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Bayesian Approach to Predictability

Without initial condition data or a dynamical projection of such
information, the most reasonable assumption regarding target
random variables is that they have the equilibrium distribution.
This is thus the prior distribution in Bayesian terminology.

If the prediction data are then made available i.e. the initial
condition distribution is deduced and projected using a
dynamical system then this shifts the prior distribution to the
posterior prediction distribution. The utility or information
content of this shift is measured by the so-called relative entropy.

The relative entropy is also used in standard stochastic theory (it
is called a Lyuponov functional there) to measure the
convergence of the prediction to the equilibrium distribution. If
the conditional distributions satisfy a causality condition i.e. if
the future probability is uniquely determined by initial conditions,
the relative entropy montonically declines (or is conserved).
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The discrete form approaches the continuous form as partitions
of state space are reduced.




Relative Entropy Properties

1. Suppose we have two probability densities
f and g then D(fllg) > 0 with equality if
and only if f = g almost everywhere (i.e.
at points where f # 0).

2. Suppose we define a general non-linear trans-
formation of our state space: F : R" —
R™which is non-degeneratei.e. det(J(F)) #
O where J is the Jacobian, then the rela-
tive entropy of the transformed probability
densities is left invariant.

3. Suppose we have two probability densities
from two realizations of the same random
process F = F(xz,t,z’,t") and G = G(x,t, 2, t")
with z,2/ € R™ and t,t' € R and let us as-
sume that the following causality condition




holds for the associated conditional densi-
ties:

F(x,t| 2 t) =G(x,t|2,1) where t >t/
(1)

then the associated marginal distributions f(x,t),
f(2',t) and g(x,t), g(z’,t) satisfy

Dy(f Il 9) < Dp(f |l 9) (2)

where by definition

f(x,t) E/R” lF(x,t,x’,t/)dx/dt/

_|_

and similarly for G and g. Note if we consider a
subspace of our state-space then equation (1)
will in general NOT hold because the future
probability will depend on variables at the ini-
tial time in the complement of the subspace.




Gaussian Formulae and Common Skill Measures

RE = D:ispersion + Signal

Dispersion = % [In (jeig 3) + tr < 3(0(?)_1) — n]

Signal = %[(/T};)t(ag)_l,u_};}

RMS Error = tr(ag)
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Statistical Prediction Utility Types

Mean Shift Prediction Utility

Prediction Distribution Equilibrium Distribution

Uncertainty Reduction Utility

Prediction Distribution

Equilibrium Distribution




Prediction Utility Variation

A question of prime importance to forecasters is the variation in
redictability/utility from one forecast (or set of initial conditions) to
he next. This may be studied by finding the causes of variation of

relative entropy.

Since distributions are often (but not always) close to Gaussian the

cause of variations may be strongly related to fluctuations in the

Dispersion or fluctuations in the Signal.

Dispersion fluctuations. These are usually due to variations in the

ensemble spread connected to changes in flow instability with

initial condition.

Signal fluctuations. These are usually due to variations in the

amplitude of (often persistent) anomalous modes. These may be

due to random factors and have no particular dynamical cause.

WhichCParticuIar fluctuation is most important is dynamical system
dependent

Specific Dynamical Systems Studied

Climate Systems
Stochastically Forced damped oscillator. Simple analog for ENSO.

Hybrid or Intermediate Coupled Models. Skilful ENSO prediction
models.

Weather Systems
Lorenz 3 component system. Simple chaotic oscillator.
Baroclinic turbulence system.

Global primitive equation mo]cciel with realistic meridional radiative
orcing.




Stochastically forced oscillator
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F is a white noise forcing. The two components of u can be interpreted
in an ENSO analog as the first two EOFs of tropical Pacific ocean heat
content with the first being also highly correlated with the first EOF of
SST. The matrix coefficients are given by
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where T is the period of the unforced oscillator and tau it's damping
time. We assume firstly that these are fixed. If we assume a randomly
chosen set of deterministic initial conditions drawn from a long run of
the model the following relative entropy sample set (50) of evolutions
and histogram for a particular time results:
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In such a model the distributions are all Gaussian and also the
covariance matrix is independent of initial condition meaning that
variations in utility/RE are completely determined by the Signal piece
of the Gaussian relative entropy. Fluctuations in this are determined by
random fluctuation in the amplitude of the vector u.

In general for a more realistic model of ENSO one might expect tau to
vary according to the seasonal cyle or ENSO cycle. We can modify the
model to allow for this:

| 2Tt
— =11+ 2 sin— I.
T P

where P is the assumed period of the instability variation. Note that for
certain parts of the instability cycle very strong unforced growth can occur.

Despite this strong variation in instability, variations in utility are still
dominated by the Signal piece of the Gaussian relative entropy. The right
panel is for P=T=4 and the second is P=1 with T=4.
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Hybrid and Intermediate Coupled Models of ENSO

Results to be shown are from a hybrid coupled model consisting of an OGCM
coupled to a statistical atmospheric model. Results are qualitatively the same
in three other coupled models, one hybrid and two intermediate. All models
have roughly the same skill level which is close to many other coupled models
used for routine ENSO prediction.

Contribution to anomaly correlation skill of particular
forecasts
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Methodology

Ensembles were created using stochastic forcing which was close to white
on climate timescales and had a spatial pattern of the dominant
stochastic optimal of the coupled model in climatological mode. A
reduced state space was used for analysis consisting of the two
components of the dominant POP of ocean heat content which
corresponds approximately to the first two EOFs. The POPs and EOFs were
obtained by a forced run of the OGCM and the latter explain around 80%
of total heat content variance. Distributions on this two dimensional
reduced state space were very close to Gaussian at all leads so we used
the Gaussian RE formulae.
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Signal versus Dispersion

(a) lead time = 3 months

(b) lead time = 6 months
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POP and APOP Heat Content Spatial Patterns
(Complex and Real)




Classical Lorenz Three Component Model
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Relaxation of predictions to equilibrium

Note the Non-Gaussianicity for longer prediction ensembles




Methodology

Sample sizes of 102 were used and 1000 random initial conditions selected
from the attractor. An initial condition Gaussian distribution was assumed
with a standard deviation around two orders of magnitude less than the
attractor size. Relative entropy was then calculated using a discrete formula.
Monotonic decline in utility was always observed despite claims in the
literature of a long lead return of skill in the Lorenz attractor. Such a result is
likely a function of the skill measure deployed.

Relationship to the Gaussian Entropy

Actual versus Gaussian utility
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Quasigeostrophic Baroclinic Turbulence
Quasigeostrophic two level model on a beta plane with a uniform mean shear
to simulate the jetstream. Domain is doubly periodic in the zonal and
meridional direction and the first 16 Fourier components are retained in both
directions which is sufficient to resolve the Rossby radius for the parameter
settings deployed. Model equations:

14, _
% I+ U gy + T, + Rk, = —kRGOV, + Fyy.
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g, + G, = Vi, + By + S[(d, — ) + USyl.
G + Go = Vb, + By + S[(y — ) + USy].

.E.r' = —Uy.

Equilibrium spectral energy (green baroclinic; black
barotropic) plus a typical snapshot:
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Entropy and Predictability Methodology

A reduced state was chosen consisting of the first two complex barotropic
Fourier components. These modes explain around 60% of total variance
in an equilibrium run. 50 random initial conditions from an equilibrium
run were selected and Gaussian initial condition distributions with
standard deviation two orders of magnitude smaller than climatology
used. 1000 member prediction ensembles were used and each reduced
state space dimension was partitioned into quartiles implying and
average bin count of around 4. Ensembles appeared often quite close to
Gaussian.

Relation of Entropy to Signal and Dispersion
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Realistic Primitive Equation Atmospheric Model

T42 and 5 vertical levels. Realistic orography and Northern Winter thermal
forcing. Simplified physics with Newtonian cooling to a zonally uniform
“radiative/convective" profile replacing radiation and convection. Good

simulation of the mid-latitude storm tracks regions in both hemispheres.
Realistic jetstream behaviour.
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Methodology

Reduced state space taken from the EOF spectrum of primitive equation
prognostic variables (rescaled so that each has equal global mean
variance). In general convergence of total explained variance is much
slower than in the ENSO case and around 20 EOFs are required to explain
approximately 50% of variance while 60 EOFs explain around 85% of
variance. Results shown here are for a 40 dimensional reduced space.

High dimensional spaces imply that with practical ensembles only marginal
distributions are able to be estimated. To deal with this we introduce a
heirarchy of so-called m'th order marginal relative entropies which
measure the mean information content of m dimensional subspaces:

D™(p |l q) =

1
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m j1,7j27”°7jm

Dpllq) <D3*(pllg)<...<D™pl q)=D(] q)

In general finer partitioning per dimension is possible for lower order
marginal distribution estimation for a fixed ensemble size. We chose the
largest number consistent with an adequate bin count and concentrated
on the first five marginal entropies. Note the inequality heirarchy above
only holds for constant partitioning across marginal entropies.




Generic behaviour

We chose one particular initial condition and derived the initial condition
distribution as for the quasigeostrophic case. Results here are for a 9600

member ensemble.

First five marginal relative entropies
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Relative Entropy

Regional Variation
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1000 member ensembles. Second and third marginal entropies and 50 initial

Variation of Utility with Initial Conditions.
Importance of Signal and Dispersion

conditions.
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Conclusions

Prediction utility can be defined rigorously using the information
theoretic functional of relative entropy

Two kinds of utility can be identified based on the near
Gaussianicity of many prediction distributions. SIGNAL measures
the shift in the mean of the prediction from the climatological
distributions. DISPERSION measures the reduction in uncertainty
of the prediction versus climatological distributions.

Variations in utility from one set of initial conditions to another
are almost always strongly related to variations of Signal rather
than to Dispersion. This conclusion seems to hold for realistic
climate and weather prediction models. It does not appear to
hold for the exceptional case of strongly chaotic systems such
as the Lorenz 3 component model.

Preliminary evidence from a simplified weather model suggests
that there is an approximate finite time cutoff for predictability
of between 1 and 2 months. Beyond this cutoff initial condition
information is not important to statistical prediction. Of course
boundary condition information still can be.






