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Mathematical model

One layer model (Two dimensional fluid system for potential
vorticity)

∂q

∂t
+ ∇⊥ψ · ∇q = D(−∆)ψ + F ,

q = ∆ψ + βy − Fψ + h

D(−∆)ψ =
∑

j≥1

dj(−∆)jψ

d1: Ekman damping, d2:Newtonian viscosity, dj , j ≥ 3:
hyper-viscosity
Rationale: 1 fast rotation, (Charney, Bourgeois-Beale,
Embid-Majda, Lions-Temam-Wang ...), 2. relative thinness
(Raugel-Sell, Temam-Ziane, ...)
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Equilibrium/empirical statistical mechanics

undamped/unforced setting customary

Information theoretical approach: Maximize Shannon
entropy with given information

conserved quantity becomes constraints on ρ

Mean field equation
q̄ = G(ψ̄)

Most of them are stable under appropriate assumptions

Majda and W., Nonlinear Dynamics and Statistical Theories for
Basic Geophysical Flows , CUP, 2006
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Dynamical approach

Forcing on the largest scale (Yudovitch, Marchioro,
Constantin-Foias-Temam)

Selective decay (decaying flow) (Foias-Saut,
Majda-Shim-W., Montgomery, McWilliam etc)

Large scale structure: ground energy shell
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Damped driven environment

unresolved small scale in forcing (small scale convection
on Jupiter weather layer, storms for the oceans’ mixing
layer )

random small scale forcing (in Jupiter’s case:
predominantly positive)

Newtonian viscosity needed
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Simple model

Two dimensional Navier-Stokes equation (vorticity-stream
function)

∂q

∂t
+ ∇⊥ψ · ∇q = ν∆q + F ,

∆ψ = q,

q|t=0 = q0(≥ 0)

ψ = q = 0,on ∂Q(Q = [0, π] × [0, π])
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F =
∞

∑

j=1

δ(t− j∆t)Aωr(~x− ~xj)
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Impulse(kick) random small scale forcing

F =
∞

∑

j=1

δ(t− j∆t)Aωr(~x− ~xj)

ωr(~x) =

{

(

1 − |~x− ~xj |2/r2
)2
, |~x− ~xj |2 ≤ r2 ,

0, |~x− ~xj |2 > r2 .
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Impulse(kick) random small scale forcing

F =
∞

∑

j=1

δ(t− j∆t)Aωr(~x− ~xj)

ωr(~x) =

{

(

1 − |~x− ~xj |2/r2
)2
, |~x− ~xj |2 ≤ r2 ,

0, |~x− ~xj |2 > r2 .

xj: uniform distribution on Qr0
= [r0, π − r0] × [r0, π − r0]
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Prediction via statistical theory (Grote-Majda)

EEST leads to the ground state sin x sin y

PVST or ESTP leads to sinh-Poisson

crude closure (tracking energy and circulation only)
works very well
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Numerical results (contours)
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Numerical results (vorticity)
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Numerical results (correlation, D quotient, ener
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Stochastic approach

Decomposition of the kick as mean plus fluctuation

ωr = ω̄r + ω′
r, ω̄r = Eωr
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Stochastic approach

Decomposition of the kick as mean plus fluctuation
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cumulative forcing effect (deterministic part)
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⌋Aω̄r
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Stochastic approach

Decomposition of the kick as mean plus fluctuation

ωr = ω̄r + ω′
r, ω̄r = Eωr

cumulative forcing effect (deterministic part)

⌊ t

∆t
⌋Aω̄r

deterministic part remain order one requires

A ≈ ∆t,or A = cr∆t
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stochastic forcing (fluctuation part)
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stochastic forcing (fluctuation part)

cumulative forcing effect (fluctuation part)
∫ t

0
F ′ = A

ω′
r(1) + · · · + ω′

r(⌊ t
∆t⌋)

√

⌊ 1
∆t⌋

√

1

∆t
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stochastic forcing (fluctuation part)

cumulative forcing effect (fluctuation part)
∫ t

0
F ′ = A

ω′
r(1) + · · · + ω′

r(⌊ t
∆t⌋)

√

⌊ 1
∆t⌋

√

1

∆t

Donsker’s invariance principle
∫ t

0
F ′ ≈ A√

∆t
G(t) = crǫG(t)

ǫ =
√

∆t
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Stochastic continuous version

The continuous equation

∂q

∂t
+ ∇⊥ψ · ∇q = ν∆q + crω̄r + crǫ

dG

dt
,

q = ∆ψ
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Stochastic continuous version

The continuous equation

∂q

∂t
+ ∇⊥ψ · ∇q = ν∆q + crω̄r + crǫ

dG

dt
,

q = ∆ψ

existence and uniqueness of solutions well known,
existence of invariant measure, random dynamical
system, existence of random attractor well-known
(Benssouson-Temam, Vishik-Fursikov, Schmalfuss,
Crauel-Debussche-Flandoli...)
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Heuristic limit

heuristic limit as ǫ→ 0

∂q0

∂t
+ ∇⊥ψ0 · ∇q0 = ν∆q0 + crω̄r,

q0 = ∆ψ0
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Heuristic limit

heuristic limit as ǫ→ 0

∂q0

∂t
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limiting behavior in time for relatively small crω̄r

∇⊥ψ0 · ∇q0 = ν∆2ψ0 + crω̄r
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Heuristic limit

heuristic limit as ǫ→ 0

∂q0

∂t
+ ∇⊥ψ0 · ∇q0 = ν∆q0 + crω̄r,

q0 = ∆ψ0

limiting behavior in time for relatively small crω̄r

∇⊥ψ0 · ∇q0 = ν∆2ψ0 + crω̄r

limiting behavior as cr → 0

q0 ≈ cr
ν

(−∆)−1(ω̄r)
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Heuristic limit (approximation)

ω̄r ≈ r2

q0 ≈ r2cr
ν

(−∆)−1(1)

(−∆)−1(1) =
∑

kjpos.odd,j=1,2

16

π2k1k2|~k|2
sin(k1x) sin(k2y)
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Heuristic limit (approximation)

ω̄r ≈ r2

q0 ≈ r2cr
ν

(−∆)−1(1)

(−∆)−1(1) =
∑

kjpos.odd,j=1,2

16

π2k1k2|~k|2
sin(k1x) sin(k2y)

corr(sinx sin y, (−∆)−1(1)) ≈ 0.99
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Numerical results and prediction

IMAGe talk – p. 21/32



Pathwise convergence (Majda-W.)
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Theorem
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Pathwise convergence (Majda-W.)

Theorem
‖q − q0‖L∞(0,T ;L2(Ω)) → 0, a.s.

∂q

∂t
+ ∇⊥ψ · ∇q = ν∆q + crω̄r + crǫ

dG

dt
For q̃ = q − crǫG

∂q̃
∂t + ∇⊥(ψ̃ + crǫ∆

−1G) · ∇(q̃ + crǫG)

= ν∆q̃ + crω̄r + νcrǫ∆G
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Pathwise convergence (Majda-W.)

Theorem
‖q − q0‖L∞(0,T ;L2(Ω)) → 0, a.s.

∂q

∂t
+ ∇⊥ψ · ∇q = ν∆q + crω̄r + crǫ

dG

dt
For q̃ = q − crǫG

∂q̃
∂t + ∇⊥(ψ̃ + crǫ∆

−1G) · ∇(q̃ + crǫG)

= ν∆q̃ + crω̄r + νcrǫ∆G

For q′ = q̃ − q0

∂q′

∂t
+ ∇⊥ψ · ∇q′ + ∇⊥(ψ′ + crǫ∆

−1G) · ∇q0
= ν∆q′ + νcrǫ∆G
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Rate of convergence (Majda-W.)
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Rate of convergence (Majda-W.)

Theorem
E(‖q − q0‖2

L2) ≤ κε2

q′ = q − q0

dq′ + (−ν∆q′ + ∇⊥ψ · ∇q′ + ∇ψ′ · ∇q0)dt = crǫdG

IMAGe talk – p. 23/32



Rate of convergence (Majda-W.)

Theorem
E(‖q − q0‖2

L2) ≤ κε2

q′ = q − q0

dq′ + (−ν∆q′ + ∇⊥ψ · ∇q′ + ∇ψ′ · ∇q0)dt = crǫdG

Ito’s formula ⇒
d

dt
E(‖q′‖2

L2) ≤ −(2ν − c

ν3
‖q0‖8

L2)E(‖q′‖2
L2) + c2rǫ

2
∑

b2~k

where

G(~x, t) =
∑

b~ke~k(~x)β~k
(t)

{e~k(~x)} o.n.b., {β~k
(t)} Brownians
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Convergence of attractors (Majda-W.)

Theorem
lim
ǫ→0

dist(Aǫ(ω),A0) = 0, a.s.

random dynamical system

ϕ : R+ × Ω ×H → H, (t, ω, u) ֌ ϕ(t, ω)u

ϕ(0, ω) = id, ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)

(Ω,F , P, (θt)t∈R),

θt measure preserving, θ0 = id, θt+s = θtθs
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Convergence of attractors (Majda-W.)
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Convergence of attractors (Majda-W.)

Theorem
lim
ǫ→0

dist(Aǫ(ω),A0) = 0, a.s.

random dynamical system

ϕ : R+ × Ω ×H → H, (t, ω, u) ֌ ϕ(t, ω)u

ϕ(0, ω) = id, ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)

(Ω,F , P, (θt)t∈R),

θt measure preserving, θ0 = id, θt+s = θtθs

random attractor A(ω)(compact, measurable)

ϕ(t, ω)A(ω) = A(θtω)

limt→∞dist(ϕ(t, θ−tω)B,A(ω)) = 0

generalization of Caraballo-Langa-Robinson IMAGe talk – p. 24/32



Commutative diagram (Majda-W.)

Theorem

q(t, ω) → q∞(ω)

⇓ ⇓
q0(t) → q0∞
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Uniqueness of invariant measure

Invariant measure µ0(du)
∫

H

F (u)µ0(du) =

∫

H

EF (ϕ(t, ω, u))µ0(du)
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Uniqueness of invariant measure

Invariant measure µ0(du)
∫

H

F (u)µ0(du) =

∫

H

EF (ϕ(t, ω, u))µ0(du)

Invariant measure is unique for small data

q′ = q2 − q1

d

dt
‖q′‖2 ≤ (−2ν − c

‖∇q1‖2

ν
)‖q′‖2
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Uniqueness of invariant measure

Invariant measure µ0(du)
∫

H

F (u)µ0(du) =

∫

H

EF (ϕ(t, ω, u))µ0(du)

Invariant measure is unique for small data

q′ = q2 − q1

d

dt
‖q′‖2 ≤ (−2ν − c

‖∇q1‖2

ν
)‖q′‖2

Main ingredient: contraction, Ito+Burkholder (with mean
forcing and dependent Brownian motion)
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Uniqueness of invariant measure

Invariant measure µ0(du)
∫

H

F (u)µ0(du) =

∫

H

EF (ϕ(t, ω, u))µ0(du)

Invariant measure is unique for small data

q′ = q2 − q1

d

dt
‖q′‖2 ≤ (−2ν − c

‖∇q1‖2

ν
)‖q′‖2

Main ingredient: contraction, Ito+Burkholder (with mean
forcing and dependent Brownian motion)

E, Flandoli, Kuksin, Mattingly, Maslowski, Schmalfuss,
Sinai, Shirikyan, ...
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Discrete case

Discrete time Markov processes

ηj+1
− = S(∆t)(ηj

− + Aωr(j)),

ηj+1
+ = S(∆t)(ηj

+) + Aωr(j)

IMAGe talk – p. 27/32



Discrete case

Discrete time Markov processes

ηj+1
− = S(∆t)(ηj

− + Aωr(j)),

ηj+1
+ = S(∆t)(ηj

+) + Aωr(j)

existence and uniqueness of invariant measure, random
attractor ...

IMAGe talk – p. 27/32



Discrete case

Discrete time Markov processes

ηj+1
− = S(∆t)(ηj

− + Aωr(j)),

ηj+1
+ = S(∆t)(ηj

+) + Aωr(j)
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structure (Majda-W.)
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Discrete case

Discrete time Markov processes

ηj+1
− = S(∆t)(ηj

− + Aωr(j)),

ηj+1
+ = S(∆t)(ηj

+) + Aωr(j)

existence and uniqueness of invariant measure, random
attractor ...

Invariant measure concentrated around a large coherent
structure (Majda-W.)

Kuksin-Shirikyan, Masmoudi-Young, etc
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Summary

Random small scale bombardments could induce large
coherent structure

Large structures well predicted by equilibrium statistical
theory

Random bombardment could alter sign as long as the
mean is not zero

Different large coherent structure could emerge
depending on different distribution of small scale forcing

Generalizes to other geometry and more general one
layer system, or multi-layer system
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Summary

Random small scale bombardments could induce large
coherent structure

Large structures well predicted by equilibrium statistical
theory

Random bombardment could alter sign as long as the
mean is not zero

Different large coherent structure could emerge
depending on different distribution of small scale forcing

Generalizes to other geometry and more general one
layer system, or multi-layer system

Long way to go to reach our goal
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Questions

Geophysical effects (β, F , topography, Ekman, · · ·)?
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Questions

Geophysical effects (β, F , topography, Ekman, · · ·)?
What if smallness assumption is violated?

What if the mean of the forcing is zero?

Vanishing viscosity and noise?

Convergence from discrete to the continuous case?
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Vanishing noise (SRB)

F = F̄ + ǫdG
dt
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Vanishing noise (SRB)

F = F̄ + ǫdG
dt

non-trivial global attractor for deterministic NSE

unique invariant measure with appropriate noise

Does the invariant measures converge?

Converge to what?
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The End
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