Large Scale Coherent Structure under Random Small Scale Bombardment

Emergence of Large Structure

Xiaoming Wang

wxm@math.fsu.edu
joint work with Andrew J. Majda
paper in Comm. Pure and Applied Mathematics 2006

Overview

Overview

- Introduction

Overview

- Introduction
- Heuristics

Overview

- Introduction
- Heuristics
- Rigorous result

Overview

- Introduction
- Heuristics
- Rigorous result
- Summary and comments

Great Red Spot

Goal

Goal

- Understand the emergence and persistence of such large scale coherent structure

Goal

- Understand the emergence and persistence of such large scale coherent structure
- Prediction

Mathematical model

Mathematical model

One layer model (Two dimensional fluid system for potential vorticity)

Mathematical model

One layer model (Two dimensional fluid system for potential vorticity)

$$
\begin{aligned}
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q & =\mathcal{D}(-\Delta) \psi+\mathcal{F} \\
q & =\Delta \psi+\beta y-F \psi+h \\
\mathcal{D}(-\Delta) \psi & =\sum_{j \geq 1} d_{j}(-\Delta)^{j} \psi
\end{aligned}
$$

Mathematical model

One layer model (Two dimensional fluid system for potential vorticity)

$$
\begin{aligned}
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q & =\mathcal{D}(-\Delta) \psi+\mathcal{F} \\
q & =\Delta \psi+\beta y-F \psi+h \\
\mathcal{D}(-\Delta) \psi & =\sum_{j \geq 1} d_{j}(-\Delta)^{j} \psi
\end{aligned}
$$

d_{1} : Ekman damping, d_{2} :Newtonian viscosity, $d_{j}, j \geq 3$: hyper-viscosity

Mathematical model

One layer model (Two dimensional fluid system for potential vorticity)

$$
\begin{aligned}
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q & =\mathcal{D}(-\Delta) \psi+\mathcal{F} \\
q & =\Delta \psi+\beta y-F \psi+h \\
\mathcal{D}(-\Delta) \psi & =\sum_{j \geq 1} d_{j}(-\Delta)^{j} \psi
\end{aligned}
$$

d_{1} : Ekman damping, d_{2} :Newtonian viscosity, $d_{j}, j \geq 3$: hyper-viscosity
Rationale: 1 fast rotation, (Charney, Bourgeois-Beale, Embid-Majda, Lions-Temam-Wang ...), 2. relative thinness (Raugel-Sell, Temam-Ziane, ...)

quilibrium/empirical statistical mechanic

quilibrium/empirical statistical mechanic

- undamped/unforced setting customary

quilibrium/empirical statistical mechanic

- undamped/unforced setting customary
- Information theoretical approach: Maximize Shannon entropy with given information

quilibrium/empirical statistical mechanic

- undamped/unforced setting customary
- Information theoretical approach: Maximize Shannon entropy with given information
- conserved quantity becomes constraints on ρ

quilibrium/empirical statistical mechanic

- undamped/unforced setting customary
- Information theoretical approach: Maximize Shannon entropy with given information
- conserved quantity becomes constraints on ρ
- Mean field equation

$$
\bar{q}=\mathcal{G}(\bar{\psi})
$$

quilibrium/empirical statistical mechanic

- undamped/unforced setting customary
- Information theoretical approach: Maximize Shannon entropy with given information
- conserved quantity becomes constraints on ρ
- Mean field equation

$$
\bar{q}=\mathcal{G}(\bar{\psi})
$$

- Most of them are stable under appropriate assumptions

quilibrium/empirical statistical mechanic

- undamped/unforced setting customary
- Information theoretical approach: Maximize Shannon entropy with given information
- conserved quantity becomes constraints on ρ
- Mean field equation

$$
\bar{q}=\mathcal{G}(\bar{\psi})
$$

- Most of them are stable under appropriate assumptions
- Majda and W., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, CUP, 2006

Dynamical approach

Dynamical approach

- Forcing on the largest scale (Yudovitch, Marchioro, Constantin-Foias-Temam)

Dynamical approach

- Forcing on the largest scale (Yudovitch, Marchioro, Constantin-Foias-Temam)
- Selective decay (decaying flow) (Foias-Saut, Majda-Shim-W., Montgomery, McWilliam etc)

Dynamical approach

- Forcing on the largest scale (Yudovitch, Marchioro, Constantin-Foias-Temam)
- Selective decay (decaying flow) (Foias-Saut, Majda-Shim-W., Montgomery, McWilliam etc)
- Large scale structure: ground energy shell

Damped driven environment

Damped driven environment

- unresolved small scale in forcing (small scale convection on Jupiter weather layer, storms for the oceans' mixing layer)

Damped driven environment

- unresolved small scale in forcing (small scale convection on Jupiter weather layer, storms for the oceans' mixing layer)
- random small scale forcing (in Jupiter's case: predominantly positive)

Damped driven environment

- unresolved small scale in forcing (small scale convection on Jupiter weather layer, storms for the oceans' mixing layer)
- random small scale forcing (in Jupiter's case: predominantly positive)
- Newtonian viscosity needed

Simple model

Two dimensional Navier-Stokes equation (vorticity-stream function)

$$
\begin{aligned}
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q & =\nu \Delta q+\mathcal{F} \\
\Delta \psi & =q \\
\left.q\right|_{t=0} & =q_{0}(\geq 0) \\
\psi=q & =0, \text { on } \partial Q(Q=[0, \pi] \times[0, \pi])
\end{aligned}
$$

Impulse(kick) random small scale forcing

Impulse(kick) random small scale forcing

-

$$
\mathcal{F}=\sum_{j=1}^{\infty} \delta(t-j \Delta t) A \omega_{r}\left(\vec{x}-\vec{x}_{j}\right)
$$

Impulse(kick) random small scale forcing

e

$$
\begin{gathered}
\mathcal{F}=\sum_{j=1}^{\infty} \delta(t-j \Delta t) A \omega_{r}\left(\vec{x}-\vec{x}_{j}\right) \\
\omega_{r}(\vec{x})=\left\{\begin{array}{cl}
\left(1-\left|\vec{x}-\vec{x}_{j}\right|^{2} / r^{2}\right)^{2}, & \left|\vec{x}-\vec{x}_{j}\right|^{2} \leq r^{2} \\
0, & \left|\vec{x}-\vec{x}_{j}\right|^{2}>r^{2}
\end{array} .\right.
\end{gathered}
$$

Impulse(kick) random small scale forcing

-

$$
\begin{gathered}
\mathcal{F}=\sum_{j=1}^{\infty} \delta(t-j \Delta t) A \omega_{r}\left(\vec{x}-\vec{x}_{j}\right) \\
\omega_{r}(\vec{x})=\left\{\begin{array}{cc}
\left(1-\left|\vec{x}-\vec{x}_{j}\right|^{2} / r^{2}\right)^{2}, & \left|\vec{x}-\vec{x}_{j}\right|^{2} \leq r^{2} \\
0, & \left|\vec{x}-\vec{x}_{j}\right|^{2}>r^{2} .
\end{array}\right.
\end{gathered}
$$

- x_{j} : uniform distribution on $Q_{r_{0}}=\left[r_{0}, \pi-r_{0}\right] \times\left[r_{0}, \pi-r_{0}\right]$

Forcing figure

ediction via statistical theory (Grote-Maj

ediction via statistical theory (Grote-Maje

- EEST leads to the ground state $\sin x \sin y$

ediction via statistical theory (Grote-Maj

- EEST leads to the ground state $\sin x \sin y$
- PVST or ESTP leads to sinh-Poisson

ediction via statistical theory (Grote-Maj

- EEST leads to the ground state $\sin x \sin y$
- PVST or ESTP leads to sinh-Poisson
- crude closure (tracking energy and circulation only) works very well

Numerical results (contours)

Numerical results (vorticity)

erical results (correlation, D quotient, en

Stochastic approach

Stochastic approach

- Decomposition of the kick as mean plus fluctuation

$$
\omega_{r}=\bar{\omega}_{r}+\omega_{r}^{\prime}, \quad \bar{\omega}_{r}=\mathbb{E} \omega_{r}
$$

Stochastic approach

- Decomposition of the kick as mean plus fluctuation

$$
\omega_{r}=\bar{\omega}_{r}+\omega_{r}^{\prime}, \quad \bar{\omega}_{r}=\mathbb{E} \omega_{r}
$$

- cumulative forcing effect (deterministic part)

$$
\left\lfloor\frac{t}{\Delta t}\right\rfloor A \bar{\omega}_{r}
$$

Stochastic approach

- Decomposition of the kick as mean plus fluctuation

$$
\omega_{r}=\bar{\omega}_{r}+\omega_{r}^{\prime}, \quad \bar{\omega}_{r}=\mathbb{E} \omega_{r}
$$

- cumulative forcing effect (deterministic part)

$$
\left\lfloor\frac{t}{\Delta t}\right\rfloor A \bar{\omega}_{r}
$$

- deterministic part remain order one requires

$$
A \approx \Delta t, \text { or } A=c_{r} \Delta t
$$

stochastic forcing (fluctuation part)

stochastic forcing (fluctuation part)

- cumulative forcing effect (fluctuation part)

$$
\int_{0}^{t} \mathcal{F}^{\prime}=A \frac{\omega_{r}^{\prime}(1)+\cdots+\omega_{r}^{\prime}\left(\left\lfloor\frac{t}{\Delta t}\right\rfloor\right)}{\sqrt{\left\lfloor\frac{1}{\Delta t}\right\rfloor}} \sqrt{\frac{1}{\Delta t}}
$$

stochastic forcing (fluctuation part)

- cumulative forcing effect (fluctuation part)

$$
\int_{0}^{t} \mathcal{F}^{\prime}=A \frac{\omega_{r}^{\prime}(1)+\cdots+\omega_{r}^{\prime}\left(\left\lfloor\frac{t}{\Delta t}\right\rfloor\right)}{\sqrt{\left\lfloor\frac{1}{\Delta t}\right\rfloor}} \sqrt{\frac{1}{\Delta t}}
$$

- Donsker's invariance principle

$$
\begin{gathered}
\int_{0}^{t} \mathcal{F}^{\prime} \approx \frac{A}{\sqrt{\Delta t}} G(t)=c_{r} \epsilon G(t) \\
\epsilon=\sqrt{\Delta t}
\end{gathered}
$$

Stochastic continuous version

Stochastic continuous version

- The continuous equation

$$
\begin{aligned}
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q & =\nu \Delta q+c_{r} \bar{\omega}_{r}+c_{r} \epsilon \frac{d G}{d t} \\
q & =\Delta \psi
\end{aligned}
$$

Stochastic continuous version

- The continuous equation

$$
\begin{aligned}
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q & =\nu \Delta q+c_{r} \bar{\omega}_{r}+c_{r} \epsilon \frac{d G}{d t} \\
q & =\Delta \psi
\end{aligned}
$$

- existence and uniqueness of solutions well known, existence of invariant measure, random dynamical system, existence of random attractor well-known (Benssouson-Temam, Vishik-Fursikov, Schmalfuss, Crauel-Debussche-Flandoli...)

Heuristic limit

Heuristic limit

- heuristic limit as $\epsilon \rightarrow 0$

$$
\begin{aligned}
\frac{\partial q^{0}}{\partial t}+\nabla^{\perp} \psi^{0} \cdot \nabla q^{0} & =\nu \Delta q^{0}+c_{r} \bar{\omega}_{r}, \\
q^{0} & =\Delta \psi^{0}
\end{aligned}
$$

Heuristic limit

- heuristic limit as $\epsilon \rightarrow 0$

$$
\begin{aligned}
\frac{\partial q^{0}}{\partial t}+\nabla^{\perp} \psi^{0} \cdot \nabla q^{0} & =\nu \Delta q^{0}+c_{r} \bar{\omega}_{r}, \\
q^{0} & =\Delta \psi^{0}
\end{aligned}
$$

- limiting behavior in time for relatively small $c_{r} \bar{\omega}_{r}$

$$
\nabla^{\perp} \psi^{0} \cdot \nabla q^{0}=\nu \Delta^{2} \psi^{0}+c_{r} \bar{\omega}_{r}
$$

Heuristic limit

- heuristic limit as $\epsilon \rightarrow 0$

$$
\begin{aligned}
\frac{\partial q^{0}}{\partial t}+\nabla^{\perp} \psi^{0} \cdot \nabla q^{0} & =\nu \Delta q^{0}+c_{r} \bar{\omega}_{r} \\
q^{0} & =\Delta \psi^{0}
\end{aligned}
$$

- limiting behavior in time for relatively small $c_{r} \bar{\omega}_{r}$

$$
\nabla^{\perp} \psi^{0} \cdot \nabla q^{0}=\nu \Delta^{2} \psi^{0}+c_{r} \bar{\omega}_{r}
$$

limiting behavior as $c_{r} \rightarrow 0$

$$
q^{0} \approx \frac{c_{r}}{\nu}(-\Delta)^{-1}\left(\bar{\omega}_{r}\right)
$$

Heuristic limit (approximation)

Heuristic limit (approximation)

$\bar{\omega}_{r} \approx r^{2}$

Heuristic limit (approximation)

-

$$
\begin{gathered}
\bar{\omega}_{r} \approx r^{2} \\
q^{0} \approx \frac{r^{2} c_{r}}{\nu}(-\Delta)^{-1}(1)
\end{gathered}
$$

Heuristic limit (approximation)

$$
\begin{gathered}
\bar{\omega}_{r} \approx r^{2} \\
q^{0} \approx \frac{r^{2} c_{r}}{\nu}(-\Delta)^{-1}(1) \\
(-\Delta)^{-1}(1)=\sum_{k_{j} \text { pos.odd }, j=1,2} \frac{16}{\pi^{2} k_{1} k_{2}|\vec{k}|^{2}} \sin \left(k_{1} x\right) \sin \left(k_{2} y\right)
\end{gathered}
$$

Heuristic limit (approximation)

$$
\begin{gathered}
\bar{\omega}_{r} \approx r^{2} \\
q^{0} \approx \frac{r^{2} c_{r}}{\nu}(-\Delta)^{-1}(1) \\
(-\Delta)^{-1}(1)=\sum_{k_{j} \text { pos.odd,j=1,2}} \frac{16}{\pi^{2} k_{1} k_{2}|\vec{k}|^{2}} \sin \left(k_{1} x\right) \sin \left(k_{2} y\right) \\
\operatorname{corr}\left(\sin x \sin y,(-\Delta)^{-1}(1)\right) \approx 0.99
\end{gathered}
$$

Numerical results and prediction

Pathwise convergence (Majda-W.)

Pathwise convergence (Majda-W.)

- Theorem

$$
\left\|q-q^{0}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \rightarrow 0, \text { a.s. }
$$

Pathwise convergence (Majda-W.)

- Theorem

$$
\begin{gathered}
\left\|q-q^{0}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \rightarrow 0, \text { a.s. } \\
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q=\nu \Delta q+c_{r} \bar{\omega}_{r}+c_{r} \epsilon \frac{d G}{d t}
\end{gathered}
$$

Pathwise convergence (Majda-W.)

- Theorem

$$
\begin{gathered}
\left\|q-q^{0}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \rightarrow 0, \text { a.s. } \\
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q=\nu \Delta q+c_{r} \bar{\omega}_{r}+c_{r} \epsilon \frac{d G}{d t}
\end{gathered}
$$

- For $\tilde{q}=q-c_{r} \epsilon G$

$$
=\begin{gathered}
\frac{\partial \tilde{q}}{\partial t}+\nabla^{\perp}\left(\tilde{\psi}+c_{r} \epsilon \Delta^{-1} G\right) \cdot \nabla\left(\tilde{q}+c_{r} \epsilon G\right) \\
\nu \Delta \tilde{q}+c_{r} \bar{\omega}_{r}+\nu c_{r} \epsilon \Delta G
\end{gathered}
$$

Pathwise convergence (Majda-W.)

- Theorem

$$
\begin{gathered}
\left\|q-q^{0}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \rightarrow 0, \text { a.s. } \\
\frac{\partial q}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q=\nu \Delta q+c_{r} \bar{\omega}_{r}+c_{r} \epsilon \frac{d G}{d t}
\end{gathered}
$$

- For $\tilde{q}=q-c_{r} \epsilon G$

$$
=\begin{gathered}
\frac{\partial \tilde{q}}{\partial t}+\nabla^{\perp}\left(\tilde{\psi}+c_{r} \epsilon \Delta^{-1} G\right) \cdot \nabla\left(\tilde{q}+c_{r} \epsilon G\right) \\
\nu \Delta \tilde{q}+c_{r} \bar{\omega}_{r}+\nu c_{r} \epsilon \Delta G
\end{gathered}
$$

- For $q^{\prime}=\tilde{q}-q^{0}$

$$
=\begin{gathered}
\frac{\partial q^{\prime}}{\partial t}+\nabla^{\perp} \psi \cdot \nabla q^{\prime}+\nabla^{\perp}\left(\psi^{\prime}+c_{r} \epsilon \Delta^{-1} G\right) \cdot \nabla q^{0} \\
\nu \Delta q^{\prime}+\nu c_{r} \epsilon \Delta G
\end{gathered}
$$

Rate of convergence (Majda-W.)

Rate of convergence (Majda-W.)

- Theorem

$$
\mathbb{E}\left(\left\|q-q^{0}\right\|_{L^{2}}^{2}\right) \leq \kappa \varepsilon^{2}
$$

Rate of convergence (Majda-W.)

- Theorem

$$
\mathbb{E}\left(\left\|q-q^{0}\right\|_{L^{2}}^{2}\right) \leq \kappa \varepsilon^{2}
$$

- $q^{\prime}=q-q^{0}$

$$
d q^{\prime}+\left(-\nu \Delta q^{\prime}+\nabla^{\perp} \psi \cdot \nabla q^{\prime}+\nabla \psi^{\prime} \cdot \nabla q^{0}\right) d t=c_{r} \epsilon d G
$$

Rate of convergence (Majda-W.)

- Theorem

$$
\mathbb{E}\left(\left\|q-q^{0}\right\|_{L^{2}}^{2}\right) \leq \kappa \varepsilon^{2}
$$

- $q^{\prime}=q-q^{0}$

$$
d q^{\prime}+\left(-\nu \Delta q^{\prime}+\nabla^{\perp} \psi \cdot \nabla q^{\prime}+\nabla \psi^{\prime} \cdot \nabla q^{0}\right) d t=c_{r} \epsilon d G
$$

- Ito's formula \Rightarrow

$$
\frac{d}{d t} \mathbb{E}\left(\left\|q^{\prime}\right\|_{L^{2}}^{2}\right) \leq-\left(2 \nu-\frac{c}{\nu^{3}}\left\|q^{0}\right\|_{L^{2}}^{8}\right) \mathbb{E}\left(\left\|q^{\prime}\right\|_{L^{2}}^{2}\right)+c_{r}^{2} \epsilon^{2} \sum b_{\vec{k}}^{2}
$$

where

$$
G(\vec{x}, t)=\sum b_{\vec{k}} e_{\vec{k}}(\vec{x}) \beta_{\vec{k}}(t)
$$

$\left\{e_{\vec{k}}(\vec{x})\right\}$ o.n.b., $\left\{\beta_{\vec{k}}(t)\right\}$ Brownians

Convergence of attractors (Majda-W.)

Convergence of attractors (Majda-W.)

- Theorem

$$
\lim _{\epsilon \rightarrow 0} \operatorname{dist}\left(\mathcal{A}_{\epsilon}(\omega), \mathcal{A}_{0}\right)=0, \text { a.s. }
$$

Convergence of attractors (Majda-W.)

- Theorem

$$
\lim _{\epsilon \rightarrow 0} \operatorname{dist}\left(\mathcal{A}_{\epsilon}(\omega), \mathcal{A}_{0}\right)=0, \text { a.s. }
$$

- random dynamical system

$$
\begin{gathered}
\varphi: R^{+} \times \Omega \times H \rightarrow H,(t, \omega, u) \mapsto \varphi(t, \omega) u \\
\varphi(0, \omega)=i d, \quad \varphi(t+s, \omega)=\varphi\left(t, \theta_{s} \omega\right) \circ \varphi(s, \omega) \\
\left(\Omega, \mathcal{F}, P,\left(\theta_{t}\right)_{t \in R}\right)
\end{gathered}
$$

θ_{t} measure preserving, $\theta_{0}=i d, \theta_{t+s}=\theta_{t} \theta_{s}$

Convergence of attractors (Majda-W.)

- Theorem

$$
\lim _{\epsilon \rightarrow 0} \operatorname{dist}\left(\mathcal{A}_{\epsilon}(\omega), \mathcal{A}_{0}\right)=0, \text { a.s. }
$$

- random dynamical system

$$
\begin{gathered}
\varphi: R^{+} \times \Omega \times H \rightarrow H,(t, \omega, u) \mapsto \varphi(t, \omega) u \\
\varphi(0, \omega)=i d, \quad \varphi(t+s, \omega)=\varphi\left(t, \theta_{s} \omega\right) \circ \varphi(s, \omega) \\
\left(\Omega, \mathcal{F}, P,\left(\theta_{t}\right)_{t \in R}\right)
\end{gathered}
$$

θ_{t} measure preserving, $\theta_{0}=i d, \theta_{t+s}=\theta_{t} \theta_{s}$

- random attractor $\mathcal{A}(\omega)$ (compact, measurable)

Convergence of attractors (Majda-W.)

- Theorem

$$
\lim _{\epsilon \rightarrow 0} \operatorname{dist}\left(\mathcal{A}_{\epsilon}(\omega), \mathcal{A}_{0}\right)=0, \text { a.s. }
$$

- random dynamical system

$$
\begin{gathered}
\varphi: R^{+} \times \Omega \times H \rightarrow H,(t, \omega, u) \mapsto \varphi(t, \omega) u \\
\varphi(0, \omega)=i d, \quad \varphi(t+s, \omega)=\varphi\left(t, \theta_{s} \omega\right) \circ \varphi(s, \omega) \\
\left(\Omega, \mathcal{F}, P,\left(\theta_{t}\right)_{t \in R}\right)
\end{gathered}
$$

θ_{t} measure preserving, $\theta_{0}=i d, \theta_{t+s}=\theta_{t} \theta_{s}$

- random attractor $\mathcal{A}(\omega)$ (compact, measurable)

$$
\varphi(t, \omega) \mathcal{A}(\omega)=\mathcal{A}\left(\theta_{t} \omega\right)
$$

Convergence of attractors (Majda-W.)

- Theorem

$$
\lim _{\epsilon \rightarrow 0} \operatorname{dist}\left(\mathcal{A}_{\epsilon}(\omega), \mathcal{A}_{0}\right)=0, \text { a.s. }
$$

- random dynamical system

$$
\begin{gathered}
\varphi: R^{+} \times \Omega \times H \rightarrow H,(t, \omega, u) \mapsto \varphi(t, \omega) u \\
\varphi(0, \omega)=i d, \quad \varphi(t+s, \omega)=\varphi\left(t, \theta_{s} \omega\right) \circ \varphi(s, \omega) \\
\left(\Omega, \mathcal{F}, P,\left(\theta_{t}\right)_{t \in R}\right)
\end{gathered}
$$

θ_{t} measure preserving, $\theta_{0}=i d, \theta_{t+s}=\theta_{t} \theta_{s}$

- random attractor $\mathcal{A}(\omega)$ (compact, measurable)

$$
\begin{gathered}
\varphi(t, \omega) \mathcal{A}(\omega)=\mathcal{A}\left(\theta_{t} \omega\right) \\
\lim _{t \rightarrow \infty} \operatorname{dist}\left(\varphi\left(t, \theta_{-t} \omega\right) B, \mathcal{A}(\omega)\right)=0
\end{gathered}
$$

Convergence of attractors (Majda-W.)

- Theorem

$$
\lim _{\epsilon \rightarrow 0} \operatorname{dist}\left(\mathcal{A}_{\epsilon}(\omega), \mathcal{A}_{0}\right)=0, \text { a.s. }
$$

- random dynamical system

$$
\begin{gathered}
\varphi: R^{+} \times \Omega \times H \rightarrow H,(t, \omega, u) \mapsto \varphi(t, \omega) u \\
\varphi(0, \omega)=i d, \quad \varphi(t+s, \omega)=\varphi\left(t, \theta_{s} \omega\right) \circ \varphi(s, \omega) \\
\left(\Omega, \mathcal{F}, P,\left(\theta_{t}\right)_{t \in R}\right)
\end{gathered}
$$

θ_{t} measure preserving, $\theta_{0}=i d, \theta_{t+s}=\theta_{t} \theta_{s}$

- random attractor $\mathcal{A}(\omega)$ (compact, measurable)

$$
\varphi(t, \omega) \mathcal{A}(\omega)=\mathcal{A}\left(\theta_{t} \omega\right)
$$

$$
\lim _{t \rightarrow \infty} \operatorname{dist}\left(\varphi\left(t, \theta_{-t} \omega\right) B, \mathcal{A}(\omega)\right)=0
$$

generalization of Caraballo-Langa-Robinson

Commutative diagram (Majda-W.)

Theorem

$$
\begin{aligned}
& q(t, \omega) \rightarrow q_{\infty}(\omega) \\
& \Downarrow \\
& \Downarrow \\
& q^{0}(t) \rightarrow q_{\infty}^{0}
\end{aligned}
$$

Uniqueness of invariant measure

Uniqueness of invariant measure

- Invariant measure $\mu_{0}(d u)$

$$
\int_{H} F(u) \mu_{0}(d u)=\int_{H} \mathbb{E} F(\varphi(t, \omega, u)) \mu_{0}(d u)
$$

Uniqueness of invariant measure

- Invariant measure $\mu_{0}(d u)$

$$
\int_{H} F(u) \mu_{0}(d u)=\int_{H} \mathbb{E} F(\varphi(t, \omega, u)) \mu_{0}(d u)
$$

- Invariant measure is unique for small data

Uniqueness of invariant measure

- Invariant measure $\mu_{0}(d u)$

$$
\int_{H} F(u) \mu_{0}(d u)=\int_{H} \mathbb{E} F(\varphi(t, \omega, u)) \mu_{0}(d u)
$$

- Invariant measure is unique for small data
- $q^{\prime}=q^{2}-q^{1}$

$$
\frac{d}{d t}\left\|q^{\prime}\right\|^{2} \leq\left(-2 \nu-c \frac{\left\|\nabla q^{1}\right\|^{2}}{\nu}\right)\left\|q^{\prime}\right\|^{2}
$$

Uniqueness of invariant measure

- Invariant measure $\mu_{0}(d u)$

$$
\int_{H} F(u) \mu_{0}(d u)=\int_{H} \mathbb{E} F(\varphi(t, \omega, u)) \mu_{0}(d u)
$$

- Invariant measure is unique for small data
- $q^{\prime}=q^{2}-q^{1}$

$$
\frac{d}{d t}\left\|q^{\prime}\right\|^{2} \leq\left(-2 \nu-c \frac{\left\|\nabla q^{1}\right\|^{2}}{\nu}\right)\left\|q^{\prime}\right\|^{2}
$$

- Main ingredient: contraction, Ito+Burkholder (with mean forcing and dependent Brownian motion)

Uniqueness of invariant measure

- Invariant measure $\mu_{0}(d u)$

$$
\int_{H} F(u) \mu_{0}(d u)=\int_{H} \mathbb{E} F(\varphi(t, \omega, u)) \mu_{0}(d u)
$$

- Invariant measure is unique for small data
- $q^{\prime}=q^{2}-q^{1}$

$$
\frac{d}{d t}\left\|q^{\prime}\right\|^{2} \leq\left(-2 \nu-c \frac{\left\|\nabla q^{1}\right\|^{2}}{\nu}\right)\left\|q^{\prime}\right\|^{2}
$$

- Main ingredient: contraction, Ito+Burkholder (with mean forcing and dependent Brownian motion)
- E, Flandoli, Kuksin, Mattingly, Maslowski, Schmalfuss, Sinai, Shirikyan, ...

Discrete case

Discrete case

- Discrete time Markov processes

$$
\begin{aligned}
\eta_{-}^{j+1} & =S(\Delta t)\left(\eta_{-}^{j}+A \omega_{r}(j)\right), \\
\eta_{+}^{j+1} & =S(\Delta t)\left(\eta_{+}^{j}\right)+A \omega_{r}(j)
\end{aligned}
$$

Discrete case

- Discrete time Markov processes

$$
\begin{aligned}
\eta_{-}^{j+1} & =S(\Delta t)\left(\eta_{-}^{j}+A \omega_{r}(j)\right), \\
\eta_{+}^{j+1} & =S(\Delta t)\left(\eta_{+}^{j}\right)+A \omega_{r}(j)
\end{aligned}
$$

- existence and uniqueness of invariant measure, random attractor ...

Discrete case

- Discrete time Markov processes

$$
\begin{aligned}
\eta_{-}^{j+1} & =S(\Delta t)\left(\eta_{-}^{j}+A \omega_{r}(j)\right), \\
\eta_{+}^{j+1} & =S(\Delta t)\left(\eta_{+}^{j}\right)+A \omega_{r}(j)
\end{aligned}
$$

- existence and uniqueness of invariant measure, random attractor ...
- Invariant measure concentrated around a large coherent structure (Majda-W.)

Discrete case

- Discrete time Markov processes

$$
\begin{aligned}
\eta_{-}^{j+1} & =S(\Delta t)\left(\eta_{-}^{j}+A \omega_{r}(j)\right), \\
\eta_{+}^{j+1} & =S(\Delta t)\left(\eta_{+}^{j}\right)+A \omega_{r}(j)
\end{aligned}
$$

- existence and uniqueness of invariant measure, random attractor ...
- Invariant measure concentrated around a large coherent structure (Majda-W.)
- Kuksin-Shirikyan, Masmoudi-Young, etc

Summary

Summary

- Random small scale bombardments could induce large coherent structure

Summary

- Random small scale bombardments could induce large coherent structure
- Large structures well predicted by equilibrium statistical theory

Summary

- Random small scale bombardments could induce large coherent structure
- Large structures well predicted by equilibrium statistical theory
- Random bombardment could alter sign as long as the mean is not zero

Summary

- Random small scale bombardments could induce large coherent structure
- Large structures well predicted by equilibrium statistical theory
- Random bombardment could alter sign as long as the mean is not zero
- Different large coherent structure could emerge depending on different distribution of small scale forcing

Summary

- Random small scale bombardments could induce large coherent structure
- Large structures well predicted by equilibrium statistical theory
- Random bombardment could alter sign as long as the mean is not zero
- Different large coherent structure could emerge depending on different distribution of small scale forcing
- Generalizes to other geometry and more general one layer system, or multi-layer system

Summary

- Random small scale bombardments could induce large coherent structure
- Large structures well predicted by equilibrium statistical theory
- Random bombardment could alter sign as long as the mean is not zero
- Different large coherent structure could emerge depending on different distribution of small scale forcing
- Generalizes to other geometry and more general one layer system, or multi-layer system
- Long way to go to reach our goal

Questions

Questions

- Geophysical effects (β, F, topography, Ekman, \cdots)?

Questions

- Geophysical effects (β, F, topography, Ekman, \cdots)?
- What if smallness assumption is violated?

Questions

- Geophysical effects (β, F, topography, Ekman, \cdots)?
- What if smallness assumption is violated?
- What if the mean of the forcing is zero?

Questions

- Geophysical effects (β, F, topography, Ekman, \cdots)?
- What if smallness assumption is violated?
- What if the mean of the forcing is zero?
- Vanishing viscosity and noise?

Questions

- Geophysical effects (β, F, topography, Ekman, \cdots)?
- What if smallness assumption is violated?
- What if the mean of the forcing is zero?
- Vanishing viscosity and noise?
- Convergence from discrete to the continuous case?

Vanishing noise (SRB)

$$
\mathcal{F}=\overline{\mathcal{F}}+\epsilon \frac{d G}{d t}
$$

Vanishing noise (SRB)

$\mathcal{F}=\overline{\mathcal{F}}+\epsilon \frac{d G}{d t}$

- non-trivial global attractor for deterministic NSE

Vanishing noise (SRB)

$\mathcal{F}=\overline{\mathcal{F}}+\epsilon \frac{d G}{d t}$

- non-trivial global attractor for deterministic NSE
- unique invariant measure with appropriate noise

Vanishing noise (SRB)

$\mathcal{F}=\overline{\mathcal{F}}+\epsilon \frac{d G}{d t}$

- non-trivial global attractor for deterministic NSE
- unique invariant measure with appropriate noise
- Does the invariant measures converge?

Vanishing noise (SRB)

$\mathcal{F}=\overline{\mathcal{F}}+\epsilon \frac{d G}{d t}$

- non-trivial global attractor for deterministic NSE
- unique invariant measure with appropriate noise
- Does the invariant measures converge?
- Converge to what?

Acknowledgements

Acknowledgements

- Financial Support: NSF, NYU, FSU

Acknowledgements

- Financial Support: NSF, NYU, FSU
- People: Wendy Cheng, Weinan E, Marcus Grote, Nader Masmoudi, Charles Newman, Toufic Suidan

The End

