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Dimensionality Reduction

Climate datasets made up of time series at individual
stations/geographical locations

Typical dataset has P ∼ O(103) time series
Organised structure in atmosphere/ocean flows

⇒ time series at different locations not independent

⇒ data does not fill out isotropic cloud of points in RP ,
but clusters around lower-dimensional surface
(reflecting the “attractor”)
Goal of dimensionality reduction in climate
diagnostics is to characterise such structures in
climate datasets

An Introduction toNonlinearPrincipal Component Analysis – p. 3/33



Dimensionality Reduction

Climate datasets made up of time series at individual
stations/geographical locations

Typical dataset has P ∼ O(103) time series

Organised structure in atmosphere/ocean flows
⇒ time series at different locations not independent

⇒ data does not fill out isotropic cloud of points in RP ,
but clusters around lower-dimensional surface
(reflecting the “attractor”)
Goal of dimensionality reduction in climate
diagnostics is to characterise such structures in
climate datasets

An Introduction toNonlinearPrincipal Component Analysis – p. 3/33



Dimensionality Reduction

Climate datasets made up of time series at individual
stations/geographical locations

Typical dataset has P ∼ O(103) time series
Organised structure in atmosphere/ocean flows

⇒ time series at different locations not independent

⇒ data does not fill out isotropic cloud of points in RP ,
but clusters around lower-dimensional surface
(reflecting the “attractor”)
Goal of dimensionality reduction in climate
diagnostics is to characterise such structures in
climate datasets

An Introduction toNonlinearPrincipal Component Analysis – p. 3/33



Dimensionality Reduction

Climate datasets made up of time series at individual
stations/geographical locations

Typical dataset has P ∼ O(103) time series
Organised structure in atmosphere/ocean flows

⇒ time series at different locations not independent

⇒ data does not fill out isotropic cloud of points in RP ,
but clusters around lower-dimensional surface
(reflecting the “attractor”)
Goal of dimensionality reduction in climate
diagnostics is to characterise such structures in
climate datasets

An Introduction toNonlinearPrincipal Component Analysis – p. 3/33



Dimensionality Reduction

Climate datasets made up of time series at individual
stations/geographical locations

Typical dataset has P ∼ O(103) time series
Organised structure in atmosphere/ocean flows

⇒ time series at different locations not independent

⇒ data does not fill out isotropic cloud of points in RP ,
but clusters around lower-dimensional surface
(reflecting the “attractor”)

Goal of dimensionality reduction in climate
diagnostics is to characterise such structures in
climate datasets

An Introduction toNonlinearPrincipal Component Analysis – p. 3/33



Dimensionality Reduction

Climate datasets made up of time series at individual
stations/geographical locations

Typical dataset has P ∼ O(103) time series
Organised structure in atmosphere/ocean flows

⇒ time series at different locations not independent

⇒ data does not fill out isotropic cloud of points in RP ,
but clusters around lower-dimensional surface
(reflecting the “attractor”)
Goal of dimensionality reduction in climate
diagnostics is to characterise such structures in
climate datasets

An Introduction toNonlinearPrincipal Component Analysis – p. 3/33



Dimensionality Reduction

Realising this goal has both theoretical and practical
difficulties:

Theoretical:
what is the precise definition of “structure”?
how to formulate appropriate statistical model?

Practical:
many important observational climate datasets
quite short, with O(10)−O(1000) statistical
degrees of freedom
what degree of “structure” can be robustly
diagnosed with existing data?
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Principal Component Analysis

A classical approach to dimensionality
principal component analysis (PCA)

Look for M -dimensional hyperplane approximation, optimal
in least-squares sense

X(t) =
M∑

k=1

〈X(t), ek〉 ek + ε(t)

minimising E {||ε2||}
inner product often (not always) simple dot product

Vectors ek are the empirical orthogonal functions (EOFs)
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Principal Component Analysis

Operationally, EOFs are found as eigenvectors of
covariance matrix (in appropriate norm)

PCA optimally efficient characterisation of Gaussian
data
More generally: PCA provides optimally
parsimonious data compression for any dataset
whose distribution lies along orthogonal axes
But what if the underlying low-dimensional
structure is curved rather than straight?
(cigars vs. bananas)
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Nonlinear Low-Dimensional Structure
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Nonlinear PCA
An approach to diagnosing nonlinear low-dimensional
structure is Nonlinear PCA (NLPCA)

Goal: find functions (with M < P )

sf : RP → RM , f : RM → RP

such that
X(t) = (f ◦ sf ) (X(t)) + ε(t)

where

E {||ε2||} is minimised

f(λ) ∼ approximation manifold

λ(t) = sf (X(t)) ∼ manifold parameterisation (time series)
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Nonlinear PCA

s f

f

t
λ

 X(t)

λ(t) = s
 f
( X(t))

 X(t) = ( f o s
 f
)( X(t))

^

From Monahan, Fyfe, and Pandolfo (2003)
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Nonlinear PCA
As with PCA, “fraction of variance explained” is a
measure of quality of approximation

PCA is a special case of NLPCA
When implemented, NLPCA should reduce to PCA
if:

data is Gaussian
not enough data is available to robustly
characterise non-Gaussian structure
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NLPCA: Implementation

Implemented NLPCA using neural networks
(convenient, not necessary)

Parameter estimation more difficult than for PCA
PCA model is linear in statistical parameters:

Y = MX

so variational problem has unique analytic solution
NLPCA model nonlinear in model parameters, so
solution

may not be unique
must be found through numerical minimisation
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NLPCA: Parameter Estimation
Two fundamental issues regarding parameter
estimation common to all statistical models:

Reproducibility
model must be robust to the introduction of new
data
new observations shouldn’t fundamentally
change model

Classifiability:
model must be robust to details of optimisation
procedure
model shouldn’t depend on initial parameter
values
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NLPCA: Synthetic Gaussian Data

Synthetic Gaussian data
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Applications of NLPCA: Lorenz Attractor

Scatterplots
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Applications of NLPCA: Lorenz Attractor

1D PCA approximation (60%)
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Applications of NLPCA: Lorenz Attractor

2D PCA approximation (94%)
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Applications of NLPCA: Lorenz Attractor

2D NLPCA approximation (97%)
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Applications of NLPCA: NH Tropospheric LFV

EOF
1

EOF
2

10-day lowpass-filtered 500 hPa geopotential height EOFs
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Applications of NLPCA: NH Tropospheric LFV

1D NLPCA Approximation: spatial structure
(PCA: 14.8%; NLPCA 18.4%)
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Applications of NLPCA: NH Tropospheric LFV

1D NLPCA Approximation: pdf of time series
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Applications of NLPCA: NH Tropospheric LFV

1D NLPCA Approximation: regime maps
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Applications of NLPCA: NH Tropospheric LFV

1D NLPCA Approximation: interannual variability
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NLPCA: Limitations and Drawbacks
Parameter estimation in NLPCA (as in any nonlinear
statistical model) must be done very carefully to
ensure robust approximation

⇒ analysis time-consuming, data hungry
⇒ insufficiently careful analysis leads to spurious

results (e.g. Christiansen, 2005)
Theoretical underpinning of NLPCA is weak

⇒ no “rigorous” theory of sampling variability
Information theory may provide new tools with

better sampling properties
better theoretical basis
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Conclusions
Traditional PCA optimal for dimensionality
reduction only if data distribution falls along
orthogonal axes

Can define nonlinear generalisation, NLPCA, which
can robustly characterise nonlinear low-dimensional
structure in datasets
NLPCA approximations can provide a
fundamentally different characterisation of data than
PCA approximations
Implementation of NLPCA difficult and lacking in
underlying theory; represents a first attempt at a big
(and challenging) problem
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Parameter Estimation in NLPCA
An ensemble approach was taken

For a large number N (∼ 50) of trials:
data was randomly split into training and
validation sets (taking autocorrelation into
account)
a random initial parameter set was selected

For each ensemble member, iterative minimisation
procedure carried out until either:

error over training data stopped changing
error over validation data started increasing

Method does not look for global error minimum
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Parameter Estimation in NLPCA
Ensemble member becomes candidate model if

〈
||ε||2

〉
validation

≤
〈
||ε||2

〉
training

Candidate models compared
if they share same shape and orientation

⇒ approximation is robust
if they differ in shape and orientation

⇒ approximation is not robust

If approximation not robust, model simplified &
procedure repeated until robust model found
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Parameter Estimation in NLPCA
Procedure will ultimately yield PCA solution if no
robust non-Gaussian structure present

Such a careful procedure necessary to avoid finding
spurious non-Gaussian structure
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Applications of NLPCA: Tropical Pacific SST

EOF Patterns
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Applications of NLPCA: Tropical Pacific SST

1D NLPCA Approximation: spatial structure
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