Energy Transports in an Idealized Moist General Circulation Model

Dargan M. W. Frierson

UCAR/University of Chicago

Isaac M. Held

Geophysical Fluid Dynamics Laboratory

Pablo Zurita-Gotor

Universidad Complutense de Madrid

18 May 2006

Introduction to Moisture in the Atmosphere

- Saturation vapor pressure: tells how much water vapor can exist in air before condensation occurs
- Sat. vapor pressure is a function of temperature:

$$e_s = A \exp\left(-B/T\right)$$

(Increases rapidly with temperature)

- Water vapor releases latent heat when it condenses
- Typical tropical lower tropospheric moisture values: 40K of latent energy

Effect of Moisture on Large Scale Dynamics

- With global warming, atmospheric moisture content will increase
- What effects will the increased moisture have on the Earth's climate?
 - Poleward fluxes of energy
 - North-south temperature gradients
 - Intensity of storms
 - Precipitation changes

Outline

- Intro: static stability, eddy scale, energy fluxes
- Description of model: simplified moist GCM
 - Primitive equations
 - Aquaplanet mixed layer surface
 - Gray radiative transfer
 - Moisture/convection
- Results
 - Extratropical static stability
 - Eddy length scales
 - Jet latitude
 - Energy fluxes
 - Energy balance models

Theories for Midlatitude Static Stability

• Static stability =
$$\frac{\partial T}{\partial z} + \frac{g}{c_p} = \frac{1}{c_p} \frac{\partial s}{\partial z}$$

where $s = c_p T + gz$ (dry static energy)

In tropics, moist adiabat determines stability

- Dry baroclinic eddy flux theories for midlatitudes:
 - Held 1982, Schneider 2004, baroclinic adjustment theories (Stone, etc)
 - Isentrope from subtropical boundary layer goes to tropopause at the pole
- Juckes (2000): moisture/convection is important

Theories for Midlatitude Eddy Scales/Energy Fluxes

- Most unstable mode of linear baroclinic instability problems
 - Rossby radius of deformation: $L_D \sim \frac{NH}{f}$
- Turbulent inverse cascade:
 - Rhines scale: $L_{\beta} \sim \sqrt{\frac{|v'|}{\beta}}$
- Energy fluxes: $\int \overline{v(c_pT + gz + Lq)}dp$
 - Moisture provides extra energy source to storms: stronger eddies?
 - Stronger moisture fluxes means weaker eddies to compensate?

Primitive equations

$$\begin{aligned} \frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u + \omega \frac{\partial u}{\partial p} &= fv + \frac{uvtan(\theta)}{a} - \frac{1}{acos\theta} \frac{\partial \Phi}{\partial \lambda} + S_{u,B} \\ \frac{\partial v}{\partial t} + \mathbf{v} \cdot \nabla v + \omega \frac{\partial v}{\partial p} &= -fu - \frac{u^2 tan(\theta)}{a} - \frac{1}{a} \frac{\partial \Phi}{\partial \theta} + S_{v,B} \\ \frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T + \omega \frac{\partial T}{\partial p} &= \frac{\kappa T \omega}{p} + Q_R + Q_C + Q_B \\ \frac{\partial \Phi}{\partial lnp} &= -R_d T_v \\ \nabla \cdot \mathbf{v} + \frac{\partial \omega}{\partial p} &= 0 \end{aligned}$$

▶ Spectral method, T170 resolution (0.7° or 80 km), 25 levels

Model Description

- Aquaplanet slab mixed layer ocean
 - Ocean-covered Earth, shallow mixed layer
 - Sea surface temperatures adjust to conserve energy in the time mean
 - Means atmosphere performs all the energy transports
 - Facilitates variation over wide parameter range
- Simplified Monin-Obukhov surface flux scheme
- K-profile boundary layer scheme
 - Diffusion up to a calculated boundary layer depth

Radiation Scheme

- Gray radiation: simplest scheme other than Newtonian cooling. Water vapor, clouds, other tracers have no effect on radiation.
- All solar heating goes directly into surface
- Parameters: longwave optical depths, shortwave heating

Strongly unstable radiative equilibrium profile

Moisture/Convection

Analytic Clausius-Clapeyron relation:

$$e_s = e_{s0} \exp\left(-\frac{L}{R_V} \left(T^{-1} - T_0^{-1}\right)\right)$$

• e_{s0} is **key parameter** which we vary

- Control: $e_{s0} = 610.78 \ Pa$
- Dry limit: $e_{s0} = 0$
- Up to: $e_{s0} = 6107.8 Pa$ (10 times moisture)
- Simplest convection scheme: no convection scheme!
 (large scale condensation only)
 - Revaporate precipitation into unsaturated areas
 - Similar in practice to moist convective adjustment

Climatologies

• Control case and dry limit u and T:

Climatologies

Instantaneous precip

Control case dry static energy

Static stability

Dry static energy for dry limit, control, and 10X moisture case:

- Isentropic slope clearly changes with moisture content
- Tropopause height additionally increases with moisture (as in radiative constraint of Held (1982))

Moist static stability

Dry limit DSE, and saturated MSE for control case and 10X case (indication of moist stability):

- Theory of Juckes (2000): moist convection is key
 - Moist convection always occurs in warm areas of baroclinic eddies
 - Moist stability is set by surface variance of moist static energy

Dry limit static stability

- Dry limit: only convection is boundary layer (BL) scheme
- Instantaneous BL depth and PDF of BL depth

Stability with moisture

Clearly dry stability increases significantly as moisture content increases: what about **moist stability?**

Saturated MSE - surface MSE:

Moist stability increases as well, due to increased variance of surface MSE. What's the effect on length scales?

Length scales

• Left: Spectrum for $\frac{1}{\delta p} \int |v| dp$ at 45 degrees

• Right: Mean length scale $\bar{L} = \frac{2\pi a cos(\theta)}{\bar{k}}$ with $\bar{k} = \frac{\int k E(k) dk}{\int E(k) dk}$

Green = control, Red = dry limit, Blue = 10X moisture

Length scales

- Clearly dry Rossby radius is not appropriate! Not moist Rossby radius either
- Rhines scale has too much change as well (in the other direction).
- \blacktriangleright Rhines at latitude of maximum EKE works very well: allows β to change

Moist Static Energy Fluxes

Moist Static Energy Fluxes

MSE, DSE, and moisture fluxes:

Green = control, Red = dry limit, Blue = 10X moisture

Increase of moisture fluxes compensated nearly perfectly by decrease of DSE flux. "Compensation" = 99% for dry to control, and 93% for dry to 10X

Interpreting the MSE fluxes

- Stone (1978) gives reason for shape of profile not varying much:
 - Flat OLR implies profile that's nearly identical to this
 - Same as in observations (Trenberth and Stepaniak 2003)
 - Flux from flat OLR = 7.8 PW (much larger than here)
- Energy balance model:

$$\frac{\partial m}{\partial t} = Q_{SW} - Q_{LW} + D\nabla^2 m$$

- Diffusing surface moist static energy m
- Radiation forcing (Q_{SW} = shortwave heating, $Q_{LW} = \sigma T_E^4$ = longwave cooling)
- Only energy flux is diffusive, with some diffusivity D

EBM with exact compensation

- The following assumptions give exact compensation:
 - Fixed diffusivity
 - Fixed level of emission z_E
 - All water condensed out by emission level ($q(z_E) = 0$)
 - Neutral stability to emission level ($m(z_E) = m$)
- Equation becomes:

$$\frac{\partial m}{\partial t} = Q_{SW} - \sigma T_E^4 + D\nabla^2 m$$
$$= Q_{SW} - \sigma (\frac{m - g z_E}{c_p})^4 + D\nabla^2 m$$

- Equation is only a function of m
- Independent of partition into dry and moist

Refinements to EBM

 Actually calculating moist adiabats gives less perfect compensation (especially on moist side)

Some change in diffusivity is necessary

Diffusivity

GCM diffusivity (average flux divided by surface gradient):

- Mean extratropical diffusivities: $1.9 \times 10^6 m^2 s^{-1}$ (control), $2.1 \times 10^6 m^2 s^{-1}$ (dry), $1.3 \times 10^6 m^2 s^{-1}$ (10X)
- EBM with the mean diffusivities above gives correct compensation

Theory for diffusivity

Mixing length theory:

$$\overline{v'm'} = k |v'| |m'|$$
$$= k |v'| L \frac{\partial m}{\partial y}$$

with k = correlation coefficient, $|v^\prime|$ = rms velocity, and L = mixing length

- Diffusivity proportional to **velocity scale times length scale** (D = k |v'| L)
- Length scale as before: Rhines scale at latitude of maximum EKE
- All that remains for full EBM is theory for jet latitude and velocity scale

Jet Latitude

 Jet latitude: poleward shift robustly seen in global warming forecasts (Yin 2005)

- Theory for jet latitude: latitude of maximum midtropospheric temperature gradient
- Determined purely thermodynamically in our model (moist adiabats from surface)
- Shift is present in EBM with exact compensation

Theory for Velocity Scale

- ▶ v from equipartition of EKE and mean available potential energy: $v \sim \frac{1}{f} \frac{\partial T}{\partial y}$
- Not dependent on static stability or moisture content
- Full EBM with all these converges, and predicts qualitatively:
 - Poleward shift of eddies with increased moisture
 - Reduction of diffusivity
 - Near-equality of fluxes

Conclusions

- Static Stability
 - Dry static stability is dominated by moist adiabat
 - Moist cases are more stable in terms of moist stability (and much more stable in terms of dry stability)
- Eddy scales
 - Varies little with moisture (not standard Rossby radius)
 - Rhines scale at latitude of maximum EKE works well
- Energy fluxes
 - High degree of compensation of moisture fluxes by dry static energy fluxes
 - Seen in simple EBM's with fixed diffusivity
 - Diffusivity reduction with moisture aids compensation