
ENSO Irregularity

The detailed character of this can be seen in

a Hovmoller diagram of SST and zonal wind-

stress anomalies as seen in Figure 1.

Gross large scale indices of ENSO exist back

to the second half of last century. These may



be used to analyze the spectral characteristics

of the phenomenon. Depicted in Figure 2 are

three independent ENSO indices: The South-

ern Oscillation Index (SOI), a measure of the

zonal gradient in sea level pressure in the trop-

ical Paci�c; eastern equatorial SST anomaly

and �nally central equatorial rainfall anomaly.

Correlation between these indices shown in Fig-

ure 3 are of order 0.6 − 0.8 and do not vary



greatly between the �rst and second halves

of the record suggesting that they are reliable

over the entire period not just the more recent

and better observed epoch.

The SST index is somewhat smoother than the



others but clearly displays marked irregularity

which any complete theory of ENSO must seek

to explain. Notice that there are decades such

as the 1980s when strong quasi-periodic oscil-

lations exist while other decades such as the

1930s show a weak quite irregular �uctuation.

The spectral density functions for the three

indices are displayed in Figure 4 and there is

remarkable general agreement. A quite broad

peak exists for periods of order 4 years with

a marked decline towards higher frequencies

which is reminiscent of a red noise process.

The robustness of the spectral characteristics

is particularly useful from the viewpoint of test-

ing ideas for the mechanism of irregularity.



The original success of the Cane and Zebiak

model meant that its behavior has been sub-

ject to much scrutiny. This model exhibited

irregularity whose spectrum bore some resem-

blance to that of Figure 3. Attempts to repro-

duce this in other models with a steady state

atmosphere (so-called intermediate and hybrid

coupled models) proved quite di�cult. Neelin

in the early 1990s was able to achieve an ir-

regular oscillation which had a chaotic origin.

Analysis revealed that the interference between

the annual cycle of the model and the delayed

action oscillator was responsible for the chaos.



The spectrum of these oscillations however did

not show much correspondence with Figure 4

(it had strong spectral peaks at all multiples of

the annual cycle) and moreover Neelin demon-

strated as seen in Figure 5 that his model

needed to be quite selectively tuned to achieve

the chaos.

This lack of success motivated myself and a

number of others to consider an alternative hy-

pothesis for the irregularity in the early 1990s.



Stochastic Scenario for
ENSO Irregularity

An important aspect of atmospheric variability

which is absent from intermediate and hybrid

coupled models is that generated by internal

(primarily non-coupled) instabilities. One im-

portant source of such instability is deep moist

convection and phenomena such as the MJO

and easterly waves result. Other mechanisms

such as barotropic and baroclinic instabilities

are also undoubtedly responsible for the gen-

eration of a large amount of tropical �weather�

which is completely unrelated to ENSO. Exam-

ination of daily time series of equatorial wind-

stress shows that there is an enormous amount

of variability which can at times mask the low

frequency changes associated with coupled ocean-

atmosphere dynamics. This suggests intuitively

that ENSO irregularity may be caused by the

e�ects of these atmospheric transients. Since



the decorrelation time for this variability is of

order days it is useful to consider their ef-

fects as stochastic forcing of the low frequency

coupled climate system. This viewpoint has

proved particularly productive in the past ten

years and is widely considered a likely cause of

ENSO irregularity. Such a view clearly has im-

portant implications obviously for ENSO pre-

diction as well since the �stochastic transients�

just discussed are unpredictable on climate time

scales.

We now outline a mathematical framework for

analyzing this scenario. It involves multi-dimensional

linear stochastic di�erential equations (SDEs).

Consider a time discretization of a vector SDE

uµ+1 = R(µ + 1, µ)uµ + ∆tfµ (1)

where u is a vector in the sense that it may rep-

resent spatial variation and also many physical



variables. Time indices are denoted by Greek

subscripts. The operator R is the so-called

propagator which shifts a state vector forward

in time and �nally f is a stochastic forcing term

whose statistics are assumed to satisfy〈
fjλ

〉
= 0 (2)〈

fiµfjν

〉
= C

µν
ij

where we are using Latin subscripts to denote

the vector indices. If we iterate equation (1)

from some initial time µ = 0 then we obtain

uµ = R(µ,0)u0 + ∆t
µ−1∑
λ=0

R(µ, λ + 1)fλ (3)

If we now further assume for simplicity that the

noise is white in time (a reasonable assumption

for our purposes) then we may write〈
fiµfjν

〉
=

1

∆t
δµνCij



From equation (3) we may now easily write

down expressions for the �rst and second mo-

ments (mean and covariance) of uµ

〈uµ〉 = R(µ,0)u0

〈uµ, uµ〉 = ∆t
µ−1∑
λ=0

R(µ, λ + 1)CR∗(µ, λ + 1)

where the star denotes the transpose or ad-

joint operator. Taking the continuous limit we

obtain

〈u(t)〉 = R(t,0)u(0)

〈u(t), u(t)〉 =
∫ t

0
R(t, t

′
)CR∗(t, t

′
)dt

′

Let us now consider the variance with respect

to some index (e.g. average eastern equatorial

SST )

V ar(t) = Xij

〈
ui(t), uj(t)

〉



where we are assuming the summation conven-

tion for repeated latin indices and Xij can be

considered the �metric� matrix. It is now easy

to show that

V ar(t) = trace {ZC}

Z ≡
∫ t

0
R∗(t, t

′
)XR(t, t

′
)dt

′

Note that we have completed separated the

stochastic forcing represented by the covari-

ance matrix C from the dynamics represented

by the operator Z. It is easy to show that both

these operators are positive (and hence Hermi-

tian) and therefore have positive eigenvalues.

We can therefore write

trace {ZC} =
∑
n,m

pnqm (Pn, Qm)2

where the lower case p and q are the eigenval-

ues of respectively Z and C while the upper



case P and Q are the corresponding eigenvec-

tors. The inner product squared here can be

interpreted as vector projection. Thus if the

eigenvectors of the noise forcing covariance

matrix project onto the dynamical eigenvectors

(we call these stochastic optimals) then there

will be signi�cant variance (or uncertainty) growth

in our index of interest. Obviously if the noise

eigenvectors (often called EOFs) resemble the

stochastic optimals with largest eigenvalues then

maximal variance growth will occur. We have

therefore a very convenient framework for an-

alyzing the susceptibility of dynamical systems

to disruption by noise.

The spectrum (and eigenvectors) of Z has been

evaluated for ENSO intermediate and hybrid

models and is always highly peaked with most

of the variance growth being caused by the

�rst two eigenvectors (i.e. the p1 and p2 val-

ues are much greater than the others). These



stochastic optimals are therefore crucial for

whether large variance growth can occur. Fig-

ure 6 shows the spatial patterns of heat and

momentum �ux associated with these optimals.

Patterns of forcing such as this within the cou-

pled model quickly grow into SST and wind-

stress disturbances resembling the so-called west-

erly wind burst as is seen in Figure 7:



This signature of a disturbance often associ-

ated with the Madden Julian Oscillation sug-

gests that this large scale pattern of internal

atmospheric variability may be favourably con-

�gured to disrupt the ENSO dynamical system.

It also says that only noise with large scale spa-

tial coherency will be e�ective at disruption.

If the ENSO intermediate model above is forced

by white noise with the spatial coherency of



the stochastic optimals then an irregular os-

cillation is induced. Figure 8 shows the result

of such forcing on the intermediate coupled

model with such noise.

Without the noise a perfectly regular decay-

ing oscillation is observed. The dots show De-

cember of each year showing that the observed

seasonal synchronization is also achieved. This

irregular oscillation shows a clear resemblance

to the observed pattern in Figure 2 and the

spectrum displayed in Figure 9 is qualitatively

the same as the observed spectrum in Figure

4.



This irregular behavior is particularly robust

(one can vary the amplitude of the forcing by

some orders of magnitude without e�ect) and

has now been seen by many other investiga-

tors using a range of di�erent models. The

variance growth curves predicted by this theory

are also those observed in physically complete

coupled models (CGCMs) which have inbuilt

atmospheric transients as part of their atmo-

spheric components.

The implications for predictability of ENSO of

this paradigm are also very interesting. It turns



out that the maximal skill to be expected de-

pends on the degree of instability of the low

frequency system (i.e. how slowly oscillations

without noise decay). The greater the insta-

bility the better the skill, a rather counter-

intuitive result! The consequences for prac-

tical predictability are also potentially rather

important.

In Figure 10 is a series of forecasts on the

1997-98 monster warm event seperated by one



month. In March a very large westerly wind

burst was observed in the western Paci�c. This

may be the cause of the sharp increase in the

magnitude of forecasts.

Some Recent Coupled GCM Results

Such models generally have problems in simu-

lating one of either the mean state; the sea-

sonal cycle or realistic interannual variability.

This often makes analysis of the above theo-

retical ideas problematical. Recently Lengaigne

et. al. (Climate Dynamics, 2004) have pro-

duced a model which does well on all three

counts (Hadley Center AGCM coupled to the

LODYC OGCM). Figure 11 shows the perfor-

mance of the seasonal cycle of SST.
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Figure 4



The interannual variability spectrum is simi-

lar to those shown above although somewhat

more peaked. The e�ect of very small per-

turbations on initial conditions in the model is

shown in the upper panel of Figure 12. Shown

in the lower panel is what happens if a westerly

wind burst is introduced into the model. The

perturbation introduced looks like Figure 7 in

spatial structure. It's magnitude is similar to

that observed in March 1997.
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Note the shift in the ensemble towards a strong

warm event. The spread of the ensemble with

time seen here is also very typical of simple

stochastically forced systems.

The strong warm event members of the en-

semble look remarkably like the 1997-98 El

Nino. Figure 13 shows the model SST and



windstress while Figure 14 shows the observa-

tions for 1997-98.
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Zonal currents are even remarkably similar as

seen in Figure 15.
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Multiplicative Noise?

This issue is only just starting to receive atten-

tion in the literature and much work remains.

We analyze the issue using the theoretical con-

cepts above. Two things are signi�cant in my

view:

1. The stochastic optimals spatial structure

and their weighting show considerable vari-

ation with the ENSO cycle. In general

their weighting is less and more con�ned

to the Western Paci�c during cold events

and conversely during warm events their

weighting is more and the spatial structure

is more zonally extended.

2. There is signi�cant evidence that the large

scale intraseasonal variability (�MJO�) shows



signi�cant variation in zonal extent and am-

plitude with the ENSO cycle. This is illus-

trated in a Figure 16 from Kessler (2001):


