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Introduction
Stability properties of climate states important for determining:

climate mean

climate variability

climate predictability

At least 2 distinct but related measures of stability:

One point: do perturbations grow or decay?

Two point: do initially nearby trajectories approach or
diverge as time passes?

Both of these are well-understood for deterministic systems;
(ubiquitous) environmental fluctuations introduce new effects

Will consider these in the context of simple climate models
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Idealised Model: Stommel (61)

Idealised 2-box model of overturning circulation
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Stommel Model: Equations

Overturning strength ∝ density gradient

q = c(α∆T − β∆S)

Dynamics of temperature and salinity gradients:

d

dt
∆T = −(|q|+ η)∆T + Γ(∆Ta −∆T )

d

dt
∆S = −(|q|+ η)∆S + ∆F oa

d

dt
η = −1

τ
η +

Σ

τ
Ẇ1
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Stommel Model: Simplifications

Nondimensionalising and assuming:

∆T timescale << ∆S timescale
fluctuations in freshwater forcing

ẏ = −|1− y|y − ηy + µ+ σ2Ẇ2

η̇ = −1

τ
η +

σ1

τ
Ẇ1

y = salinity gradient

η = mixing

µ = freshwater forcing

σ1, σ2 = mixing, forcing fluctuation strength
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Stommel Model: Deterministic Dynamics

Deterministic system:

d

dt

(
y

η

)
=

(
−|1− y|y − ηy + µ

−η/τ

)

has

3 fixed points for 0 ≤ µ ≤ 0.25

1 fixed point for 0 > µ, µ > 0.25

Fixed points meet in fold bifurcations
System displays hysteresis behaviour
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Stommel Model: Bifurcations & Hysteresis
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Stommel Model: Transient Dynamics

Vector field of deterministic dynamics
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Stommel Model: Transient Dynamics
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Stommel Model: White Noise Limit

As τ → 0, system approaches 1D SDE:

ẏ = −|1− y|y − σ1y ◦ Ẇ1 + σ2Ẇ2

Associated Fokker-Planck equation for stationary
pdf can be solved analytically
Instead of multiple steady states, have multimodal
pdf
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Stommel Model: Phase Diagram
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Stommel Model: pdfs
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Stommel Model: Moments
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Stommel Model: Stabilisation by Noise

In general, only one regime has any significant
probability mass, even where both regimes are
present deterministically

⇒ stabilisation by noise
Define µ0.5 as value of µ for which both regimes
equally populated
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Stommel Model: µ0.5
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Stommel Model: Stabilisation by Noise
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⇒ stabilisation by noise
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Transitions between “stabilised” regimes will occur
away from deterministic bifurcations

⇒ stochastically perturbed hysteresis loops “shrink”
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Stommel Model: Stochastic Hysteresis Loops
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Stommel Model: Red Noise Mixing

For τ 6= 0, no analytic expression for pdf; resort to
numerical simulation

Increasing τ :
regime peaks become narrower
peaks in pdf can occur where there is no
deterministic fixed point
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Stommel Model: Red Noise Mixing
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Stommel Model: Red Noise Mixing

For τ 6= 0, no analytic expression for pdf; resort to
numerical simulation

Increasing τ :
regime peaks become narrower
peaks in pdf can occur where there is no
deterministic fixed point

Last effect can be understood by considering
diffusion in deterministic vector field; probability
mass can accumulate where deterministic tendency
minimised
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Stommel Model: Deterministic Flow
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Stommel Model: Sample Trajectory
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Conclusions: Part I
Stochastic and deterministic systems have very
different stability properties

In presence of fluctuations, one regime typically
preferred over other when both are deterministically
stable⇒ stabilisation by noise
As control parameter varies, transitions between
regimes typically occur well before deterministic
bifurcations
Peaks of pdf do not necessarily coincide with
deterministic fixed points
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Lyapunov Exponents of a Stochastic System

A fundamental problem for predictability is:
do two initially close states approach or diverge as
time evolves?

An answer to this problem considers
largest instantaneous linearised growth rates of
perturbations
averaged over the invariant measure of the
system

⇒ Lyapunov exponent, λ
Simplistically:

λ > 0⇒ “unpredictable”
λ < 0⇒ “predictable”
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Lyapunov Exponents of a Stochastic System

Consider the SDE

d

dt
x = a(x) +

P∑

p=1

b(p)(x) ◦ Ẇp(t)

Linearised dynamics around trajectory X(t) for perturbation
z(t):

d

dt
z = A(X(t))z +

P∑

p=1

B(p)(X(t))z ◦ Ẇp(t)

Aij = ∂iaj , B
(p)
ij = ∂ib

(p)
j ,

same realisation Wp(t) as used to get X(t)
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Lyapunov Exponents of a Stochastic System

Leading Lyapunov exponent given by

λ = lim
t→∞

ln ||z(t)||
t

Convenient formula for λ using spherical coordinates,
S = z/||z|| (Furstenberg-Khasminskii):

λ = E{q(S)} = lim
t→∞

1

t

∫ t

0

q(Su)du

where

q(S) = STA(t)S+

P∑

p=1

(
1

2
ST [B(p)(t) +B(p)(t)T ]B(p)(t)S− (STB(p)(t)S)2

)
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Lyapunov Exponents: Computational Strategy

For time T long enough to “ensure” ergodicity:
1. Generate Wiener processes

2. Simulate trajectory of full system, X(t)

3. Using same Wiener processes, simulate trajectory of
amplitude R(t) = ||z(t)||
angle S(t) = z(t)/||z(t)||

for the dynamics linearised around X(t)

4. Compute λ using Furstenberg-Khasminskii
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Lyapunov Exponents: Discussion

λ is linear growth rate averaged over invariant
measure of dynamics

⇒ no information about instability of particular states
Error growth may be in “uninteresting” variables,
while “interesting” variables remain predictable

⇒ λ is a coarse measure of predictability
Linearised dynamics of perturbations do not
explicitly involve additive noise in original system

but
Additive noise enters calculation of λ through
invariant measure of X(t)
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Idealised Model: Maas (94)

Model for coupled dynamics of ocean

angular momentum

L =
1

V

∫
(x× u)dV

isopycnal surfaces

ρ = xρx + yρy + zρz = (x, y, z) · ∇ρ

in a rectangular basin on an f -plane

Incorporates both surface mechanical and buoyancy forcing

Assumes single component fluid, planar isopycnal surfaces
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Maas Model: Dynamics

Nondimensionalised equations:

γ
d

dt
L +

1

2
k× L = −ρyi + ρxj− ε(L1i + L2j + rL3k)− T̂k

d

dt
∇ρ+

1

2
∇ρ× L = −(ρxi + ρyj + µρzk) +B2j,

where

ε ∼ friction

T̂ ∼ wind torque

B2 ∼ buoyancy force

r, µ ∼ ratios of vertical to horizontal viscosity, diffusivity

γ ∼ 10−7
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Maas Model: Simplifications

Small γ ⇒ assume balanced L

⇒ dynamics for∇ρ alone:

d

dt
ρx = −(1− ερz)ρx −

1

2
(L3 − ρz)ρy

d

dt
ρy =

1

2
(L3 − ρz)ρx − (1− ερz)ρy +B2

d

dt
ρz = −µρz − ε(ρ2

x + ρ2
y).

Includes friction, buoyancy forcing, and interaction
with wind-driven circulation
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Maas Model: Bifurcations
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Maas Model: Bifurcations
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Maas Model: Attractors
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Maas Model: Fluctuating Forcing

Introducing fluctuations in mechanical & buoyancy forcing:

L3 → L3 + σ1Ẇ1

B2 → B2 + σ2Ẇ2

(respectively multiplicative & additive noises) gives:

d

dt
ρx = −(1− ερz)ρx −

1

2
(L3 − ρz)ρy −

1

2
σ1ρy ◦ Ẇ1(t)

d

dt
ρy =

1

2
(L3 − ρz)ρx − (1− ερz)ρy +B2 +

1

2
σ1ρx ◦ Ẇ1(t) + σ2Ẇ2

d

dt
ρz = −µρz − ε(ρ2

x + ρ2
y)
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Stochastic Maas Model: Trajectories
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Stochastic Maas Model: Lyapunov Exponents
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Stochastic Maas Model: Lyapunov Exponents
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Stochastic Maas Model: Predictability
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Conclusions: Part II
Two distinct influences of “weather” on climate
predictability:

random perturbations perturb trajectory
⇒ loss of predictability

leading Lyapunov exponent of climate system
can become positive

⇒ loss of predictability

Second effect has been called “Noise-induced
chaos”
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Overall Conclusions
Can generalise deterministic stability concepts to
stochastic systems, both for

one-point measures (e.g. fixed points)
two-point measures (e.g. Lyapunov exponents)

Fluctuating forcing has a non-trivial impact on
stability, particularly in nonlinear systems
“Weather” variability always present, and should be
accounted for in determination of climate stability
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