Reduced modeling with optimal bases

Daan Crommelin

Courant Institute of Mathematical Sciences New York University

NCAR, 16 May 2006

Optimal bases

Idea: expand model PDE on a basis that is more efficient than a spectral (or gridpoint) basis.

Spectral model can describe many flow configurations that are never realised

PDE may have low-dimensional attractor

EOFs

Best known and most used example of optimal bases: **Empirical Orthogonal Functions** (EOFs), (a.k.a. Proper Orthogonal Decomposition (POD) or Karhunen-Loève expansion)

Atmospheric science: Lorenz 1956, Rinne and Karhilla 1975, Schubert 1985,1986, Selten 1993, 1995, 1997, Achatz and Branstator 1999, Achatz and Opsteegh 2003a,b, Franzke et al. 2005, 2006,

Fluid dynamics: Lumley 1967,1981, Aubry et al. 1988, Sirovich 1989, Cazemier et al. 1998,

Given a dataset, EOF 1 is the direction of maximal variance in phase space

Variance: metric dependent

Calculation of EOFs

Covariance matrix of dataset { $\mathbf{x}(t)$ }: $C_{ij} = \overline{(x_i - \bar{x}_i)(x_j - \bar{x}_j)}$

Given metric M, solve eigenvalue problem

$$C M \mathbf{p}^i = \lambda_i \mathbf{p}^i$$

 \mathbf{p}^i is *i*-th EOF with associated variance λ_i , $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge 0$

Total variance:
$$\sum_{i=1}^{n} \overline{x_i^2} = \sum_{i=1}^{n} \lambda_i$$
, fractional variance: $\frac{\lambda_i}{\sum_{j=1}^{n} \lambda_j}$

Maximum variance captured in minimum number of patterns.

EOF expansion:
$$\mathbf{x}(t) = \bar{\mathbf{x}} + \sum_{i=1}^{n} a_i(t) \mathbf{p}^i$$

Project model $\dot{\mathbf{x}} = F(\mathbf{x})$ onto EOFs to obtain EOF model $\dot{\mathbf{a}} = G(\mathbf{a})$

Truncate:
$$\mathbf{a} = (\mathbf{b}, \mathbf{c}) \rightarrow \begin{cases} \dot{\mathbf{b}} = G^1(\mathbf{b}) + G^2(\mathbf{b}, \mathbf{c}) \\ \dot{\mathbf{c}} = G^3(\mathbf{b}, \mathbf{c}) \end{cases}$$

Closure scheme: $\dot{\mathbf{b}} = G^1(\mathbf{b}) + G^4(\mathbf{b})$ (additional damping, regression fitting, stochastic, ...) EOF models have difficulties reproducing bursting-type behaviour

Aubry et al. (1993): 6 EOFs representing 99.9995 % of the variance could **not** reproduce the right behaviour (Kuramoto-Sivashinsky eqn.)

Comparing different bases

Model: De Swart (1989), equivalent to Charney and DeVore (1979)

A channel model for midlatitude barotropic flow over topography, expanded on a 6-dim. Fourier basis. It includes:

β-effect
topography
Ekman friction
constant zonal forcing

Variables:

```
x_1, x_4 zonal modes [ (0,1) and (0,2) ]
x_2, x_3, x_5, x_6 wave modes [ (1,1) and (1,2) ]
```

Important parameters: strength (x_1^*) and shape (r) of the forcing.

Zonal wind speed forcing profile $u^*(y) \sim x_1^*(\sin(y) + 2r\sin(2y))$.

Other parameters:

Ekman damping timescale: 10 days Topographic height: 0.2 km Length-width ratio of the channel: 4 Central latitude of β -plane: 45°

(Crommelin et al. 2003)

EOF variance spectrum:

No. of EOF	Variance	Cumulative variance
1	0.660	0.660
2	0.287	0.947
3	0.041	0.988
4	0.006	0.994
5	0.004	0.998
6	0.002	1.000

(kinetic energy metric)

All EOF models fail

4 EOF model version (99.4 % variance):

CDV model:

Optimal Persistence Patterns (OPPs)

OPPs are patterns that maximize persistence (DelSole 2001)

Take autocorrelation function $\rho(\tau)$ of a pattern. Define persistence measures:

$$T_1 = \int_0^\infty \rho(\tau) \, \mathrm{d}\tau \quad \text{and} \quad T_2 = 2 \int_0^\infty \rho^2(\tau) \, \mathrm{d}\tau$$

Find (orthogonal) patterns that maximize T_1 (or T_2)

- $T_1 \longrightarrow$ eigenvalue problem
- $T_2 \longrightarrow$ optimization problem

OPP model versions of CDV model.

Using T_2 , patterns orthogonal in time:

No. of OPP	T_2
1	92.8
2	15.3
3	13.8
4	7.5
5	6.3
6	5.7

Behaviour of OPP models: unbounded (2, 4), fixed point (3), fixed point / periodic (5).

Autocorrelation functions:

Principal Interaction Patterns (PIPs)

PIPs minimize average error in (brief) model trajectories

Proposed by Hasselmann 1988, refined by Kwasniok 1996, 1997, ...

Original model: $\dot{x} = F(x)$ Reduced model: $\dot{x}_{p} = F_{p}(x_{p})$ (given a set of patterns P)

Integration gives model trajectories x^t and x_p^t , with $t \in [0, t_{max}]$ and $x_p^0 = \operatorname{Proj}(x^0, P)$

Difference: $d^t = x_p^t - x^t$

Define
$$Q = \frac{1}{\operatorname{var} t_{\max}} \int_0^{t_{\max}} ||d^t||^2 dt$$

Ensemble average: $\chi(t_{\max}, P) = \langle Q(x^0, t_{\max}, P) \rangle$

Finding PIPs: minimize χ under variation of the set of patterns P

 t_{max} remains a free parameter

PIPs and EOFs

Projected error: $\varepsilon_i^t = [\mathbf{p}_i^*, d^{\tau}]$

Two contributions: $\chi(t_{\max}, P) = \chi^0(P) + \chi^{dyn}(t_{\max}, P)$

with
$$\begin{cases} \chi^{0}(P) = 1 - \frac{1}{\text{var}} \sum_{i} \lambda_{i}^{\text{PIP}} & \text{(projection error)} \\ \\ \chi^{\text{dyn}}(t_{\text{max}}, P) = \frac{1}{\text{var} t_{\text{max}}} \int_{0}^{t_{\text{max}}} \sum_{i} \langle (\varepsilon_{i}^{t})^{2} \rangle dt & \text{(dynamical error)} \end{cases}$$

if $t_{max} = 0$: $\chi = \chi^0$, PIPs = EOFs

Chaotic regime behaviour of CDV model can be reproduced with models using 5, 4 and 3 PIPs (Crommelin and Majda, 2003)

Sensitive dependence on t_{max} and number of integrations.

PIPs superior to EOFs and OPPs

CDV model

Power spectrum of leading pattern:

