How Does the Atmosphere Respond to Extratropical SST Anomalies ?

- the Role of Transient Eddy Feedbacks

Shiling Peng

NOAA - CIRES Climate Diagnostics Center, University of Colorado, Boulder, CO

Collaborators: Walter Robinson (Univ. of Illinois) Martin Hoerling Shuanglin Li Jeffrey Whitaker

OUTLINE

- I. Recent studies on the atmospheric response to extratropical SST anomalies
- II. Mechanisms for the NAO response to the North Atlantic SST tripole

I. Recent Studies on the Atmospheric Response to Extratropical SST Anomalies

(Kushnir et al. 2002)

. Motivations – seasonal-to-decadal variability (eg. Latif and Barnett 1994; Marshall et al. 2001; Wu and Liu 2005)

. AGCM responses to extratropical SSTs (eg. Palmer and Sun 1985; Kushnir and Held 1996; Peng et al. 1995; 1997)

. Dependence on background intrinsic variability

- storm tracks
- LF variability

(eg. Branstator 1992; 1995; Whitaker and Sardeshmukh 1998) (eg. Ting and Peng 1995; Peng and Whitaker 1999; Peng and Robinson 2001; Deser et al. 2004)

SST ANOMALY

Cint=0.5K

PW Eddy Feedback Mechanism

(Peng and Whitaker 1999)

 $\mathbf{SSTA} \Longrightarrow \mathbf{Q} \Longrightarrow \mathbf{\Psi}_{\mathbf{H}} \Longrightarrow \mathbf{F}_{\mathbf{E}} \Longrightarrow \mathbf{\Psi}_{\mathbf{E}}$

(LBM) (STM) (LBM)

- Q: Anomalous heating
- Ψ_{H} : Heating-forced anomalous flow
- F_{E} : Anomalous eddy vorticity forcing
- Ψ_{E} : Eddy-forced anomalous flow

(Schematic for the **initial** process !!)

800

900

ò

ż

Ĵ.

4

5

6

Cint=0.5 K/day

(Obs. DJF basic state; Q at 40N160E)

Z250

Peng and Robinson (2001)

II. Mechanisms for the NAO Response to the North Atlantic SST Tripole

(Peng et al. 2002; 2003)

. AGCM responses

. Mechanisms

- symmetric response
- asymmetric response

AGCM Experiments

Model:

AGCM - NCEP Seasonal Forecast Model (T42L28)

Experiments:

=> 8-month integration from Sept - Apr

=> INCs: Sept 1-5, 80-99

=> 100-member ensembles for:

a) Climo SST (C)
b) Climo SST + SSTA (P)
c) Climo SST - SSTA (N)

Mechanisms ??

=> Symmetric response

Linear Model Experiments

=>*Maintenance of the AGCM response*

LBM – Linear baroclinic model (J. Whitaker) (PE; T21L10)

AGCM forcing => LBM => response

Diabatic Heating (950-250mb)

Cint=0.2 k/day

PW Eddy Feedback Mechanism

(Peng and Whitaker 1999)

 $\mathbf{SSTA} \Longrightarrow \mathbf{Q} \Longrightarrow \mathbf{\Psi}_{\mathbf{H}} \Longrightarrow \mathbf{F}_{\mathbf{E}} \Longrightarrow \mathbf{\Psi}_{\mathbf{E}}$

(LBM) (STM) (LBM)

- Q: Anomalous heating
- $\Psi_{\rm H}$: Heating-forced anomalous flow
- F_{E} : Anomalous eddy vorticity forcing
- Ψ_{E} : Eddy-forced anomalous flow

(Schematic for the **initial** process !!)

Linear Model Experiments

=> Mechanisms for developing the response

LBM - Linear baroclinic model (J. Whitaker) (PE; T21L10)

STM - Statistical storm track model (in EOF space; T21L10)

 $\mathbf{Y} = \mathbf{C}_{\mathbf{y}\mathbf{x}} \bullet \mathbf{X}$

- X predictor vector geopotential height
- Y predictand vector eddy vorticity forcing
- C_{yx} Covariance matrix based on AGCM intrinsic variability

Cint=0.5 K/day

Mechanisms ??

=> Asymmetric response

PW Eddy Feedback Mechanism

(Peng and Whitaker 1999)

SSTA \Rightarrow **Q** \Rightarrow $\Psi_{\rm H}$ \Rightarrow **F**_E \Rightarrow $\Psi_{\rm E}$

(LBM) (STM) (LBM)

- Q: Anomalous heating
- $\Psi_{\rm H}$: Heating-forced anomalous flow
- F_{E} : Anomalous eddy vorticity forcing
- Ψ_{E} : Eddy-forced anomalous flow

(Schematic for the **initial** process !!)

Heating-Induced Asymmetric Response:

$$\Psi_{+Q} = \Psi_{H} + \Psi_{NL}$$
$$\Psi_{-Q} = -\Psi_{H} + \Psi_{NL}$$
$$(or -\Psi_{-Q} = \Psi_{H} - \Psi_{NL})$$

$$\Psi_{\rm H}$$
: Heating-forced linear anomalous flow

 $\Psi_{_{NL}}$: Nonlinearity due to $\Psi_{_{H}}$ self-interaction

Under the control basic state, Ψ_{c} , the linearized vorticity fluxes may be expressed as:

$$\partial \zeta_{\rm H} / \partial t = \dots - (V_{\rm H} \bullet \nabla \zeta_{\rm C} + V_{\rm C} \bullet \nabla \zeta_{\rm H})$$

Here, the response (V_{H}, ζ_{H}) corresponds to Ψ_{H} .

Under the modified basic state, $\Psi_{C} + \Psi_{H} / 2$, the linearized vorticity fluxes become:

$$\partial \zeta_{+Q} / \partial t = \dots - (V_{+Q} \bullet \nabla \zeta_{C} + V_{C} \bullet \nabla \zeta_{+Q} + V_{H} \bullet \nabla \zeta_{H})$$

+ higher order nonlinearity)

Now, the response (V_{+Q}, ζ_{+Q}) corresponds to the asymmetric response Ψ_{+Q} .

Heating-Induced Asymmetric Response (250mb)

Estimated AGCM Eddy-Forced Asymmetric Component

Nonlinear Eddy Feedback Mechanism

$$=> \Psi_{+Q} => F_{+E} => \Psi_{+E}$$

$$SSTA => Q$$

$$=> \Psi_{-Q} => F_{-E} => \Psi_{-E}$$

- $\Psi_{\pm Q}$: Heating-forced asymmetric anomalous flows (due to nonlinear self-interaction !!)
- $F_{\pm E}$: Asymmetric eddy vorticity forcings
- $\Psi_{\pm E}$: Eddy-forced asymmetric anomalous flows

(Schematic for the initial process !!)

SUMMARY

1. The SST tripole induces a NAO-like response in late-winter in the AGCM ($\sim 15-30$ m/K in Z500) that indicates a positive feedback between the NAO and the tripole.

2. The NAO response is mainly sustained by anomalous eddy forcing, developed through the eddy feedback mechanisms:

=> Symmetric component - PW eddy feedback mechanism

=> Asymmetric component - Nonlinear eddy feedback mechanism

Cint=10m

Z250

Fall Pan-Atlantic SST Anomaly

AGCM Response (P-N)

a) Feb-Apr Z500 (NAH)

Cint=5 m

b) Z500 (tripole)

OBS Z500 EOF1 (16%;0_A)

An estimation of the ensemble size based on the t - test:

 $N = 2 * t^2 / S^2$

- N ensemble size
- t student t value
- S signal-to-noise ratio

Given: $S^2 = 10 - 20\%$; t = 2=> N = 40 - 80