µt = µ(It, Jt),

where,

• It - classifies the current regime as “warm” (2), “normal” (1), or
“cold” (0)

• Jt - anticipates a transition to one of the three regimes at time t+ τ
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Climate States

Current, It: [Threshold Model, e.g., Tong 1990]

It = 0, if SOIt > low threshold
= 1, if otherwise
= 2, if SOIt < upper threshold,

where SOIt is the Southern Oscillation Index (assumed “known”).

Future, Jt: [Latent (hidden) Process Model]

Jt = 0, if Wt > low threshold
= 1, if otherwise
= 2, if Wt < upper threshold,

whereWt is a latent process which anticipates the future climate regime.
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Latent Process to Assess “Future”

Wt|βw, σ2
w ∼ Gau(x′tβw, σ

2
w)

where,

xt = (1, Ut, Utsin(
2πmt

12
), Utcos(

2πmt

12
), U 2

t )
′,

where

• Ut - the lowpass filtered E-W component of the wind at 10 meters
above the surface at 5◦ N and 157◦ E. (This is absolutely critical!)

• mt - index of month (0 - 11) at time t
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Priors on Model Parameters

At next stage of hierarchy:

βw ∼ Gau(β̂SOI, cβvar(β̂SOI)),
σ2
w ∼ IG(q, r)

where the mean and variance and IG (“Inverse Gamma”) parameters
are obtained from fitting

SOIt+τ = x′tβSOI + et

(gives R2 ≈ .7 !)

• vec(Hj), j = 1, 2, 3 - Multivariate Normal distributions

• µj, j = 1, 2, 3 - Multivariate Normal distributions

• Covariance matrices - Wishart distributions

(“Empirical Bayes” priors)
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Results: Niño 3.4 Prediction of 10/97 from 3/97
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Results: Posterior Predictions for 10/97
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Results: Posterior Predictions for 10/98
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Operational Forecasts Generated Each Month:

Spatial Statistics and Environmental Sciences (SSES) program at
Ohio State University

http://www.stat.ohio-state.edu/˜sses/collab_enso.php
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Application: Radar Nowcasting

Short-term forecast (nowcast) of radar reflectivities based on recent past.
(Xu, Wikle, and Fox, 2005; J. Amer. Stat. Assoc.)
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Parameterization of Process Model

Model Assumption: linear at short time scales; spatially explicit

Ideally, would like to estimate the propagator matrix M in:

Yt+1 = MYt + ηt+1

where Yt is n-dimensional and t = 1, . . . , T corresponds to the data
periods.

In principle, this is easy. In practice, it is NOT (Large n, small T
problem )!
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Integro Difference Equation (IDE) Parameterization

Consider the linear IDE model:

Yt+1(s) = γ
∫
ks(r; θs)Yt(r)dr

The key to modeling dynamical processes is ks(r; θs), the redistribu-
tion kernel.

• Has been shown to model diffusive wave fronts (e.g., Kot et al.
1996); shape and speed of diffusion depends on kernel width and
tail behavior (dilation)

• Can also model non-diffusive propagation via the relative displace-
ment of kernel (translation) (Wikle, 2001; 2002)
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Kernel Properties and Dynamics

NOTE: If dilation and translation parameters are allowed to vary with
space, then complicated (advection/diffusion) dynamics can be mod-
eled with relatively few parameters.
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IDE Process: Spectral Representation

Stochastic IDE:

Yt+1(s) = γ
∫
ks(r; θs)Yt(r)dr + η̃t(s), η̃t ∼ N(0,Ση̃)

Consider the spectral expansion of the kernel and process in terms of orthonormal
spectral basis functions, φj(s):

ks(r; θs) =
∑
j
bj(s; θs)φj(r)

Yt(s) =
∑
j
aj(t)φj(s)

Substituting these into the IDE for spatial locations s1, . . . , sn leads to a spectral
representation of the model:

at+1 = γΦ′B′
θat + ηt+1, ηt ∼ N(0,Ση)

where [Φ]ij = φj(si), [Bθ]kl = bk(sl;θsl), and Ση = Φ′Ση̃Φ.

19



Comments on Hierarchical Parameterization

Let φi(s) be Fourier basis functions.

The kernel spectral coefficients, bj(s;θs) are then known if the kernel
is a pdf since the Fourier transform of the pdf kernel is its characteristic
function. (Can lead to dimension reduction)

Thus, Bθ is completely defined if we know the kernel translation and
dilation parameters (θs).

Critically, the kernel parameters are assumed to be spatially-varying,
and are assigned spatial random field priors at the next level of the
hierarchy.
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Example Posterior Mean: Kernel Translation (Implied Propagation)
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Nowcast Results: Data, Posterior Mean, Samples
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Uncertainty Characterization: Posterior Standard Deviation
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Example: Bayesian Hierarchical Modeling of Air-Sea Interaction

(Berliner, Milliff, Wikle, 2003: Journal of Geophysical Research:
Oceans)

• Couple models of interacting spatio-temporal processes (atmosphere
and ocean)

– Hierarchical coupling of complicated systems; each of which is
also modeled hierarchically

– Use approximate dynamics; physical-statistical models

• Incorporate diverse datasets

• Include stochastic elements to adjust for model uncertainty, un-
modeled components, etc.

• Quantify uncertainty in each phase
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Stochastically Coupled Air/Sea Model

Data

* Da Atmospheric data (scatterometer)
* Do Ocean data (altimeter)

HBM Skeleton

1. [Da, Do|Atm,Ocean, θa, θo]
2. [Atm,Ocean|ηa, ηo|a]
3. [θa, θo, ηa, ηo|a]

Parameters

θa, θo, ηa, ηo|a
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BHM Keys

1. [Da, Do|Atm,Ocean, θa, θo] = [Da|Atm, θa][Do|Ocean, θo]

2. [Atm,Ocean|ηa, ηo|a] = [Ocean|Atm, ηo|a][Atm|ηa]

• Atm & Ocean data are conditionally independent

• Parameterized air-sea model is stochastic atmospheric model
coupled to stochastic Ocean-given-Atmospheric model

* Posterior: [Atm,Ocean, ηa, ηo|a|Da, Do]

“Full” coupling of Atmosphere and Ocean
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Observation Simulation System Experiment (OSSE)

• Ocean truth simulation driven by idealized wind fields

– primitive equation, shallow water approximation (Milliff and
McWilliams, 1994) [This is more complicated than the PDE
prior we will use!]

• 10-day forcing with intense idealized atmospheric cyclone (emu-
lating polar low)

• Sample winds (scatterometer sampling) and altimetry (e.g., TOPEX)
corrupted with noise

• Compare BHM based on simple ocean and atmosphere models and
sparsely sampled, corrupted data to shallow-water truth
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Wind Driven Ocean Process Model

Prior Based on “Simple” Physics: Quasigeostrophy (Ψ - streamfunction)

(∇2 − 1

r2
)
∂ψ

∂t
= −J(ψ,∇2ψ)− β

∂ψ

∂x

+
1

ρH
curlzτ − γ∇2ψ − aH∇4ψ

where J is the Jacobian, τ the wind-stress, and r, β, ρ, H , γ, aH are parameters.
Using traditional finite difference approximations to time- and space-derivatives:

ΨI
t+1 = {I + ∆ G̃ (−βDx − γG− aH G2)}ΨI

t

+ ∆ G̃ (−J +
1

ρH
C(Ut,Vt)) + BΨB

t+1

where: ΨI
t - vectorization of interior streamfunction; ΨB

t - boundary streamfunction values; ∆- time
step; G - discretized 2-d Laplacian; J - discretized Jacobian; C(Ut,Vt)- discretized wind stress curl;
G̃ = (G− r−2I)−1
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Stochastic Streamfunction Model

Ψt+1 = P(L)Ψt − j G̃J + c G̃ C(Ut,Vt)

+ bBΨB
t+1 + et+1,

where
et+1 ∼ N(0,Σe),

and
P(L) = l1I + l2G̃Dx + l3G̃G2.

Critically: L = (l1, l2, l3)
′ and (j, c, b) are random parameters with

prior means are suggested by the deterministic model, but they can be
informed by the data! For example:

Prior mean of l1: 1− γ
Also, we have hierarchical boundary conditions (e.g., Wikle, Berliner,
Milliff, 2003): [ΨI,ΨB] = [ΨI|ΨB][ΨB]
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Atmospheric Process/Parameter Models/Data Models

• Atmospheric Process: Stochastic Geostrophy (Royle et al. 1999)

Ut,Vt|Pt,θw ∼ N(K(θw)Pt,Σw)

Pt ∼ N(µp,Σp) (hidden process!)
θw ∼ N(µθ,Σθ)

• Data Models:
– Scatterometer:  Dt

u

Dt
u

 = Kt
w

 Ut

Vt

 + εtw,

– Altimetry:
Dt

Ψ = Kt
oΨ

t + εto,
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Posterior Computation

For ease of notation, let
u = {Ut : t ∈ T }, v = {Vt : t ∈ T }, ψ = {Ψt : t ∈ T }

Posterior:

[u,v,Ψ, θw, θψ, ηw, ηψ|Dψ, Dw] ∝ [Dψ|ψ, θψ]∏
[Ψt+1|Ψt,u,v, ηψ][Ψ1|u,v, ηψ][ηψ, θψ]

[u,v, θw, ηw|Dw].

Since the proportionality constant intractable we use a combination MCMC- Im-
portance Sampling MC (ISMC) approach.

• MCMC Atmospheric Model: [u,v, θw, ηw|Dw]

• Use MCMC samples, and samples from prior dist. on parameters to get MC
samples for streamfunction: ∏

[Ψt+1|Ψt,u,v, ηψ][Ψ1|u,v, ηψ][ηψ, θψ]

• Use Importance Sampling with weights proportional to [Dψ|ψ, θψ]
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RESULTS: Testbed Initial Conditions
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RESULTS: Simulated Data
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RESULTS: Comparison Between Truth and Posterior Mean
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RESULTS: Difference Between Truth and Posterior Mean
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RESULTS: Posterior Distributions of Parameters
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RESULTS: Posterior Distribution of Kinetic Energy
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Bayesian Stochastic Parameterization in Regional Climate Models

Joint work with Yong Song (UMC-Stat), Chris Anderson (NOAA, ESRL)

Stochastic Convective Initiation in MM5

Kain-Fritsch (KF) Trigger Function:

(Ti,LCL + αi)− Ti,ENV > 0 −→ convective initiation

where for the i-th horizontal grid box,

• Ti,LCL - parcel temperature at lifted condensation level (LCL)

• Ti,ENV - ambient environmental temperature

• αi = 4.64w̄
1/3
i , where w̄i is the average vertical velocity in the i-th

column

38



Stochastic Trigger Function

Assume that convective initiation follows an independent Bernoulli
process in each (horizontal) grid box:

yi =


1, if convection initiates
0, otherwise

p(yi = 1) = pi p(yi = 0) = 1− pi

where
pi = Φ(θ0 + θ1Ti,LCL + θ2w̄

θ3
i − θ4Ti,ENV ),

where Φ is the standard normal cumulative distribution function (i.e.,
probit), and θ are random parameters:

θk ∼ N(µk, σ
2
k), k = 0, . . . , 4

where µ = (−2, 1, 4.64, 1/3, 1)′ (based on climatology and original
KF), with σ2

k chosen to give fairly vague prior distributions.
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Bayesian Estimation

• zp = (zp(s1), . . . , zp(sn))
′ - observed cumulative “precipitation”

(normalized) over domain of interest with n gridboxes.

• x = (x(s1), . . . , x(sn))
′ - true (model) cumulative precipitation

(normalized) at n gridboxes.

Interest in Posterior Distribution:

[x,θ|zp] ∝ [zp|x][x|θ][θ]

We can’t evaluate this posterior analytically, nor can we do MCMC
due to the complicated non-linear dependencies and high-dimensionality.

Use Importance Sampling Monte Carlo (ISMC)
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Monte Carlo

Interest in f (θ,x)

Note:
E(f (θ,x)|zp) =

∫
f (θ,x)p(x,θ|zp)dθdx

Monte Carlo Estimate:

Sample θj, xj, j = 1, . . . , N from p(x,θ|zp), then

ÊN(f (θ,x)|zp) = (1/N)
N∑
j=1

f (θj,xj)

.
In our example, we can’t sample from this distribution!
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Importance Sampling Monte Carlo

Sample from proposal distribution: q(x,θ|Zp), then

E(f (θ,x)|zp) =
∫
f (θ,x)

p(x,θ|z)

q(x,θ|z)
q(x,θ|zp)dθdx

=
∫
f (θ,x) w q(x,θ|zp)dθdx,

where unnormalized importance weights are:

w = p(x,θ|zp)/q(x,θ|zp)

Taking samples xj, θj from the proposal, the ISMC estimate is

ÊN(f (x,θ)|zp) =
1

N

N∑
j=1

w̃jf (xj,θj),

where normalized ISMC weights are:

w̃j ≡
wj∑N

k=1wk
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ISMC for Stochastic Parameterization

Analogous to particle filtering, We choose proposal distribution:

q(θ,x|zp) = p(x,θ) = m(x|θ)p(θ)

• Sample θj, j = 1, . . . , N from prior p(θ)

• Obtain samples xj by running MM5 with parameters θj

• Unnormalized ISMC weights are given by data model: wj = p(zp|xj)

In our stochastic model, data model is:

wj ∝ exp{− 1

2τ
tr{(Zp −XjQj)

′(Zp −XjQj)}}

where

– Zp, Xj are matrix forms of zp, xj

– Qj is the Procrustes transformation matrix
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Posterior Distributions and Implementation

With ISMC weights, we can obtain estimates of moments of the pos-
terior distribution of θ and x: e.g., Ê(θi|zp) = 1

N
∑N
j=1 w̃jθ

j
i

Or, we can use kernel density estimation to approximate the posteriors:
e.g.,

p(θi|zp) ≈
1

N

N∑
j=1

w̃jk(θji , γ)

where k(θji , γ) is a kernel function centered at θji with kernel band-
width γ.

Two approaches for utilizing these posteriors:

• brute force: Run model many times, one for each sample θk ∼
[θ|zp] (measures of uncertainty/ expensive)

• time step: Sample θk from posterior at each time step in a single
model run. (no measure of uncertainty/ cheap)
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Experiment

MM5:

• Initialization: IHOP (International H2O Project), May 15, 2002

• Centered on Goodland, KS

• Domain: 70× 70 (10-km resolution)

• Vertical: 38 sigma levels

• 4 hour run, 40 s time steps

• Simple moisture scheme

Radar Data: NWS Goodland, KS
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Prior and Posterior Parameter Distributions
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Radar, Posterior Mean, Simulation, Original Model
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Forecast (“Hindcast”) Example
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Conclusion

• The hierarchical Bayesian paradigm is ideal for managing uncer-
tainty in data, process and parameters.

• Over the last 5-10 years we have demonstrated that, in the pres-
ence of data, HBM can be an effective approach for accounting for
statistical parameterization in dynamical models.

• We are just now being able to apply this methodology to “realistic”
problems in the atmospheric (and other) sciences.

• Much work needs to be done with regards to:

– extensions to 4-d domains
– multivariate systems
– parallelization
– Importance Sampling degeneracy problem

• The future of HBM is bright!
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