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BD Data frame of the effect of buffer compositions on DNA strand dis-
placement amplification. A 4-d regression data set with with replica-
tion. This is a useful test data set for exercising function fitting meth-
ods.

Description

The BD data frame has 89 rows and 5 columns. There are 89 runs with four buffer components
(KCL, MgCl2, KP04, dnTP) systematically varied in a space-filliing design. The response is the
DNA amplification rate.

Format

This data frame contains the following columns:

KCl Buffer component.

MgCl2 Buffer component.

KPO4 Buffer component.
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dNTP Buffer component, deoxyribonucleotides.

lnya Exponential amplification rate on a log scale, i.e. the actual amplification rate.

Source

Thanks to Perry Haaland and Michael OConnell.

Becton Dickinson Research Center Research Triangle Park, NC

See Also

Tps

Examples

# fitting a DNA strand
# displacement amplification surface to various buffer compositions
fit<- Tps(BD[,1:4],BD$lnya,scale.type="range")
surface(fit) # plots fitted surface and contours

Colorado Monthly Meteorological Data
Monthly surface meterology for Colorado 1895-1997

Description

Source:

These is a group of R data sets for monthly min/max temperatures and precipitation over the period
1895-1997. It is a subset extracted from the more extensive US data record described in at http:
//www.image.ucar.edu/Data/US.monthly.met. Observed monthly precipitation, min
and max temperatures for the conterminous US 1895-1997. See also http://www.image.
ucar.edu/Data/US.monthly.met/CO.shtml for an on line document of this Colorado
subset. Temperature is in degrees C and precipitation is total monthly accumulation in millimeters.
Note that minimum (maximum) monthly tempertuare is the mean of the daily minimum (maximum)
temperatures.

Data domain:

A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the boundary of Colorado com-
prises approximately 400 stations. Although there are additional stations reported in this domain,
stations that only report preicipitation or only report temperatures have been excluded. In addition
stations that have mismatches between locations and elevations from the two meta data files have
also been excluded. The net result is 367 stations that have colocated temperatures and precipitation.

http://www.image.ucar.edu/Data/US.monthly.met
http://www.image.ucar.edu/Data/US.monthly.met
http://www.image.ucar.edu/Data/US.monthly.met/CO.shtml
http://www.image.ucar.edu/Data/US.monthly.met/CO.shtml
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Format

This group of data sets is organized with the following objects:

CO.info A data frame with columns: station id, elev, lon, lat, station name

CO.elev elevation in meters

CO.id alphanumeric station id codes

CO.loc locations in lon/lat

CO.ppt CO.tmax CO.tmin Monthly means as three dimensional arrays ( Year, Month, Station).
Temperature is in degrees C and precipitation in total monthly accumulation in millimeters.

CO.MAM.ppt CO.MAM.tmax CO.MAM.tmin Spring seasonal means (March, April,May) as
two dimensional arrays (Year, Station).

Examples

data(COmonthlyMet)

#Spatial plot of 1997 Spring average daily maximum temps
quilt.plot( CO.loc,CO.tmax.MAM[103,] )
US( add=TRUE)
title( "Recorded MAM max temperatures (1997)")

# min and max temperatures against elevation

matplot( CO.elev, cbind( CO.tmax.MAM[103,], CO.tmin.MAM[103,]),
pch="o", type="p",
col=c("red", "blue"), xlab="Elevation (m)", ylab="Temperature (C)")

title("Recorded MAM max (red) and min (blue) temperatures 1997")

Exponential, Matern, Radial Basis
Covariance functions

Description

Functional form of covariance function assuming the argument is a distance between locations.

Usage

Exponential(d, range = 1, alpha = 1/range, phi = 1)
Matern (d , scale = 1, range = 1,alpha=1/range,

smoothness = 0.5, nu= smoothness, phi=scale)
RadialBasis(d,M,dimension)
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Arguments

d Vector of distances

range Range parameter default is one. Note that the scale can also be specified through
the "theta" scaling argument used in fields covariance functions)

alpha 1/range

scale Same as phi

phi Marginal variance.

smoothness Smoothness parameter in Matern. Controls the number of derivatives in the
process. Default is 1/2 corresponding to an exponential covariance.

nu Same as smoothness

M Interpreted as a spline M is the order of the derivatives in the penalty.

dimension Dimension of function

Details

Exponential:

phi* exp( -d/range)

Matern:

phi*con*(dn̂u) * besselK(d , nu )

Matern covariance function transcribed from Stein’s book page 31 nu==smoothness, alpha ==
1/range

GeoR parameters map to kappa==smoothness and phi == range check for negative distances

con is a constant that normalizes the expression to be 1.0 when phi=1.0 and d=0.

Radial basis functions:

C.m,d d(̂2m-dim) dim- odd

C.m,d d(̂2m-dim)ln( d) dim-even

where C.m.d is a constant based on spline theory. See radbas.constant.

Value

A vector of covariances.

Author(s)

Doug Nychka

References

Stein’s book

See Also

stationary.cov, stationary.image.cov, Wendland,stationary.taper.cov rad.cov



Krig.Amatrix 7

Krig.Amatrix Smoother (or "hat") matrix relating predicted values to the dependent
(Y) values.

Description

For a fixed value of the smoothing parameter or the covariance function some nonparametric curve
estimates are linear functions of the observed data. This is a intermediate level function that com-
putes the linear weights to be applied to the observations to estimate the curve at a particular point.
For example the predicted values can be represented as Ay where A is an N X N matrix of coeffi-
cients and Y is the vector of observed dependent variables. For linear smoothers the matrix A may
depend on the smoothing parameter ( or covariance function and the independent variables (X) but
NOT on Y.

Usage

Krig.Amatrix(object, x0 = object$x, lambda=NULL,
eval.correlation.model = FALSE,...)

Arguments

Output object from fitting a data set using a FIELD regression method. Currently this is supported
only for Krig ( and Tps) functions.

object A Krig object produced by the Krig ( or Tps) function.

x0 Locations for prediction default is the observation locations.

lambda Value of the smoothing parameter.
eval.correlation.model

This applies to a correlation model where the observations have been standard-
ized – e.g. y standardized = (yraw - mean) / (standard deviation). If TRUE the
prediction in the correlation scale is transformed by the standard deviation and
mean to give a prediction in the raw scale. If FALSE predictions are left in the
correlation scale.

... Other arguments that can used by predict.Krig.

Details

The main use of this function is in finding prediction standard errors.

For the Krig ( and Tps) functions the A matrix is constructed based on the representation of the
estimate as a generalized ridge regression. The matrix expressions are explained in the references
from the FIELDS manual. For linear regression the matrix that gives predicted values is often
referred to as the "hat" matrix and is useful for regression diagnostics. For smoothing problems
the effective number of parameters in the fit is usually taken to be the trace of the A matrix. Note
that while the A matrix is usually constructed to predict the estimated curve at the data points
Amatrix.Krig does not have such restrictions. This is possible because any value of the estimated
curve will be a linear function of Y.
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The actual calculation in this function is simple. It invovles loop through the unit vectors at each
observation and computation of the prediction for each of these delta functions. This approach
makes it easy to handle different options such as including covariates.

Value

A matrix where the number of rows is equal to the number of predicted points and the number of
columns is equal to the length of the Y vector.

References

Nychka (2000) "Spatial process estimates as smoothers."

See Also

Krig, Tps, predict.Krig

Examples

# Compute the A matrix or "hat" matrix for a thin plate spline
# check that this gives the same predicted values
tps.out<-Tps( ozone$x, ozone$y)
A<-Krig.Amatrix( tps.out, ozone$x)
test<- A%*%ozone$y
# now compare this to predict( tps.out) or tps.out$fitted.values
# they should be the same
stats( test- tps.out$fitted.values)

Krig Kriging surface estimate

Description

Fits a surface to irregularly spaced data. The Kriging model assumes that the unknown function is
a realization of a Gaussian random spatial processes. The assumed model is additive Y = P(x) +
Z(X) + e, where P is a low order polynomial and Z is a mean zero, Gaussian stochastic process with
a covariance that is unknown up to a scale constant. The main advantages of this function are the
flexibility in specifying the covariance as an R language function and also the supporting functions
plot, predict, predict.se, surface for subsequent analysis. Krig also supports a correlation model
where the mean and marginal variances are supplied.

Usage

Krig(
x, Y, cov.function = "stationary.cov", lambda = NA, df

= NA, GCV=FALSE, Z = NULL, cost = 1, knots = NA, weights = NULL,
m = 2, nstep.cv = 80, scale.type = "user", x.center =
rep(0, ncol(x)), x.scale = rep(1, ncol(x)), rho = NA,
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sigma2 = NA, method = "GCV", verbose = FALSE, mean.obj
= NA, sd.obj = NA, null.function =
"Krig.null.function", wght.function = NULL, offset =
0, outputcall = NULL, na.rm = TRUE, cov.args = NULL,
chol.args = NULL, null.args = NULL, wght.args = NULL,
W = NULL, give.warnings = TRUE, ...)

## S3 method for class 'Krig':
fitted(object,...)

## S3 method for class 'Krig':
coef(object,...)

resid.Krig(object,...)

Arguments

x Matrix of independent variables. These could the locations for spatial data or
the indepedent variables in a regression.

Y Vector of dependent variables. These are the values of the surface (perhaps with
measurement error) at the locations or the dependent response in a regression.

cov.function Covariance function for data in the form of an R function (see Exp.simple.cov
as an example). Default assumes that correlation is an exponential function of
distance. See also stationary.cov for more general choice of covariance
shapes. exponential.cov will be faster if only the exponential covariance
form is needed.

Z A vector of matrix of covariates to be include in the fixed part of the model. If
NULL (default) no addtional covariates are included.

lambda Smoothing parameter that is the ratio of the error variance (sigma**2) to the
scale parameter of the covariance function (rho). If omitted this is estimated by
GCV ( see method below).

df The effective number of parameters for the fitted surface. Conversely, N- df,
where N is the total number of observations is the degrees of freedom associated
with the residuals. This is an alternative to specifying lambda and much more
interpretable. NOTE: GCV argument defaults to TRUE if this argument is used.

GCV If TRUE matrix decompositions are done to allow estimating lambda by GCV or
REML and specifying smoothness by the effective degrees of freedom. So the
GCV switch does more than just supply a GCV estimate. Also if lambda or df
are passed the estimate will be evaluated at those values, not at the GCV/REML
estimates of lambda. If FALSE Kriging estimate is found under a fixed lambda
model.

cost Cost value used in GCV criterion. Corresponds to a penalty for increased num-
ber of parameters. The default is 1.0 and corresponds to the usual GCV function.

knots A matrix of locations similar to x. These can define an alternative set of basis
functions for representing the estimate. One choice may be a space-filling subset
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of the original x locations, thinning out the design where locations cluster. The
default is to put a "knot" at all unique locations. (See details.)

weights Weights are proportional to the reciprocal variance of the measurement error.
The default is equal weighting i.e. vector of unit weights.

m A polynomial function of degree (m-1) will be included in the model as the drift
(or spatial trend) component. The "m" notation is from thin-plate splines where
m is the derivative in the penalty function. With m=2 as the default a linear
model in the locations will be fit a fixed part of the model.

nstep.cv Number of grid points for the coarse grid search to minimize the GCV RMLE
and other related criterian for finding lambda.

scale.type This is a character string among: "range", "unit.sd", "user", "unscaled". The
independent variables and knots are scaled to the specified scale.type. By default
no scaling is done. This usuall makes sense for spatial locations. Scale type of
"range" scales the data to the interval (0,1) by forming (x-min(x))/range(x) for
each x. Scale type of "unit.sd" Scale type of "user" allows specification of an
x.center and x.scale by the user. The default for "user" is mean 0 and standard
deviation 1. Scale type of "unscaled" does not scale the data.

x.center Centering values to be subtracted from each column of the x matrix.

x.scale Scale values that are divided into each column after centering.

rho Scale factor for covariance.

sigma2 Variance of the errors, often called the nugget variance. If weights are specified
then the error variance is sigma2 divided by weights. Note that lambda is defined
as the ratio sigma2/rho.

method Determines what "smoothing" parameter should be used. The default is to es-
timate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure
error and REML. The differences are explained below.

verbose If true will print out all kinds of intermediate stuff. Default is false, of course as
this is used mainly for debugging.

mean.obj Object to predict the mean of the spatial process. This used in when fitting a
correlation model with varying spatial means and varying marginal variances.
(See details.)

sd.obj Object to predict the marginal standard deviation of the spatial process.
null.function

An R function that creates the matrices for the null space model. The default is
fields.mkpoly, an R function that creates a polynomial regression matrix with all
terms up to degree m-1. (See Details)

wght.function
An R function that creates a weights matrix to the observations. This is only
needed if the weight matirx has off diagonal elements. The default is NULL
indicating that the weight matrix is a diagonal, based on the weights argument.
(See details)

offset The offset to be used in the GCV criterion. Default is 0. This would be used
when Krig is part of a backfitting algorithm and the offset is other model degrees
of freedom from other regression components.
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outputcall If NULL the output object will have a $call argument based on this call. If no
NULL the output call will have whatever is passed. This is kludge for the Tps
function so that it return a Krig object but have the right call argument. Sorry no
one promised that fields would be pretty.

cov.args A list with the arguments to call the covariance function. (in addition to the
locations)

na.rm If TRUE NAs will be removed from the y vector and the corresponding rows of
x – with a warning. If FALSE Krig will just stop with a message. Once NAs are
removed all subsequent analysis in fields does not use those data.

chol.args Arguments to be passed to the cholesky decomposition in Krig.engine.fixed.
The default if NULL, assigned at the top level of this function, is list( pivot=FALSE).
This argument is useful when working with the sparse matrix package.

wght.args Optional arguments to be passed to the weight function (wght.function) used to
create the observation weight matrix.

W The explicit observatoin weight matrix.

null.args Extra arguments for the null space function null.function. If fields.mkpoly
is passed as null.function then this is set to a list with the value of m. So
the default is use a polynomial of degree m-1 for the null space (fixed part) of
the model.

give.warnings
If TRUE warnings are given in gcv grid search limits. If FALSE warnings are
not given. Best to leave this TRUE!

... Optional arguments that appear are assumed to be additional arguments to the
covariance function. Or are included in methods functions (resid, fitted, coef) as
a required argument.

object A Krig object

Details

This function produces a object of class Krig. With this object it is easy to subsequently predict
with this fitted surface, find standard errors, alter the y data ( but not x), etc.

The Kriging model is: Y.k= P(x.k) + Z(x.k) + e.k

where ".k" means subscripted by k, Y is the dependent variable observed at location x.k, P is a low
order polynomial, Z is a mean zero, Gaussian field with covariance function K and e is assumed to
be independent normal errors. The estimated surface is the best linear unbiased estimate (BLUE)
of P(x) + Z(x) given the observed data. For this estimate K, is taken to be rho*cov.function and
the errors have variance sigma**2. In more conventional geostatistical terms rho is the "sill" if
the covariance function is actually a correlation function and sigma**2 is the nugget variance or
measure error variance (the two are confounded in this model.) If the weights are given then the
variance of e.k is sigma**2/ weights.k . In the case that the weights are specified as a matrix, W,
using the wght.function option then the assumed covariance matrix for the errors is sigma**2 Wi,
where Wi is the inverse of W.

If these parameters rho and sigma2 are omitted in the call, then they are estimated in the following
way. If lambda is given, then sigma2 is estimated from the residual sum of squares divided by the
degrees of freedom associated with the residuals. Rho is found as the difference between the sums
of squares of the predicted values having subtracted off the polynomial part and sigma2.
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A useful extension of a stationary correlation to a nonstationary covariance is what we term a
correlation model. If mean and marginal standard deviation objects are included in the call. Then
the observed data is standardized based on these functions. The spatial process is then estimated
with respect to the standardized scale. However for predictions and standard errors the mean and
standard deviation surfaces are used to produce results in the original scale of the observations.

The GCV function has several alternative definitions when replicate observations are present or if
one uses a reduced set knots. Here are the choices based on the method argument:

GCV: leave-one-out GCV. But if there are replicates it is leave one group out. (Wendy and Doug
prefer this one.)

GCV.one: Really leave-one-out GCV even if there are replicate points. This what the old tps
function used in FUNFITS.

rmse: Match the estimate of sigma**2 to a external value ( called rmse)

pure error: Match the estimate of sigma**2 to the estimate based on replicated data (pure error
estimate in ANOVA language).

GCV.model: Only considers the residual sums of squares explained by the basis functions.

WARNING: The covariance functions often have a nonlinear parameter(s) that often control the
strength of the correlations as a function of separation, usually referred to as the range parameter.
This parameter must be specified in the call to Krig and will not be estimated.

Value

A object of class Krig. This includes the predicted values in fitted.values and the residuals in
residuals. The results of the grid search to minimize the generalized cross validation function are
returned in gcv.grid.

The coef.Krig function only returns the coefficients, "d", associated with the fixed part of the model
(also known as the null space or spatial drift).

call Call to the function

y Vector of dependent variables.

x Matrix of independent variables.

weights Vector of weights.

knots Locations used to define the basis functions.

transform List of components used in centering and scaling data.

np Total number of parameters in the model.

nt Number of parameters in the null space.

matrices List of matrices from the decompositions (D, G, u, X, qr.T).

gcv.grid Matrix of values from the GCV grid search. The first column is the grid of
lambda values used in the search, the second column is the trace of the A matrix,
the third column is the GCV values and the fourth column is the estimated value
of sigma conditional on the vlaue of lambda.

lambda.est A table of estimated smoothing parameters with corresponding degrees of free-
dom and estimates of sigma found by different methods.

cost Cost value used in GCV criterion.
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m Order of the polynomial space: highest degree polynomial is (m-1). This is a
fixed part of the surface often referred to as the drift or spatial trend.

eff.df Effective degrees of freedom of the model.
fitted.values

Predicted values from the fit.

residuals Residuals from the fit.

lambda Value of the smoothing parameter used in the fit.

yname Name of the response.

cov.function Covariance function of the model.

beta Estimated coefficients in the ridge regression format

d Estimated coefficients for the polynomial basis functions that span the null space
fitted.values.null

Fitted values for just the polynomial part of the estimate

trace Effective number of parameters in model.

c Estimated coefficients for the basis functions derived from the covariance.

coefficients Same as the beta vector.

just.solve Logical describing if the data has been interpolated using the basis functions.

shat Estimated standard deviation of the measurement error (nugget effect).

sigma2 Estimated variance of the measurement error (shat**2).

rho Scale factor for covariance. COV(h(x),h(x)) = rho*cov.function(x,x)
If the covariance is actually a correlation function then rho is also the "sill".

mean.var Normalization of the covariance function used to find rho.

best.model Vector containing the value of lambda, the estimated variance of the measure-
ment error and the scale factor for covariance used in the fit.

References

See "Additive Models" by Hastie and Tibshirani, "Spatial Statistics" by Cressie and the FIELDS
manual.

See Also

summary.Krig, predict.Krig, predict.se.Krig, predict.surface.se, predict.surface, plot.Krig, surface.Krig

Examples

# a 2-d example
# fitting a surface to ozone
# measurements. Exponential covariance, range parameter is 20 (in miles)

fit <- Krig(ozone$x, ozone$y, theta=20)

summary( fit) # summary of fit
set.panel( 2,2)
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plot(fit) # four diagnostic plots of fit
set.panel()
surface( fit, type="C") # look at the surface

# predict at data
predict( fit)

# predict using 7.5 effective degrees of freedom:
predict( fit, df=7.5)

# predict on a grid ( grid chosen here by defaults)
out<- predict.surface( fit)
surface( out, type="C") # option "C" our favorite

# predict at arbitrary points (10,-10) and (20, 15)
xnew<- rbind( c( 10, -10), c( 20, 15))
predict( fit, xnew)

# standard errors of prediction based on covariance model.
predict.se( fit, xnew)

# surface of standard errors on a default grid
predict.surface.se( fit)-> out.p # this takes some time!
surface( out.p, type="C")
points( fit$x)

# Using anohter stationary covariance.
# smoothness is the shape parameter for the Matern.

fit <- Krig(ozone$x, ozone$y, Covariance="Matern", theta=10, smoothness=1.0)
summary( fit)

#
# Roll your own: creating very simple user defined Gaussian covariance
#

test.cov <- function(x1,x2,theta,marginal=FALSE,C=NA){
# return marginal variance
if( marginal) { return(rep( 1, nrow( x1)))}

# find cross covariance matrix
temp<- exp(-(rdist(x1,x2)/theta)**2)
if( is.na(C[1])){

return( temp)}
else{

return( temp%*%C)}
}

#
# use this and put in quadratic polynomial fixed function

fit.flame<- Krig(flame$x, flame$y, cov.function="test.cov", m=3, theta=.5)

#
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# note how range parameter is passed to Krig.
# BTW: GCV indicates an interpolating model (nugget variance is zero)
#

# take a look ...
surface(fit.flame, type="I")

#
# Thin plate spline fit to ozone data using the radial
# basis function as a generalized covariance function
#
# p=2 is the power in the radial basis function (with a log term added for
# even dimensions)
# If m is the degree of derivative in penalty then p=2m-d
# where d is the dimension of x. p must be greater than 0.
# In the example below p = 2*2 - 2 = 2
#

out<- Krig( ozone$x, ozone$y,cov.function="Rad.cov",
m=2,p=2,scale.type="range")

# See also the Fields function Tps
# out should be identical to Tps( ozone$x, ozone$y)
#

# A Knot example

data(ozone2)
y16<- ozone2$y[16,]

# there are some missing values -- remove them
good<- !is.na( y16)
y<- y16[good]
x<- ozone2$lon.lat[ good,]

#
# the knots can be arbitrary but just for fun find them with a space
# filling design. Here we select 50 from the full set of 147 points
#
xknots<- cover.design( x, 50, num.nn= 75)$design # select 50 knot points

out<- Krig( x, y, knots=xknots, cov.function="Exp.cov", theta=300)
summary( out)
# note that that trA found by GCV is around 17 so 50>17 knots may be a
# reasonable approximation to the full estimator.
#

# the plot
surface( out, type="C")
US( add=TRUE)
points( x, col=2)
points( xknots, cex=2, pch="O")
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# A correlation model example

# fit krig surface using a mean and sd function to standardize
# first get stats from 1987 summer Midwest O3 data set
# Compare the function Tps to the call to Krig given above
# fit tps surfaces to the mean and sd points.
# (a shortcut is being taken here just using the lon/lat coordinates)

data(ozone2)
stats.o3<- stats( ozone2$y)
mean.o3<- Tps( ozone2$lon.lat, c( stats.o3[2,]))
sd.o3<- Tps( ozone2$lon.lat, c( stats.o3[3,]))

#
# Now use these to fit particular day ( day 16)
# and use great circle distance
#NOTE: there are some missing values for day 16.

fit<- Krig( ozone2$lon.lat, y16,
theta=350, mean.obj=mean.o3, sd.obj=sd.o3,
Covariance="Matern", Distance="rdist.earth",
smoothness=1.0,
na.rm=TRUE) #

# the finale
surface( fit, type="I")
US( add=TRUE)
points( fit$x)
title("Estimated ozone surface")

#
#
# explore some different values for the range and lambda using REML
theta <- seq( 300,400,,10)
PLL<- matrix( NA, 10,80)
# the loop
for( k in 1:10){

# call to Krig with different ranges
# also turn off warnings for GCV search
# to avoid lots of messages. (not recommended in general!)

PLL[k,]<- Krig( ozone2$lon.lat[good,], y16[good],
cov.function="stationary.cov",
theta=theta[k], mean.obj=mean.o3, sd.obj=sd.o3,
Covariance="Matern",smoothness=.5,
Distance="rdist.earth", nstep.cv=80,
give.warnings=FALSE)$gcv.grid[,7]

#
# gcv.grid is the grid search output from
# the optimization for estimating different estimates for lambda including
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# REML
# default grid is equally spaced in eff.df scale ( and should the same across theta)
# here

}

# see the 2 column of $gcv.grid to get the effective degress of freedom.

cat( "all done", fill=TRUE)
contour( theta, 1:80, PLL)

The Engines: Basic linear algebra utilities and other computations supporting the
Krig function.

Description

These are internal functions to Krig that compute the basic matrix decompositions or solve the linear
systems needed to evaluate the Krig/Tps estimate. Others listed below do some simple housekeep-
ing and formatting. Typically they are called from within Krig but can also be used directly if passed
a Krig object list.

Usage

Krig.engine.default(out, verbose = FALSE)
Krig.engine.knots(out, verbose = FALSE)
Krig.engine.fixed( out, verbose=FALSE, lambda=NA)

Krig.coef(out, lambda = out$lambda, y = NULL, yM = NULL, verbose = FALSE)
Krig.make.u(out, y = NULL, yM = NULL, verbose = FALSE)
Krig.check.xY(x, Y,Z, weights, na.rm, verbose = FALSE)
Krig.cor.Y(obj, verbose = FALSE)
Krig.transform.xY(obj, knots, verbose = FALSE)

Krig.make.W( out, verbose=FALSE)
Krig.make.Wi ( out, verbose=FALSE)

Arguments

out A complete or partial Krig object. If partial it must have all the information
accumulated to this calling point within the Krig function.

obj Same as out.

verbose If TRUE prints out intermediate results for debugging.

lambda Value of smoothing parameter "hard wired" into decompositions. Default is NA,
i.e. use the value in out$lambda.
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y New y vector for recomputing coefficients. OR for %d*% a vector or matrix.

yM New y vector for recomputing coefficients but the values have already been col-
lapsed into replicate group means.

Y raw data Y vector

x raw x matrix of spatial locations OR In the case of %d*%, y is either a matrix or
a vector. As a vector, y, is interpreted to be the elements of a digaonal matrix.

weights Raw weights vector passed to Krig

Z Raw vector or matrix of additional covariates.

na.rm NA action logical values passed to Krig

knots Raw knots matrix passed to Krig

Details

ENGINES:

The engines are the code modules that handle the basic linear algebra needed to computed the esti-
mated curve or surface coefficients. All the engine work on the data that has been reduced to unique
locations and possibly replicate group means with the weights adjusted accordingly. All information
needed for the decomposition are components in the Krig object passed to these functions.

Krig.engine.default finds the decompositions for a Universal Kriging estimator. by simul-
taneously diagonalizing the linear system system for the coefficients of the estimator. The main
advantage of this form is that it is fairly stable numerically, even with ill-conditioned covariance
matrices with lambda > 0. (i.e. provided there is a "nugget" or measure measurement error. Also
the eigendecomposition allows for rapid evaluation of the likelihood, GCV and coefficients for new
data vectors under different values of the smoothing parameter, lambda.

Krig.engine.knots finds the decompositions in the case that the covariance is evaluated at
arbitrary locations possibly different than the data locations (called knots). The intent of these
decompositions is to facilitate the evaluation at different values for lambda. There will be compu-
tational savings when the number of knots is less than the number of unique locations. (But the
knots are as densely distributed as the structure in the underlying spatial process.) This function
call fields.diagonalize, a function that computes the matrix and eigenvalues that simultaneous diag-
onalize a nonnegative definite and a positive definite matrix. These decompositions also facilitate
multiple evaluations of the likelihood and GCV functions in estimating a smoothing parameter and
also multiple solutions for different y vectors.

Krig.engine.fixed are specific decomposition based on the Cholesky factorization assuming
that the smoothing parameter is fixed. This is the only case that works in the sparse matrix. Both
knots and the full set of locations can be handled by this case. The difference between the "knots"
engine above is that only a single value of lambda is considered in the fixed engine.

OTHER FUNCTIONS:

Krig.coef Computes the "c" and "d" coefficients to represent the estimated curve. These coeffi-
cients are used by the predict functions for evaluations. Krig.coef can be used outside of the call to
Krig to recompute the fit with different Y values and possibly with different lambda values. If new
y values are not passed to this function then the yM vector in the Krig object is used. The internal
function Krig.ynew sorts out the logic of what to do and use based on the passed arguments.

Krig.make.u Computes the "u" vector, a transformation of the collapsed observations that al-
lows for rapid evaluation of the GCV function and prediction. This only makes sense when the
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decomposition is WBW or DR, i.e. an eigen decomposition. If the decompostion is the Cholesky
based then this function returns NA for the u component in the list.

Krig.check.xY Checks for removes missing values (NAs).

Krig.cor.Y Standardizes the data vector Y based on a correlation model.

Krig.transform.xY Finds all replicates and collapse to unique locations and mean response
and pooled variances and weights. These are the xM, yM and weightsM used in the engines. Also
scales the x locations and the knots according to the transformation.

Krig.make.W and Krig.make.Wi These functions create an off-diagonal weight matrix and its
symmetric square root or the inverse of the weight matrix based on the information passed to Krig.
If out$nondiag is TRUE W is constructed based on a call to the passed function wght.function
along with additional arguments. If this flag is FALSE then W is just diag(out$weightsM)
and the square root and inverse are computed directly.

%d*% Is a simple way to implement efficient diagonal multiplications. x%d*%y is interpreted to
mean diag(x)%*% y if x is a vector. If x is a matrix then this becomes the same as the usual matrix
multiplication.

Returned Values

ENGINES:

The returned value is a list with the matrix decompositions and other information. These are incor-
porated into the complete Krig object.

Common to all engines:

decomp Type of decomposition

nt dimension of T matrix

np number of knots

Krig.engine.default:

u Transformed data using eigenvectors.

D Eigenvalues

G Reduced and weighted matrix of the eigenvectors

qr.T QR decomposition of fixed regression matrix

V The eigenvectors

Krig.engine.knots:

u A transformed vector that is based on the data vector.

D Eigenvalues of decomposition

G Matrix from diagonalization

qr.T QR decomposition of the matrix for the fixed component. i.e. sqrt( Wm)%*%T

pure.ss pure error sums of squares including both the variance from replicates and also the sums
of squared residuals from fitting the full knot model with lambda=0 to the replicate means.

Krig.engine.fixed:
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d estimated coefficients for the fixed part of model

c estimated coefficients for the basis functions derived from the covariance function.

Using all data locations

qr.VT QR decomposition of the inverse Cholesky factor times the T matrix.

MC Cholesky factor

Using knot locations

qr.Treg QR decomposition of regression matrix modified by the estimate of the nonparametric ( or
spatial) component.

lambda.fixed Value of lambda used in the decompositions

OTHER FUNCTIONS:

Krig.coef

yM Y values as replicate group means

shat.rep Sample standard deviation of replicates

shat.pure.error Same as shat.rep

pure.ss Pure error sums of squares based on replicates

c The "c" basis coefficients associated with the covariance or radial basis functions.

d The "d" regression type coefficients that are from the fixed part of the model or the linear null
space.

u When the default decomposition is used the data vector transformed by the orthogonal matrices.
This facilitates evaluating the GCV function at different values of the smoothing parameter.

Krig.make.W

W The weight matrix

W2 Symmetric square root of weight matrix

Krig.make.Wi

Wi The inverse weight matrix

W2i Symmetric square root of inverse weight matrix

Author(s)

Doug Nychka

See Also

Krig, Tps
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Examples

Krig( ozone$x, ozone$y)-> out

Krig.engine.default( out)-> stuff

# compare "stuff" to components in out$matrices

Krig.coef( out)$c
# compare to out$c

Krig.coef( out, yM = ozone$y)$c
# better be the same even though we pass as new data!

Krig.null.function Default function to create fixed matrix part of spatial process model.

Description

Constructs a matrix of terms representing a low order polynomial and binds additional columns due
to covariates ( the Z matrix)

Usage

Krig.null.function(x, Z = NULL, drop.Z = FALSE, m)

Arguments

x Spatial locations

Z Other covariates to be associated with each location.

drop.Z If TRUE only the low order polynomial part is created.

m The polynomial order is (m-1).

Details

This function can be modified to produce a different fixed part of the spatial model. The arguments
x, Z and drop.Z are required but other arguments can be passed as part of a list in null.args in the
call to Krig.

Value

A matrix where the first columns are the polynomial terms and the following columns are from Z.

Author(s)

Doug Nychka
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See Also

Krig

RCMexample 3-hour precipitation fields from a regional climate model

Description

Transformed surface precipitation fields simulated by the WRFP regional climate model (RCM)
over North Amreica forced by observation data. The fields are 3 hour precipitation for 8 time
periods in January 1, 1979. The grid is unequally spaced in longitude and latitude but near equally
in a more appropriate projection centered on the model domain. Precipitation is in a log 10 scale
where values smaller than 4.39e-5 ( the .87 quantile) have been been set to this value.

Usage

data(RCMexample)

Format

The format is a list of three arrays:

• x: 123X101 matrix of the longitude locations

• y: 123X101 matrix of the latitude locations

• z: 123X101X8 transformed matrix of precipitation

Units are degrees with longitude being 0-360 westward from the prime meridian. (See the shift
argument in world for overlaying world map.) Precipitation is log 10 of cm / 3 hour period.

Details

This is primarily an example of a regular grid that is not equally spaced and is due to transforming an
equally spaced grid from one map projection into longitude latitude coordinates. This model is one
small part of an extension series of numerical experiments the North American Regional Climate
Change and Assessment Program (NARCCAP). NARCCAP has used 4 global climate models and
observational data to supply the atmospheric boundery conditions for 6 different regional climate
models. In the current data the forcing is the observations derived from the NCEP reanalysis data
and is for Janurary 1, 1979. The full simulation runs for 20 years from this starting date. See
www.image.ucar.edu/Data for more information about these data.

To facilatate an animation of these fields the raw precipitation values have been transformed to the
log scale with all values below 4.39E-5 cm/3 hours set to this lower bound.

www.image.ucar.edu/Data
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Examples

data(RCMexample)
# second time period

image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,2])
world( add=TRUE, shift=TRUE, lwd=2)

RMprecip Monthly total precipitation (mm) for August 1963 in the Rocky Moun-
tain Region and some gridded 4km elevation data sets.

Description

RMprecip is a useful spatial data set of moderate size consisting of 865 locations. See www.image.ucar.edu/Data
for the source of these data. PRISMelevation and RMelevation are gridded elevations for
the continental US and Rocky Mountain region at 4km resolution. Note that the gridded elevations
from the PRISM data product are different than the exact station elevations. (See example below.)

Format

The data set RMprecip is a list containing the following components:

x Longitude-latitude position of monitoring stations. Rows names are station id codes.

elev Station elevation in meters.

y Monthly total precipitation in millimeters. for August 1963

The data sets PRISMelevation and RMelevation are lists in the usual R grid format for
images and contouring

They have the following components:

x Longitude-latitude grid at approximately 4km resolution

elev Average elevation for grid cell in meters

These elevations and the companion grid formed the basis for the 103-Year High-Resolution Pre-
cipitation Climate Data Set for the Conterminous United States ftp://ftp.ncdc.noaa.gov/
pub/data/prism100 archived at the National Climate Data Center. This work was primarily
authored by Chris Daly www.prism.oregonstate.edu and his PRISM group but had some
contribution from the Geophysical Statistics Project at NCAR. and is an interpolation of the obser-
vational data to a 4km grid that takes into account topography such as elevation and aspect.

ftp://ftp.ncdc.noaa.gov/pub/data/prism100
ftp://ftp.ncdc.noaa.gov/pub/data/prism100
www.prism.oregonstate.edu
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Examples

# this data set was created the
# historical data taken from
# Observed monthly precipitation, min and max temperatures for the coterminous US
# 1895-1997
# NCAR_pinfill
# see the Geophysical Statistics Project datasets page for the supporting functions
# and details.

# plot
quilt.plot(RMprecip$x, RMprecip$y)
US( add=TRUE, col=2, lty=2)

# comparison of station elevations with PRISM gridded values

data(RMelevation)

interp.surface( RMelevation, RMprecip$x)-> test.elev

plot( RMprecip$elev, test.elev, xlab="Station elevation",
ylab="Interpolation from PRISM grid")
abline( 0,1,col="blue")

# some differences with high elevations probably due to complex
# topography!

#
# view of Rockies looking from theSoutheast

save.par<- par(no.readonly=TRUE)

par( mar=c(0,0,0,0))
persp( RMelevation, theta=75, phi= 15,

box=FALSE, axes=FALSE, xlab="", ylab="",
border=NA,
shade=.95, lphi= 10, ltheta=80,
col= "wheat4",
scale=FALSE, expand=.00025)

par( save.par)
image.plot(RMelevation, col=topo.colors(256))
US( add=TRUE, col="grey", lwd=2)
title("PRISM elevations (m)")

Tps Thin plate spline regression
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Description

Fits a thin plate spline surface to irregularly spaced data. The smoothing parameter is chosen by
generalized cross-validation. The assumed model is additive Y = f(X) +e where f(X) is a d dimen-
sional surface. This is a special case of the spatial process estimate. A "fast" version of this function
uses a compactly supported Wendland covariance and computes the estimate for a fixed smoothing
pararmeter.

Usage

Tps(x, Y, m = NULL, p = NULL, scale.type = "range", ...)

fastTps(x, Y, m = NULL, p = NULL, theta, ...)

Arguments

To be helpful, a more complete list of arguments are described that are the same as those for the
Krig function.

x Matrix of independent variables. Each row is a location or a set of independent
covariates.

Y Vector of dependent variables.

m A polynomial function of degree (m-1) will be included in the model as the drift
(or spatial trend) component. Default is the value such that 2m-d is greater than
zero where d is the dimension of x.

p Exponent for radial basis functions. Default is 2m-d.

scale.type The independent variables and knots are scaled to the specified scale.type. By
default the scale type is "range", whereby the locations are transformed to the
interval (0,1) by forming (x-min(x))/range(x) for each x. Scale type of "user"
allows specification of an x.center and x.scale by the user. The default for "user"
is mean 0 and standard deviation 1. Scale type of "unscaled" does not scale the
data.

theta The tapering range that is passed to the Wendlend compactly supported covari-
ance. The covariace (i.e. the radial bais function) is zero beyond range theta.

... Any argument that is valid for the Krig function. Some of the main ones are
listed below.

lambda Smoothing parameter that is the ratio of the error variance (sigma**2)
to the scale parameter of the covariance function. If omitted this is esti-
mated by GCV.

df The effective number of parameters for the fitted surface. Conversely, N-
df, where N is the total number of observations is the degrees of freedom
associated with the residuals. This is an alternative to specifying lambda
and much more interpretable.

cost Cost value used in GCV criterion. Corresponds to a penalty for increased
number of parameters. The default is 1.0 and corresponds to the usual GCV.

weights Weights are proportional to the reciprocal variance of the measurement
error. The default is no weighting i.e. vector of unit weights.
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nstep.cv Number of grid points for minimum GCV search.
x.center Centering values are subtracted from each column of the x matrix.

Must have scale.type="user".
x.scale Scale values that divided into each column after centering. Must have

scale.type="user".
rho Scale factor for covariance.
sigma2 Variance of errors or if weights are not equal to 1 the variance is sigma**2/weight.
method Determines what "smoothing" parameter should be used. The default

is to estimate standard GCV Other choices are: GCV.model, GCV.one,
RMSE, pure error and REML. The differences are explained below.

verbose If true will print out all kinds of intermediate stuff.
mean.obj Object to predict the mean of the spatial process.
sd.obj Object to predict the marginal standard deviation of the spatial process.
null.function An R function that creates the matrices for the null space model.

The default is fields.mkpoly, an R function that creates a polynomial regres-
sion matrix with all terms up to degree m-1. (See Details)

offset The offset to be used in the GCV criterion. Default is 0. This would be
used when Krig/Tps is part of a backfitting algorithm and the offset has to
be included to reflect other model degrees of freedom.

Details

A thin plate spline is result of minimizing the residual sum of squares subject to a constraint that
the function have a certain level of smoothness (or roughness penalty). Roughness is quantified by
the integral of squared m-th order derivatives. For one dimension and m=2 the roughness penalty
is the integrated square of the second derivative of the function. For two dimensions the roughness
penalty is the integral of

(Dxx(f))**22 + 2(Dxy(f))**2 + (Dyy(f))**22

(where Duv denotes the second partial derivative with respect to u and v.) Besides controlling the
order of the derivatives, the value of m also determines the base polynomial that is fit to the data.
The degree of this polynomial is (m-1).

The smoothing parameter controls the amount that the data is smoothed. In the usual form this
is denoted by lambda, the Lagrange multiplier of the minimization problem. Although this is an
awkward scale, lambda =0 corresponds to no smoothness constraints and the data is interpolated.
lambda=infinity corresponds to just fitting the polynomial base model by ordinary least squares.

This estimator is implemented by passing the right generalized covariance function based on radial
basis functions to the more general function Krig. One advantage of this implementation is that
once a Tps/Krig object is created the estimator can be found rapidly for other data and smoothing
parameters provided the locations remain unchanged. This makes simulation within R efficient (see
example below). Tps does not currenty support the knots argument where one can use a reduced set
of basis functions. This is mainly to simplify and a good alternative using knots would be to use a
valid covariance from the Matern family and a large range parameter.

See also the mKrig function for handling larger data sets and also for an example of combining Tps
and mKrig for evaluation on a larger grid.

The function fastTps is really a convenient wrapper function that calls mKrigwith the Wendland
covariance function. This is experimental and some care needs to exercised in specifying the taper
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range and power ( p) which describes the behavior of the Wendland at the origin. Note that unlike
Tps the locations are not scaled to unit range and this can cause havoc in smoothing problems
with variables in very different units. So x<- scale(x) might be a good idea for putting the
varaibles on a common sacel for smoothing. This function does have the potential to approximate
estimates of Tps for very large spatial data sets. See wendland.cov and help on the SPAM
package for more background.

Value

A list of class Krig. This includes the predicted surface of fitted.values and the residuals. The results
of the grid search minimizing the generalized cross validation function is returned in gcv.grid. Note
that the GCV/REML optimization is done even if lambda or df is given. Please see the documenta-
tion on Krig for details of the returned arguments.

References

See "Nonparametric Regression and Generalized Linear Models" by Green and Silverman. See
"Additive Models" by Hastie and Tibshirani.

See Also

Krig, summary.Krig, predict.Krig, predict.se.Krig, plot.Krig, mKrig surface.Krig, sreg

Examples

#2-d example

fit<- Tps(ozone$x, ozone$y) # fits a surface to ozone measurements.

set.panel(2,2)
plot(fit) # four diagnostic plots of fit and residuals.
set.panel()

summary(fit)

# NOTE: the predict function is quite flexible:

look<- predict( fit, lambda=2.0)
# evaluates the estimate at lambda =2.0 _not_ the GCV estimate
# it does so very efficiently from the Krig fit object.

look<- predict( fit, df=7.5)
# evaluates the estimate at the lambda values such that
# the effective degrees of freedom is 7.5

# compare this to fitting a thin plate spline with
# lambda chosen so that there are 7.5 effective
# degrees of freedom in estimate
# Note that the GCV function is still computed and minimized
# but the spline estimate is uses 7.5 df.
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fit1<- Tps(ozone$x, ozone$y,df=7.5)

set.panel(2,2)
plot(fit1) # four diagnostic plots of fit and residuals.

# GCV function (lower left) has vertical line at 7.5 df.
set.panel()

# The basic matrix decompositions are the same for
# both fit and fit1 objects.

# predict( fit1) is the same as predict( fit, df=7.5)
# predict( fit1, lambda= fit$lambda) is the same as predict(fit)

# predict onto a grid that matches the ranges of the data.

out.p<-predict.surface( fit)
image( out.p)
surface(out.p) # perspective and contour plots of GCV spline fit
# predict at different effective
# number of parameters
out.p<-predict.surface( fit,df=10)

#1-d example
out<-Tps( rat.diet$t, rat.diet$trt) # lambda found by GCV
plot( out$x, out$y)
lines( out$x, out$fitted.values)

#
# compare to the ( much faster) one spline algorithm
# sreg(rat.diet$t, rat.diet$trt)
#

# Adding a covariate to the fixed part of model
# Note: this is a fairly big problem numerically (850+ locations)

Tps( RMprecip$x,RMprecip$y, Z=RMprecip$elev)-> out

surface( out, drop.Z=TRUE)
US( add=TRUE, col="grey")

###
### fast Tps

# m=2 p= 2m-d= 2
#
# Note: theta =3 degrees is a very generous taper range.
# Use trials with rdist.nearest to sort an efficient tapre range
# for large spatial problems

fastTps( RMprecip$x,RMprecip$y,m=2,lambda= 1e-2, p=2, theta=3.0) -> out2
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#
# simulation reusing Tps/Krig object
#
fit<- Tps( rat.diet$t, rat.diet$trt)
true<- fit$fitted.values
N<- length( fit$y)
temp<- matrix( NA, ncol=50, nrow=N)
sigma<- fit$shat.GCV
for ( k in 1:50){
ysim<- true + sigma* rnorm(N)
temp[,k]<- predict(fit, y= ysim)
}
matplot( fit$x, temp, type="l")

#
#4-d example
fit<- Tps(BD[,1:4],BD$lnya,scale.type="range")

# plots fitted surface and contours
# default is to hold 3rd and 4th fixed at median values

surface(fit)

US Plot of the US with state boundaries

Description

Plots quickly, medium resolution outlines of the US with the states and bodies of water.

Usage

US( xlim=c(-124.7, -67.1), ylim = c(25.2, 49.4), add=FALSE,shift=FALSE, ...)

Arguments

ylim range of latitudes

xlim range of longitudes

add If true will add the world map to current plot

shift If TRUE shifts to be centered on the Dateline and longitude runs from 0 to 360.
If FALSE centers on Prime Meridian and longitude runs from -180 to 180.

... These are graphical arguments that are passed to the lines function that draws
outline.
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Details

This function uses the FIELDS dataset US.dat for the coordinates.

See Also

world

Examples

# Draw map in device color # 3
US( col=3)

US.dat Outline of coterminous US and states.

Description

This data set is used by the fields function US to draw a map. It is the medium resolution outline
that is produced by drawing the US from the maps package.

W.info Gives indexing imfomration for a wavelet decompostion

Description

Functions for finding various indices and sizes of different parts of a 1-d multiresolution and con-
verting to a sequential index.

Usage

W.info(m = 128, cut.min = 4)

W.i2s(ind, m, cut.min)

W.s2i(i, level, m, cut.min)

Arguments

m Length of series

cut.min Number of scale basis functions (or father wavelets) at the coarsest resolution )

ind Vector of indices of the basis functions.

i Position of the basis function within its level.

level level of resolution (father wavelets have level==0).
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Details

W.info gives summary information about the multiresolution. W.i2s converts a sequential index for
the basis functions into a list with locations and levels. W.s2i is the inverse transformation from a
list structure to an integer index.

Value

Return list for W.info

m length of series

cut.min cut.min (what else!)

S first and last indices for father wavelets

H a matrix where rows are levels of resolution and columns are the first and last
indices for the mother basis functions.

L number of basis funcion in each level of the mother wavelets.

Lmax The number of levels of resolution

offset A matrix where rows are levels of resolution and the columns is the offset index
for the beginning of the indices for basis funtion at that resolution level.

Author(s)

Doug Nychka

See Also

Wtransform, Wtransform.image, plot.Wimage, Wimage.info

Examples

# series of length 64 where the coarsest level is 8 father basis functions.
W.info(64, 8)

#index for 4th basis location at the 2nd level

W.s2i( 4, 2, m=64, cut.min=8)
# location and level for the 48th basis function.
W.i2s( 48, m=64, cut.min=8)
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Wendland Wendland family of covariance functions

Description

Computes the compactly supported, stationatry Wendland covariance function as a function ofdis-
tance. This family is useful for creating sparse covariance matrices.

Usage

Wendland(d, theta = 1, dimension, k,derivative=0, phi=1)

Wendland2.2(d, theta=1)

wendland.coef(d,k)

Arguments

d Distances between locations. Or for wendland.coef the dimension of the loca-
tions.

theta Scale for distances. This is the same as the range parameter.

dimension Dimension of the locations

k Order of covariance function.

derivative Indicates derivative of covariance function

phi Scale factor to multiply the function. Equivalent to the marginal variance or sill
if viewed as a covariance function.

Details

This is the basic function applied to distances and called by the wendland.cov function. It
can also be used as the Covariance or Taper specifications in the more general stationary.cov and
station.taper.cov functions. The Wendland covariance function is a polynomial on [0,theta] and
zero beyond theta. The parameter k detemines the smoothness of the covariance at zero. The
polynomial coefficients are computed recursively based on the values of k and dimension in the
function wendland.coef. The polynomial is evaluated using fields.evlpoly.

A specific example of the Wendland family is Wendland2.2 and this is included mainly for
testing.

Value

A vector of the covariances or its derivative.

Author(s)

Doug Nychka
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See Also

wendland.cov, stationary.taper.cov

Examples

DD<- seq( 0,1.5,, 200)

y<- Wendland( DD, k=2, dimension=2)

plot( DD, y, type="l")

# should agree with

y.test<- Wendland2.2( DD)

Wimage.cov Functions for W-transform based covariance models

Description

These functions are designed for 2-d Gaussian random fields on a large regular grid. They require
a sparse or block diagonal model for the covariances among the wavelet coefficients. Wimage.cov
multiplies a vector with the implied covariance matrix and Wtransform.image.cov has similar func-
tionality to Wimage.cov but is the correct form for fitting surfaces using kirg.image. Wim-
age.sim generates a random field with the implied covariance.

Usage

Wimage.cov(Y = NULL, ind = NULL, H.obj, find.row = FALSE)
Wtransform.image.cov(ind1, ind2=ind1, Y, cov.obj)
Wimage.sim( H.obj)

Arguments

Y The vector for the multiplication, if ind is missing this should a matrix with the
same dimensions as the grid locations.

ind If Y is not full grid ind gives the index location for the Y subset. See details
below for indexing conventions.

H.obj A list with components need to describe the grid size and components of H. See
details below for a description and the example.

find.row If true the row of the covariance given by ind is returned.
ind2 This is the same asind in Wimage.cov.
ind1 Indices giving subset of the full grid for the result of the multipication. (See

details below). Note that the default is that ind2 is set to ind1.
cov.obj This is the same as H.obj above.
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Details

Note that Wimage.cov only returns the product of a vector times the covariance matrix. This is usu-
ally all that is really needed and finesses the memory problems of dealing with very large covaraince
matrices. But see the last example for a loop to extract a submatrix of the covariance.

In notation, if Sigma is the full covariance matrix among all grid points. and Y is a vector then the
intended calculation in R syntax is: Sigma[ind1, ind2]%*% Y. This is accomplished by
padding Y with zeroes to be the full vector/grid, doing the full multiplication of Sigma and then
throwing away all elements but those in ind1. Note that for Wimage.cov, ind1 is assumed to be the
full vector/grid and ind is equal to ind2 (when find.row is FALSE).

The way 2-d wavelet basis functions are indexed can be confusing. See the help files for Wim-
age.info and Wtransform.image for more background. For these functions, ind can either be a
single vector and the index refers to the grid points in column stacked (or “vec”) format.

If ind has a two columns these refer to the row/column of the grid. Currently only one sparse
representation for H is implemented, a block/diagonal strategy. The covariance has the form Wi*H
*H * Wi.t. Where Wi is mnXmn the matrix of wavelet basis functions with each column being
a basis evaluated on the gird points and in stacked column format. Wi.t is its transpose. H is
represented as partitioned matrix where H0 is a full matrix and the remaining rows only have a
diagonal term. If ind0 denotes the indices for the elements of H0 then in R notation:

H0 = H[ ind0, ind0]

To simplify the coding the diagonal elements are represented as an mXn matrix with those locations
corresponding to H0 set to 1. Accordingly, in R notation

H1= diag(H), H1[ind0] <- 1

With this representation, multiplying H by a vector u becomes

u[ind0]<- H0%*% c( u[ind0])

u*H1

Note that u is assumed to be an mXn matrix based on the grid dimensions.

Under the assumptions the grid ( or image) is mXn the components for H.obj are m , n, cut.min,
specifying the coarsest level of wavelet basis functions, H0, ind, and H1.

By altering the multiplication of H within these and changing the H.obj or cov.obj list one can easily
create other sparse representations for the covariance.

Value

For Wimage.cov and Wimage.sim an mXn matrix with the same extent as the grid defined by H.obj.

For Wtransform.image.cov a vector with the same length as ind1 and at these grid locations.

Author(s)

Doug Nychka

See Also

Wtransform.image, Wimage.info, Exp.image.cov, matern.image.cov
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Examples

# This example creates a block/diagonal for H that is close to a
# Matern covariance
# The example while lengthy is a practical run through of the process
# of creating a reasonable sparse representation for H.

M<- 16 # a 16X16 grid of locations
MM<- M**2
x<- 1:M
y<- 1:M
grid<- list( x=x, y=y)
cut.min<- 4
# H0 is father and mothers at first level
# with cut.min=4

# get indices associated with H0
I<-rep( 1:cut.min, cut.min)
J<- sort( I)
Wimage.s2i(I, J, flavor=0, level=0, cut.min=cut.min, m=M, n=M, mat=FALSE)-> ind0
Wimage.s2i(I, J, flavor=1, level=1, cut.min=cut.min, m=M, n=M, mat=FALSE)-> ind1
Wimage.s2i(I, J, flavor=2, level=1, cut.min=cut.min, m=M, n=M, mat=FALSE)-> ind2
Wimage.s2i(I, J, flavor=3, level=1, cut.min=cut.min, m=M, n=M, mat=FALSE)-> ind3
IND<- c( ind0, ind1, ind2, ind3)
NH<- length( IND) # H0 will be NH by NH in size.

# the Matern covariance function range=3, smoothness=1.
cov.obj<- stationary.image.cov( grid=grid, setup=TRUE, theta=3, smoothness=1)

# find elements of D0= H0**2 using the formula
# D0 = W Sigma W.t where W is the 2-d W transform ( the inverse of W.i above).
# and Sigma is the Matern covariance
#
# the following looping algorithms are a way to avoiding explicitly creating
# gigantic covariance matrices and wavelet basis matrices associated with large
# grids. Of course in this example the grid is small enough (16X16) that the
# matrices could be formed explicitly
#

D0<- matrix( 0, NH,NH)
# fill in D0
for ( k in 1:NH){
tmp<- matrix( 0, M,M)
tmp[IND[k]] <- 1
hold<- Wtransform.image( tmp, transpose=TRUE, cut.min=cut.min)
hold<- stationary.image.cov(Y=hold, cov.obj=cov.obj)
hold<- Wtransform.image(hold, cut.min=cut.min)
D0[k,] <- hold[IND]
}

# sqrt of D0
temp<- eigen( D0, symmetric=TRUE)
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# next line should be
# H0<-temp$vectors

H0<- temp$vectors %*% diag(sqrt(temp$values))%*% t(temp$vectors)

# find H1
H1<- matrix(0,M,M)
for ( k in 1:MM){
tmp<- matrix( 0, M,M)
tmp[k] <- 1
hold<- Wtransform.image( tmp, transpose=TRUE, cut.min=cut.min)
hold<- matern.image.cov(Y=hold, cov.obj=cov.obj)
hold<- Wtransform.image(hold, cut.min=cut.min)
H1[k] <- sqrt(hold[k]) }
# remember that H1 has the H0 diagonal values set to 1.
H1[IND] <- 1

#OK good to go. Create the H.obj list
H.obj<- list( m=M, n=M, ind0=IND, cut.min=cut.min, H0=H0, H1=H1)
#
#
#

# mutliply the covariance matrix by a random vector
tmp<- matrix( rnorm( 256), 16,16)
Wimage.cov( tmp, H.obj=H.obj)-> look

# generate a random field
Wimage.sim(H.obj)-> look
image.plot( look)

#A check that this really works!
#find the 135 =(9-1)*16 +7 == (7,9) row of covariance matrix
# we know what this should look like.

Wimage.cov( ind= 135, H.obj=H.obj, find.row=TRUE)-> look
image.plot( x,y,look) # the covariance of the grid point (7,9) with

# all other grid points -- a bump centered at (7,9)

#multiply a vector by just a subset of Sigma

ind<- sample( 1:256,50) # random set of 50 indices
Y<- rnorm( 50) # random vector of length 50
Wimage.cov(Y, ind= ind, H.obj=H.obj)[ind]-> look

# look is now of length 50 -- as expected.
# In R notation, this finding Sigma[ind, ind]

# OK suppose you really need Sigma[ind,ind]
# e.g. in order for solve( Sigma[ind,ind], u)
# here is a loop to do it.
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Sigma<- matrix( NA, 50,50)
for ( k in 1:50){
# for each member of subset find row and subset to just the columns identified by ind
Sigma[k,] <- c( Wimage.cov( ind= ind[k], H.obj=H.obj, find.row=TRUE)[ind])
}

Wimage.info Finds key indices related to a 2-d multiresolution

Description

Functions for finding the indices and other information for a 2-d basis in a multiresolution wavelet
decomposition.

Usage

Wimage.info(m = 128, n = m, cut.min = 4)

Wimage.i2s(ind, m, n, cut.min)

Wimage.s2i(i, j, level, flavor, m, n, cut.min, mat = TRUE)

Arguments

m Nmber of rows of image (x)

n number of columns of image (y)

cut.min The minimum number of father basis functions along one axis.

ind indices for the basis functions can either be a vector or 2 column matrix.

i Vector of row locations for basis functions. Or a list with components i, j, level
and flavor.

j Vector of column locations for basis functions.

level Resolution level of basis functions.

flavor Type of basis function ( 0=S, 1=H, 2=V, 3=Di). See details below.

mat If TRUE returned index will be a matrix where the basis functions are indexed
by a row and column.

Details

The wavelet coefficents are computed efficiently as a single large matrix/image but this format make
it difficult to identify the indices ofspecific kinds of basis functions. The wavelet basis functions
as found with a tensor product multiresolution. ( e.g. Wtransform.image) are orgainzied
in levels of resolution and type. At the coarsest level of resolution are father wavelets (dentoed by
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S for "smooth") roughly centered on a rectanglar grid of locations (the size of the grid controlled
by cut.min). At this resolution are three mother wavelets that capture horizontal (H), vertical
(V) and diagonal( Di) structure at this scale. These basis functions are also centered on a lattice
of grid locations. Subsequent levels only use the H,V, Di mother wavelet templates. For example
given a 32X32 image with cut.min=4 There are three levels of resolution and 1024 basis functions
total. The coarsest level is 16 S basis functions on a regular 4X4 grid, 16 H, 16 V and 16 Di basis
function also on 4X4 grid. The next level has 64 H, V and Di basis functions on an 8X8 grid and
the final level has 256 H, V and Di basis functions on a 16X16 grid, giving a grand total of 1024
basis functions.

Without some additional calculations it is possible to organize the results in different resolutions.
This function provides the necessary indexing information to do this. See the function plot.Wimag
as an exmaple of how this is used.

Indexing the image can happen in 3 ways. 1)as a structure where one specifies the location (i,j) ,
level, and flavor. 2) as the row and column indices of the image. 3) as a single index if the image is
stacked as a long vector. The functions Wimage.s2i and Wimage.i2s convert indices between these
forms.

Value

Wimage.info returns a list where all indices pertain to a location or subsets of the mXn matrix of
wavelet coefficients.

m Number of rows in image

n Number of columns of image

cut.min cut.min

S A vector with 4 elements. S[1],S[2] give the min/max row indices for the father
wavelets and S[3],S[4] give the min/max column indices for the father wavelets.

H A matrix where each row is a resolution level and cloumns give s ranges of row
and column indices. e.g. H[k,1:4] gives the ranges for the rows and columns for
the horizontal basis functions at level k.

V A matrix in teh same format as H that gives subsets for the vertical basis func-
tions.

Di A matrix in the same format as H that gives subsets for the diagonal basis func-
tions.

L A column matrix where rows index resolutaion and column give the grid size
for each level of resolution.

Lmax Total number of resolution levels.

offset.m A 3 column matrix that has the row offsets that indicate the begining of a block
of coeffiecients. Rows are levels of resolution and columns are H,V,Di.

offset.n A 3 column matrix that has the column offsets that indicate the begining of a
block of coeffiecients. Rows are levels of resolution and columns are H,V,Di.

Author(s)

Doug Nychka
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See Also

plot.Wimage, Wtransform.image

Examples

#Find a basis function.
# For a basis on a 64X64 image with cut.min=8 find a
# horizontal basis function at second level of resolution in the (4,4)
# position. ( There are 16X16 horizontal basis functions at the 2 nd level
#
Wimage.s2i( i=3,j=2, level=2, flavor=1, m=64, n=64, cut.min=8)-> ind
tmp<- matrix( 0, 64,64)
tmp[ind] <- 1
Wtransform.image( tmp, cut.min=8, inv=TRUE)-> look
image.plot( look)

# A check of Wimage.i2s
Wimage.i2s( ind,m=64, n=64, cut.min=8)
# should get i=3,j=2, level=2, flavor=1

# complete check of functions
Wimage.i2s( 1:512, cut.min=8, m=16, n=32)-> look
Wimage.s2i( look, cut.min=8, m=16, n=32, mat=FALSE)-> look2
sum( look2 - (1:512)) # sum should be zero

# W transform of John Lennon image

data(lennon)
m<- nrow(lennon)
n<- ncol(lennon)

# add an grey strip down middle columns

lennon[ , 128:132]<- 120

look<- Wtransform.image( lennon, cut.min=8)

# get info
info<- Wimage.info( n, m, cut.min=8)

# Zero out all V basis functions coefficients,

tmp<- look

Vind<- info$V
for (lev in 1: info$Lmax){
tmp[ Vind[lev,1]: Vind[lev,2], Vind[lev,3]: Vind[lev,4]]<- 0
}

look2<- Wtransform.image( tmp, cut.min=8, inv=TRUE)

# take a look at vertically filtered image
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set.panel( 2,1)
par( pty="s")
image( lennon, col=grey(seq(0,1,,256)))
image( look2, col=grey(seq(0,1,,256)))

# NOTE:
# What is vertical and horizontal is confusing here
# due to the convention of the R image plot of running rows
# of the image as the X coordinate
# The grey column in lennon image is plotted as
# a horizontal line
#

Wimage.info.plot Plot to check 2-d multiresolution indexing

Description

Plots in image format the differnt blocks of coefficents associated with a 2-d multiresolution. This
function can be used to check the Wtransform indexing functions and is also an introduction to how
the coefficients are organized.

Usage

Wimage.info.plot(m, n, cut.min)

Arguments

m Number of rows in image

n Number of columns of image

cut.min Smallest number of smooth basis functions. Coarsest resolution will have atleast
cut.min X cut.min basis functions with support on a regular grid.

Details

This function was used to check the (compicated) indexing functions work. But it also might a
useful graphics to desribe how the different levels of wavelet coefficients are pack into the image
format.

Author(s)

Doug Nychka

See Also

Wtransform.image, W.info, Wimage.info,
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Examples

#
# 64X 128 image coarsest level has 8X16 smooth basis funcitons.
#
# NOTE as a matrix the image plot is upside down! Rows are along X-axis and
# columns on Y
# e.g. the (1,1) element is the lower left corner.
#

Wimage.info.plot( 64, 128, cut.min=8)

Wtransform Quadratic W wavelet transform for 1-d vectors or rectangular or
cylindrical images

Description

Finds the forward or inverse discrete wavelet transform using the quadratic W basis.

Usage

Wtransform(x, inv = FALSE, transpose = FALSE, cut.min = 8)

Wtransform.image(x, inv=FALSE, transpose=FALSE, cut.min=8)

Wtransform.cylinder.image(x, inv=FALSE, transpose=FALSE,
byX=TRUE,cut.min=8)

Arguments

x Matrix to be transformed. For Wtransform the number of rows must be dyadic
or m=p*2L̂ where p is lees than or equal to cut.min. A 1-d transformation is
effected on each column of x. For the 2-d transforms both the row and the
column dimensions must satisfy this condition. A 2-d transformation is applied
to the image.

inv If true will compute the inverse transform default is false

transpose If true will compute the transpose of transform default is false

cut.min Minimum level of transformation. cut.min=8 means that the coarsest level will
consist of 8 scale functions for the 1-d case and 64=8X8 scale functions centered
on an 8X8 grid for the 2-d case.

byX If TRUE enforces periodic boundary conditions on horizontal coordinate of the
image and if FALSE applies condition to vertical coordinate. (See details.)



42 Wtransform

Details

The wavelet transform can be thought as matrix multiplication W %*% vec(x) where vec(x) is the
matrix x stacked by columns. The inverse transform is inv(W) %*% vec(x) and transpose is t(W)
%*% vec( x). One can interpret the columns of inv(W) as basis functions and they follow the usual
pattern of translations and dilations of mother and father wavelets. (See example below.)

Another way of thinking of the transformation is by recursion: apply a smoother and a "rougher"
to a vector and taking every other value. Now apply the same operation to the smooth results, now
half the length of the previous vector. At each step one reduced the vector by a half and cut.min
specifies the size when to stop. The function WQS performs one step of the recursion with smoother
weights (-1, 3, 3, -1) and roughening weights (-1, 3, -3, 1) away from the edges. WQS actually
works for a matrix where each column is transformed in this manner. Boundary adjustments are
made to preserve the shape of the basis functions. (See example below.) By convention the returned
matrix has the smoothed results in the first half of the columns and the rough results in the second
half. The discrete wavelet transform performs this operation recursively on the smoothed results
until the smoothed vector is less than a set size. Because each step reduces the size of the vector
by 2 it only makes sense to apply this algorithm to vectors whose length is dyadic or the product of
a small integer and a dyadic (e.g. 96=3*32). The precise tests are done by dyadic.check and
dyadic.2check and if n is the dimension the constraint it that n=p*2L̂ where L is less or equal
to than cut.min. The transform will result in p scale (father) basis functions if cut.min is equal to p.

At the end of the day this recursive algorithm defines a linear transformation of the original image
to something that we call the wavelet decomposition. This is the full matrix W mentioned above.
It is also possible to express multiplication of inv(W) and transposes by a similar recursive scheme
and related sets of filter weights. (Try WQSi( WQS(x)) as a test.) The reader is referred to
WQSi WQS.T and WQSi.T for the filtering primitives. Finally it should be noted that the particular
wavelets chosen here are not orthogonal by have nice smooth properties and the father wavelet
resembles a Gaussian density while the mother looks like its derivative. (See example below for
some plots of the implied basis functions.) Note that Wtransform is "vectorized" so that with
little extra overhead one can do transforms for many separate 1-d series with one call. In particular,
Wtransform(diag(1,128),inv=TRUE) will neatly generate the W matrix given above.

For two dimensions for the basic step one applies WQS to the columns of the matrix and then to
the rows. e.g. t(WQS(t(WQS(x))). This primitive step is implemented in WQS2d. The final
algorithm calls WQS2d or its variants repeatedly on a matrix that decreases by a factor of two in
size along each dimension at each iteration.

If the cylinder variant is specified the transform uses periodic boundaries on one of the coordinates.
This is useful for data on zonal section of a sphere where a constant line of latitude should be peri-
odic. For byX=T the wavelet basis functions wrap on the x-axis when an image plot is made. (See
example below.) This convention may cause some confusion because R experts will know that the
image plot rotates the the matrix so that the (1,1) element is at the lower left corner. Thus enforcing
periodicity along the X-coordinate of the image pertains to the columns of the matrix used to repre-
sent the image in R. (Compare matrix( 1:10,2,5) to image( matrix( 1:10,2,5)).

Value

A matrix the same size as x.
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References

Nychka,D. , C. Wikle and J.A. Royle, (2002) Multi-resolution models for nonstationary spatial
covariance functions Statistical Modelling 2 315-332.

See also the original report on W matrices:

Man Kam Kwong and P. T. Peter Tang, "W-Matrices, Nonorthogonal Multiresolution Analysis, and
Finite Signals of Arbitrary Length," Preprint MCS-P449-0794, September 1994

ftp://info.mcs.anl.gov/pub/tech_reports/reports/P449.ps.Z

See Also

Wtransform.image, WQS, WQSi

Examples

# W transform of a simple function
x<- seq( 0,1,256)
y<- x*(1-x)**3 + ifelse( x>.3, x,0)

Wtransform( y)-> out

# plot the implied wavelet basis functions
ID<- diag( 1, 256)
WQS.basis( 256)-> Wbasis
set.panel(2,2)
matplot( 1:256, Wbasis[,1:8], type="l", lty=c(1,2), col=2)
title("Father")
matplot( 1:256, Wbasis[,9:16], type="l", lty=c(1,2), col=2)
title("Mother")
matplot( 1:256, Wbasis[,17:32], type="l", lty=c(1,2), col=2)
title("Mother scaled by 2")
matplot( 1:256, Wbasis[,33:64], type="l", lty=c(1,2), col=2)
title("Mother scaled by 4")

set.panel( 1,1)

# test that the transform works

# Precise definition of what the transform is doing in terms of
# explicit matrix multiplication all of
# these should be machine zero
# Note that the direct matrix multiplications will be substantially slower
# for large vectors.
# y<- rnorm( 256)
# y<- y /sqrt(mean( y**2))

#sqrt(mean( c( Wtransform(y, inv=TRUE) - Wbasis
#sqrt(mean( c(Wtransform(y, inv=TRUE, transpose=TRUE) - t(Wbasis)
#sqrt(mean( c(Wtransform(y) - solve(Wbasis)
#sqrt(mean( c(Wtransform(y, transpose=TRUE) - t(solve(Wbasis))

ftp://info.mcs.anl.gov/pub/tech_reports/reports/P449.ps.Z
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#
## 2-d examples
#

# Wtransform of John Lennon image
data(lennon)
look<- Wtransform.image( lennon)
#
### take a look:
image.plot( look)

# a diagonal detail basis function
# we find this by just multipling W by a unit vector!

temp<- matrix(0, nrow=32, ncol=32)
temp[8,5]<- 1
look<- Wtransform.image( temp , inv=TRUE, cut.min=4)
image( look)
title("diagonal detail W-wavelet")

#just for fun: redo this example for all indices up to 8!
#
#set.panel( 8,8)
#par( mar=c(0,0,0,0))
#for ( k in (1:8)){
#for ( j in (1:8)){
#temp<- matrix( 0 , nx,ny)
#temp[k,j] <- 1
#Wtransform.image( temp, inv=T, cut.min=cut.min)-> look
#image( look, axes=FALSE, xlab="", ylab="")
#box()
#}
#}

# examine a basis function to see periodic condition enforces along
# X axis of image.
temp<- matrix(0, nrow=32, ncol=32)
temp[8,5]<- 1
image( Wtransform.cylinder.image( temp , inv=TRUE, cut.min=4))
# now along Y-axis
image( Wtransform.cylinder.image( temp , inv=TRUE, cut.min=4, byX=FALSE))

# reset panel
set.panel( 1,1)

add.image Adds an image to an existing plot.
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Description

Adds an image to an existing plot. Simple arguments control the location and size.

Usage

add.image(xpos, ypos, z, adj.x = 0.5, adj.y = 0.5,
image.width = 0.15, image.height = NULL, col = tim.colors(256), ...)

Arguments

xpos X position of image in user coordinates

ypos Y position of image in user coordinates

z Matrix of intensities comprising the image.

adj.x Location of image relative to x coordinate. Most common values are .5 (cen-
tered), 0 (right side of image at x) and 1 (left side of image at x). These are the
same conventions that are used for adj in positioning text.

adj.y Location of image relative to y coordinate. Same rules as adj.x

image.width Width of image as a fraction of the plotting region in horizontal direction.

image.height Height of image as a fraction of the plotting region in horizontal direction. If
NULL height is scaled to make image pixels square.

col Color table for image. Default is tim.colors.

... Any other plotting arguments that are passed to the image function

See Also

image.plot, colorbar.plot, image, tim.colors

Examples

plot( 1:10, 1:10, type="n")
data( lennon)

add.image( 5,4,lennon, col=grey( (0:256)/256))
# reference lines
xline( 5, col=2)
yline( 4,col=2)

#
# add lennon right in the corner beyond the plotting region
#

par(new=TRUE, plt=c(0,1,0,1), mar=c(0,0,0,0), usr=c(0,1,0,1))
add.image( 0,0, lennon, adj.x=0, adj.y=0)
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arrow.plot Adds arrows to a plot

Description

Adds arrows at specified points where the arrow lengths are scaled to fit on the plot in a reasonable
manner. A classic use of this function is to depict a vector field. At each point (x,y) we have a
vector with components (u,v). Like the arrows function this adds arrows to an existing plot.

Usage

arrow.plot(a1, a2, u = NA, v = NA, arrow.ex = 0.05,
xpd = TRUE, true.angle = FALSE, arrowfun=arrows,...)

Arguments

a1 The x locations of the tails of the arrows or a 2 column matrix giving the x and
y coordinates of the arrow tails.

a2 The y locations of the tails of the arrows or a 2 column matrix giving the u and
v coordinates of the arrows.

u The u components of the direction vectors if they are not specified in the a2
argument

v The v components of the direction vectors if they are not specified in the a2
argument

arrow.ex Controls the length of the arrows. The length is in terms of the fraction of the
shorter axis in the plot. So with a default of .05 20 arrows of maximum length
can line up end to end along the shorter axis.

xpd If true does not clip arrows to fit inside the plot region, default is not to clip.

true.angle If true preserves the true angle of the (u,v) pair on the plot. E.g. if (u,v)=(1,1)
then the arrow will be drawn at 45 degrees.

arrowfun The actual arrow function to use. The default is standard R arrows. However,
Tamas K Papp suggests p.arrows from sfsmisc which makes prettier arrows.

... Graphics arguments passed to the arrows function that can can change the color
or arrow sizes. See help on this for details.

Details

This function is useful because (u,v) may be in very different scales from the locations (x,y). So
some careful scaling is needed to plot the arrows. The only tricky thing about this function is
whether you want the true angles on the plot. For overlaying a vector field on top of contours that
are the streamlines true.angle should be false. In this case you want u and v to be scaled in the same
way as the x and y variables. If the scaling is not the same then the arrows will not look like tangent
vectors to the streamlines. An application where the absolute angles are meaningful might be the
hands of a clock showing different times zones on a world map. Here true.angle=T is appropriate,
the clock hands should preserve the right angles.
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See Also

arrows

Examples

#
# 20 random directions at 20 random points

x<- runif( 20)
y<- runif( 20)
u<- rnorm( 20)
v<- rnorm( 20)
plot( x,y)
arrow.plot( x,y,u,v) # a default that is unattractive

plot( x,y, type="n")
arrow.plot( x,y,u,v, arrow.ex=.2, length=.1, col='green', lwd=2)
# thicker lines in green, smaller heads and longer tails. Note length, col and lwd are
# options that the arrows function itself knows about.

as.image Creates image from irregular x,y,z

Description

Discretizes a set of 2-d locations to a grid and produces a image object with the z values in the right
cells. For cells with more than one Z value the average is used.

Usage

as.image(Z, ind=NULL, grid=NULL, x=NULL, nrow=64, ncol=64,weights=NULL,
na.rm=FALSE, nx=NULL,ny=NULL, boundary.grid=FALSE)

Arguments

Z Values of image

ind A matrix giving the row and column subscripts for each image value in Z. (Not
needed if x is specified.)

grid A list with components x and y of equally spaced values describing the centers
of the grid points. The default is to use nrow and ncol and the ranges of the data
locations (x) to construct a grid.

x Locations of image values. Not needed if ind is specified.

nrow Number of rows in image matrix ( x-axis direction)

ncol Number of columns in image matrix ( y-axis direction)

weights If two or more values fall into the same pixel a weighted average is used to
represent the pixel value. Default is equal weights.
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na.rm If true NA’s are removed from the Z vector.
nx Same as nrow
ny Same as ncol
boundary.grid

If FALSE grid points are assumed to be the midpoints. If TRUE they are the
grid box boundaries.

Details

The discretization is straightforward once the grid is determined. If two or more Z values have
locations in the same cell the weighted average value is taken as the value. The weights component
that is returned can be used to account for means that have different numbers (or precisions) of
observations contributing to the grid point averages. The default weights are taken to be one for
each observation. See the source code to modify this to get more information about coincident
locations. (See the call to fast.1way)

Value

An list in image format with a few more components. Components x and y are the grid values , z
is a nrow X ncol matrix with the Z values. NA’s are placed at cell locations where Z data has not
been supplied. Component ind is a 2 column matrix with subscripts for the locations of the values
in the image matrix. Component weights is an image matrix with the sum of the individual weights
for each cell. If no weights are specified the default for each observation is one and so the weights
will be the number of observations in each bin.

See Also

image.smooth, image.plot, Krig.discretize, Krig.replicates

Examples

# convert precip data to 50X50 image
look<- as.image( RMprecip$y, x= RMprecip$x, nrow=50, ncol=50)
image.plot( look)

# number of obs in each cell -- in this case equal to the
# aggregated weights because each obs had equal wieght in the call

image.plot( look$x ,look$y, look$weights, col=terrain.colors(50))
# hot spot is around Denver

as.surface Creates an "surface" object from grid values.

Description

Reformats the vector from evaluating a function on a grid of points into a list for use with surface
plotting function. The list has the usual components x,y and z and is suitable for use with persp,
contour, image and image.plot.



as.surface 49

Usage

as.surface(obj, z, order.variables="xy")

Arguments

obj A description of the grid used to evaluate the function. This can either be in
the form of a grid.list ( see help file for grid.list) or the matrix of grid of points
produced by make.surface.grid. In the later case obj is a matrix with the grid.list
as an attribute.

z The value of the function evaluated at the gridded points.
order.variables

Either "xy" or "yx" specifies how the x and y variables used to evaluate the
function are matched with the x and y grids in the surface object.

Details

This function was written to simply to go back and forth between a matrix of gridded values and
the stacked vector obtained by stacking columns. The main application is evaluating a function at
each grid point and then reforming the results for plotting. (See example below.)

If zimage is matrix of values then the input vector is c( zimage). To go from the stacked vector to
the matrix one needs the the nrow ncol and explains why grid information must also be specified.

Note that the z input argument must be in the order values in order of stacking columns of the image.
This is also the order of the grid points generated by make.surface.grid.

To convert irregular 2-d data to a surface object where there are missing cells see the function
as.image.

Value

A list of class surface. This object is a modest generalization of the list input format (x,y,z,) for the
S functions contour, image or persp.

x The grid values in the X-axis

y The grid values in the Y-axis

z A matrix of dimensions nrow= length of x and ncol= length of y with entries
being the grid point value reformatted from z.

See Also

grid.list, make.surface.grid, surface, contour, image.plot, as.image

Examples

# Make a perspective of the surface Z= X**2 -Y**2
# Do this by evaluating quadratic function on a 25 X 25 grid

grid.l<-list( abcissa= seq( -2,2,,15), ordinate= seq( -2,2,,20))
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xg<-make.surface.grid( grid.l)
# xg is a 300X2 matrix that has all pairs of X and Y grid values
z<- xg[,1]**2 - xg[,2]**2
# now fold z in the matrix format needed for persp
out.p<-as.surface( xg, z)
persp( out.p)
# also try plot( out.p) to see the default plot for a surface object

bplot boxplot

Description

Plots boxplots of several groups of data and allows for placement at different horizontal or vertical
positions or colors. It is also flexible in the input object, accepting either a list or matrix.

Usage

bplot(x, by,style = "tukey", outlier = TRUE, plot = TRUE, ...)

Arguments

x Vector, matrix, list or data frame. A vector may be divided according to the
by argument. Matrices and data frames are separated by columns and lists by
components.

by If x is a vector, an optional vector (either character or numerical) specifying the
categories to divide x into separate data sets.

style Type of boxplot default is "tukey". The other choice is "quantile" where the
whiskers are drawn to the 5 and 95 percentiles instead being based on the inner
fences.

outlier If true outliers (points beyond outer fences) will be added to the plots.

plot If false just returns a list with the statistics used for plotting the box plots.

... Other arguments controlling the boxplots ( passed to bplot.obj) these are listed
below. Other graphical plotting arguments not matched (e.g. yaxt) are used in
the call to plot to set up the initial plot if add=T.

pos The boxplots will be plotted vertically and pos gives the x or y locations for
their centers. If omitted the boxes are equally spaced at integer values.

width Width of boxplots (in user coordinates) if omitted then the width is a
reasonable fraction of the distance between boxes and is set by the space
argument.

labels Labels under each boxplot. If missing the columns names or components
of x are used.

las Orient the axis labels for bplot groups. Default is to put them horizontal
(las=1) if number of groups is less than 7 otherwise make them perpendic-
ular (las=2) to keep the labels from running into each other. See help(par)
for more about this option.
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add If true, do not create a new plots just add the boxplots to a current plot.
Note that the pos argument may be useful in this case and should be in the
user coordinates of the parent plot.

space Space between boxplots.
sort.names If true plot the boxplot data set names are sorted in alphabetic order

by their labels.
xlab Label for the x-axis
ylab Label for the y-axis
label.cex Boxplot label size where 1.0 is normal size characters. If zero labels

will not be added.
xaxt Plotting parameter for x-axis generation. Default is not to produce an x-

axis.
horizontal If true draw boxplots horizontally the default is false, produce ver-

tical box plots.
lwd Width(s) of lines in box plots.
col Color(s) of bplots.

Details

This function was created as a complement to the usual S function for boxplots. The current function
makes it possible to put the boxplots at unequal x or y positions. This is useful for visually grouping
a large set of boxplots into several groups. Also placement of the boxplots with respect to the axis
can add information to the plot. Another aspect is the emphasis on data structures for groups of
data. One useful feature is the by option to break up the x vector into distinct groups. If 5 or less
observations are in a group the points themselves are plotted instead of a box.

The function is broken into two steps: a call to stats.bplot to find the statistics and a call to bplot.obj
to plot the resulting object. The user is referred to describe.bplot to modify the statistics used and
to draw.bplot.obj to modify how the bplot is drawn.

Finally to bin data into groups based on a continuous variable and to make bplots of each group see
bplot.xy.

See Also

describe.bplot, draw.bplot.obj, stats.bplot, bplot.xy, bplot.obj

Examples

#
set.seed(123)
temp<- matrix( rnorm(12*8), ncol=12)
pos<- c(1:6,9:14)
bplot(temp)
#
bplot( temp, pos=pos, labels=paste( "D",1:12), horizontal=TRUE)
#
# boxplots in red
bplot( temp, pos=pos, label.cex=0, horizontal=TRUE, col="red")
# add an axis
axis( 2)
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bplot.xy Boxplots for conditional distribution

Description

Draws boxplots for y by binning on x. This gives a coarse, but quick, representation of the condi-
tional distrubtion of [Y|X] in terms of boxplots.

Usage

bplot.xy(x, y, N = 10, breaks = pretty(x, N, eps.correct = 1),
style = "tukey", outlier = TRUE, plot = TRUE, xaxt =
"s", ...)

Arguments

x Vector to use for bin membership

y Vector to use for constructing boxplot statistics.

N Number of bins on x. Default is 10.

breaks Break points defining bin boundaries. These can be unequally spaced.

style Type of boxplot default is "tukey". The other choice is "quantile" where the
whiskers are drawn to the 5 and 95 percentiles instead being based on the inner
fences.

xaxt Plotting parameter for x-axis generation. Default is to produce an x-axis.

outlier If true outliers (points beyond outer fences) will be added to the plots.

plot If false just returns a list with the statistics used for plotting the box plots.

... Any other optional arguments passed to the bplot.obj function there are quite a
few that are useful, see the help file for bplot for details.

See Also

bplot, draw.bplot

Examples

# condition on swim times to see how run times vary
bplot.xy( minitri$swim, minitri$run, N=5)

# bivariate normal corr= .6
set.seed( 123)
x<-rnorm( 2000)
y<- .6*x + sqrt( 1- .6**2)*rnorm( 200)
#
#
bplot.xy( x,y, breaks=seq( -3, 3,,15) ,xlim =c(-4,4), ylim =c(-4,4))
points( x,y, pch=".", col=3)
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colorbar.plot Adds color scale strips to an existing plot.

Description

Adds one or more color scales in a horizontal orientation, vertical orientation to an existing plot.

Usage

colorbar.plot(x, y, strip, strip.width = 0.1, strip.length = 4 * strip.width,
zrange = NULL, adj.x = 0.5, adj.y = 0.5, col = tim.colors(256),
horizontal = TRUE, ...)

Arguments

x x position of strip in user coordinates

y y position of strip in user coordinates

strip Either a vector or matrix giving the values of the color strip(s). If a matrix then
strips are assumed to be the columns.

strip.width Width of strip as a fraction of the plotting region.

strip.length Length of strip as a function of the plotting region. Default is a pleasing 8 times
width.

zrange If a vector these are the common limits used for assigning the color scale. De-
fault is to use the range of values in strip. If a two column matrix, rows are used
as the limits for each strip.

adj.x Location of strip relative to x coordinate. Most common values are .5 (centered),
0 (right end at x) and 1 (left end of at x). These are the same conventions that
are used for adj in positioning text.

adj.y Location of strip relative to y coordinate. Same rules as adj.x

col Color table used for strip. Default is our favorite tim.colors being a scale from a
dark blue to dark red.

horizontal If TRUE draws strips horizontally. If FALSE strips are drawn vertically

... optional graphical arguments that are passed to the image function.

Details

This function draws the strips as a sequence of image plots added to the existing plot. The main
work is in creating a grid ( x,y) for the image that makes sense when superimposed on the plot.
Note that although the columns of strip are considered as separate strips these can be oriented either
horizontally or vertically based on the value of horizontal. The rows of zrange are essentially
the zlim argument passed to the image function when each strip is drawn.
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Don’t forget to use locator to interactively determine positions. text can be used to label points
neatly in conjunction with setting adj.x and adj.y. Although this function is inefficient for placing
images at arbitrary locations on a plot the code can be easily adapted to do this.

This function was created to depict univariate posterior distribution on a map. The values are
quantiles of the distribution and the strips when added under a common color scale give an overall
impression of location and scale for several distributions.

Author(s)

Doug Nychka

See Also

image.plot, arrow.plot, add.image

Examples

# set up a plot but don't plot points and no "box"
plot( 1:10, (1:10)*10, type="n", bty="n")
# of course this could be anything

y<- cbind( 1:15, (1:15)+25)

colorbar.plot( 2.5, 30, y)
points( 2.5,30, pch="+", cex=2, adj=.5)
# note that strip is still in 1:8 aspect even though plot has very
# different ranges for x and y.

# adding legend using image.plot
zr<- range( c( y))
image.plot( legend.only=TRUE, zlim= zr)
# see help(image.plot) to create more room in margin etc.

zr<- rbind( c(1,20), c(1,100)) # separate ranges for columns of y.
colorbar.plot( 5, 70, y, adj.x=0, zrange= zr)
# some reference lines to show placement
xline( 5, lty=2) # strip starts at x=5
yline(70, lty=2) # strip is centered around y=7 (because adj.y=.5 by default)

# many strips on common scale.

y<- matrix( 1:200, ncol=10)
colorbar.plot( 2, 75, y, horizontal=FALSE, col=rainbow(256))

# Xmas strip
y<- cbind( rep( c(1,2),10))
y[15] <- NA # NA's should work
colorbar.plot( 6, 45, y, adj.y=1,col=c("red", "green"))
text(6,48,"Christmas strip", cex=2)

# lennon thumbnail
# there are better ways to this ... see add.image for example.
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data( lennon)
colorbar.plot( 7.5,22, lennon,

strip.width=.25, strip.length=.25, col=grey(seq( 0,1,,256)))

cover.design Computes Space-Filling "Coverage" designs using Swapping Algo-
rithm

Description

Finds the set of points on a discrete grid (Candidate Set) which minimize a geometric space-filling
criterion. The strength of this method is that the candidate set can satisfy whatever constraints are
important for the problem.

Usage

cover.design(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL,
scale.type = "unscaled", R.center, R.scale, P = -20, Q = 20,
start = NULL, DIST = NULL, return.grid = TRUE, return.transform =

TRUE, max.loop=20, verbose=FALSE)

Arguments

R A matrix of candidate points to be considered in the design. Each row is a
separate point.

nd Number of points to add to the design. If points exist and are to remain in the
design (see "fixed" option), nd is the number of points to add. If no points are
fixed, nd is the design size.

nruns The number of random starts to be optimized. Uses random starts unless "start"
is specified. If nruns is great than 1, the final results are the minimum.

nn Logical value specifying whether or not to consider only nearest neighbors in
the swapping algorithm. When nn=FALSE, then the swapping algorithm will
consider all points in the candidate space. When nn=TRUE, then the swapping
algorithm will consider only the num.nn closest points for possible swapping.
The default is to use nearest neighbors only (nn=TRUE).

num.nn Number of nearest-neighbors to search over. The default number is 100. If nn=F
then this argument will be ignore.

fixed A matrix or vector specifying points to be forced into the experimental design.
If fixed is a matrix, it gives coordinates of the fixed points in the design. In this
case fixed must be a subset of R. If fixed is a vector, then fixed gives the row
numbers from the candidate matrix R that identify the fixed points. The number
of points to be generated, nd, is in addition to the number of points specified by
fixed.
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scale.type A character string that tells how to scale the candidate matrix, R, before calcu-
lating distances. The default is "unscaled", no transformation is done. Another
option is "range" in which case variables are scaled to a [0,1] range before ap-
plying any distance functions. Use "unscaled" when all of the columns of R are
commensurate; for example, when R gives x and y in spatial coordinates. When
the columns of R are not in the same units, then it is generally thought that an ap-
propriate choice of scaling will provide a better design. This would be the case,
for example, for a typical process optimization. Other choices for scale.type are
"unit.sd", which scales all columns of R to have 0 mean and unit standard devia-
tion, and "user", which allows a user specified scaling (see R.center and R.scale
arguments).

R.center A vector giving the centering values if scale.type=user.

R.scale A vector giving the scale values if scale.type=user.

P The "p" exponent of the coverage criterion (see below). It affects how the dis-
tance from a point x to a set of design points D is calculated. P=1 gives average
distance. P=-1 gives harmonic mean distance. P=-Inf would give minimum dis-
tance (not available as a value). As P gets large and negative, points will tend to
be more spread out.

Q The "q" exponent of the coverage criterion (see below).It affects how distances
from all points not in the design to points in the design are averaged. When Q=1,
simple averaging of the distances is employed. Q=Inf (not available as a value)
in combination with P=-Inf would give a classical minimax design.

start A matrix or vector giving the initial design from which to start optimization. If
start is a matrix, it gives the coordinates of the design points. In this case start
must be a subset of the candidate set , R matrix. If start is a vector, then start
gives the row numbers of the initial design based on the rows of the candidate
matrix rows. The default is to use a random starting design.

DIST This argument is only for cover.design.S. A distance metric in the form of an S
function. Default is Euclidean distance (FIELDS rdist function) See details and
example below for the correct form.

return.grid Logical value that tells whether or not to return the candidate matrix as an at-
tribute of the computed design. The default is return.grid=T. If false this just re-
duces the returned object size. The candidate matrix is used by plot.spatial.design
if it is available.

return.transform
Logical value that tells whether or not to return the transformation attributes of
candidate set. The default is return.transform=T.

max.loop Maximum number of outer loops in algorithm. This is the maximum number of
passes through the design testing for swaps.

verbose If TRUE prints out debugging information.

Details

OTHER DISTANCE FUNCTIONS: You can supply an R/S-function to be used as the distance
metric. The expected calling sequence for this distance function is function( X1,X2){....} where X1
and X2 are matrices with coordinates as the rows. The returned value of this function should be the
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pairwise distance matrix. If nrow( X1)=m and nrow( X2)=n then the function should return an m by
n matrix of all distances between these two sets of points. See the example for Manhattan distance
below.

The candidate set and DIST function can be flexible and the last example below using sample
correlation matrices is an example.

COVERAGE CRITERION: For nd design points in the set D and nc candidate points ci in the set
C, the coverage criteria is defined as:

M(D,C) = [sum(ci in C) [sum(di in D) (dist(di,ci)**P]**(Q/P)]**(1/Q)

Where P, less than 0, and Q, greater than 0, are parameters. The algorithm used in "cover.design" to
find the set of nd points in C that minimize this criterion is an iterative swapping algorithm which
will be described briefly. The resulting design is referred to as a "coverage design" from among the
class of space-filling designs. If fixed points are specified they are simply fixed in the design set and
are not allowed to be swapped out.

ALGORITHM: An initial set of nd points is chosen randomly if no starting configuration is pro-
vided. The nc x nd distance matrix between the points in C and the points in D is computed, and
raised to the power P. The "row sums" of this matrix are computed. Denote these as rs.i and the
vector of row sums as rs. Using rs, M(D,C) is computed as:

[sum i (rs.i)**(Q/P)]**(1/Q)

Note that if point d.i is "swapped" for point c.j, one must only recompute 1 column of the original
distance matrix, and 1 row. The row elements not in the ith column will be the same for all j and
so only need computing when the first swapping occurs for each d.i . Denote the sum of these off-i
elements as "newrow(i)". The index is i here since this is the same for all rows (j=1,...nc). Thus, for
each swap, the row sums vector is updated as

rs(new) = rs(old) - column(i,old) + column(i,new)

And the jth element of rs(new) is replaced by:

rs(new)[j] = column(i,new)[k] + newrow(i)

Finally, M(D,C) is computed for this swap of the ith design point for the jth candidate point using
[2]. The point in C that when swapped produces the minimum value of M(D,C) replaces d.i. This is
done for all nd points in the design, and is iterated until M(D,C) does not change. When the nearest
neighbor option is selected, then the points considered for swapping are limited to the num.nn
nearest neighbors of the current design point.

STABILITY

The algorithm described above is guaranteed to converge. However, upon convergence, the solution
is sensitive to the initial configuration of points. Thus, it is recommended that multiple optimizations
be done (i.e. set nruns greater than 1 ). Also, the quality of the solution depends on the density of
the points on the region. At the same time, for large regions , optimization can be computationally
prohibitive unless the nearest neighbor option is employed.

Value

Returns a design object of class "spatial.design". Subscripting this object has the same effect as
subscripting the first component (the design). The returned list has the following components:

design The best design in the form of a matrix.

best.id Row numbers of the final design from the original candidate matrix, R.
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fixed Row numbers of the fixed points from the original candidate matrix, R.

opt.crit Value of the optimality criterion for the final design.

start.design Row numbers of the starting design from the original candidate matrix, R.

start.crit Value of the optimality criterion for the starting design.

history The swapping history and corresponding values of the optimality criterion for
the best design.

other.designs
The designs other than the best design generated when nruns is greater than 1.

other.crit The optimality criteria for the other designs when nrun is greate than 1.

DIST The distance function used in calculating the design criterion.

nn Logical value for nearest-neighbor search or not.

num.nn The number of nearest neighbor set.

grid The matrix R is returned if the argument return.grid=T.

transform The type of transformation used in scaling the data and the values of the center-
ing and scaling constants if the argument return.transform=T.

call The calling sequence.

P The parameter value for calculating criterion.

Q The parameter value for calculating criterion.

nhist The number of swaps performed.

nloop The number of outer loops required to reach convergence if nloop is less the
max.loop.

minimax.crit The minimax design criterion using DIST.

max.loop The maximum number of outer loops.

References

Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990). Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26, 131-148. SAS/QC Software. Volume 2: Usage
and Reference. Version 6. First Edition (1995). "Proc Optex". SAS Institute Inc. SAS Campus
Drive,

See Also

rdist, rdist.earth

Examples

##
##
# first generate candidate set
set.seed(123) # setting seed so that you get the same thing I do!
test.df <- matrix( runif( 600), ncol=3)

test1.des<-cover.design(R=test.df,nd=10)
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summary( test1.des)
plot( test1.des)

#
candidates<- make.surface.grid( list( seq( 0,5,,20), seq(0,5,,20)))
out<- cover.design( candidates, 15)

# find 10 more points keeping this original design fixed

out3<-cover.design( candidates, 10,fixed=out$best.id)
# see what happened

plot( candidates[,1:2], pch=".")
points( out$design, pch="x")
points( out3$design, pch="o")

# here is a strange graph illustrating the swapping history for the
# the first design. Arrows show the swap done
# at each pass through the design.

h<- out$history
cd<- candidates
plot( cd[,1:2], pch=".")
points( out$design, pch="O", col=2)
points( out$start.design, pch="x", col=5)

arrows(
cd[h[,2],1],
cd[h[,2],2],
cd[h[,3],1],
cd[h[,3],2],length=.1)
text( cd[h[,2],1],
cd[h[,2],2], h[,1], cex=1.0 )

#
# try this out using "Manhattan distance"
# ( distance following a grid of city streets)

dist.man<- function(x1,x2) {
d<- ncol( x1)
temp<- abs(outer( x1[,1], x2[,1],'-'))
for ( k in 2:d){

temp<- temp+abs(outer( x1[,k], x2[,k],'-'))
}
temp }

# use the design from the Euclidean distance as the starting
#configuration.

cover.design( candidates, 15, DIST=dist.man, start= out3$best.id)-> out2
# this takes a while ...
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plot( out2$design)
points( out3$design, col=2)

# find a design on the sphere
#

candidates<- make.surface.grid( list( x=seq( -180,180,,20), y= seq( -85,
85,,20)))

out4<-cover.design( candidates, 15, DIST=rdist.earth)
# this takes a while

plot( candidates, pch="+", cex=2)
points(out4$design, pch="o", cex=2, col="blue")

# covering based on correlation for 153 ozone stations
#
data( ozone2)

cor.mat<-cor( ozone2$y, use="pairwise")

cor.dist<- function( x1,x2)
{matrix( 1-cor.mat[ x1,x2], ncol=length(x2))}

#
# find 25 points out of the 153
# here the "locations" are just the index but the distance is
# determined by the correlation function.
#
out5<-cover.design(cbind(1:153),25, DIST= cor.dist, scale.type="unscaled")

plot( ozone2$lon.lat, pch=".")
points( ozone2$lon.lat[out5$best.id,],pch="O", col=4)
#
# this seems a bit strange probably due some funny correlation values
#

# reset panel
set.panel(1,1)

%d*%-methods Multiplying diagonal matrices in Package ‘fields’

Description

Recognizes a left vector as the elements of a diagonal matrix and does the right multiplication
efficiently (this is not rocket science!). This method is used in the internal functions of Krig to
make the code more readable. It avoids having a branch in the source code to handle the diagonal
or nondiagonal cases. Note that this operator is not symmetric: a vector in the left argument is
interpreted as a diagonal matrix and a vector in the right argument is kept as a column vector.
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Methods

x = "matrix", y = "matrix" computes x%*%y

x = "matrix", y = "numeric" computes x%*% diag(y)

x = "numeric", y = "matrix" computes diag( x)%*% y

x = "numeric", y = "numeric" computes diag(x)%*% y, the diagonal matrix x multiplied by a
vector.

drape.plot Perspective plot draped with colors in the facets.

Description

Function to produce the usual wireframe perspective plot with the facets being filled with different
colors. By default the colors are assigned from a color bar based on the z values. drape.color
can be used to create a color matrix different from the z matrix used for the wireframe.

Usage

drape.plot(x, y, z, z2=NULL, col = tim.colors(64), zlim = range(z, na.rm=TRUE),
zlim2 = NULL, add.legend = TRUE, horizontal = TRUE, theta = 30, phi = 20, ...)

drape.color(z, col = tim.colors(64), zlim = NULL,
transparent.color = "white", midpoint)

Arguments

x grid values for x coordinate (or if x is a list the components x y and z are used.)

y grid values for y coordinate

z A matrix of z heights

z2 A matrix of z values to use for coloring facets. If NULL then z is used for this
purpose

col A color table for the z values that will be used for draping

zlim the z limits for z these are used to set up the scale of the persp plot. This defaults
to range(z, na.rm=TRUE) as in persp

zlim2 the z limits for z2 these are used to set up the color scale. This defaults to

add.legend If true a color strip is added as a legend.

horizontal If true color strip is put at bottom of the plot, if FALSE it is placed vertically on
the right side.

theta x-y rotation angle for perspective.

phi z-angle for perspective.
transparent.color

Color to use when given an NA in z
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midpoint If TRUE color scale is formed for midpoints of z obtained by averaging 4 cor-
ners.

... Other arguments that will be passed to the persp function. The most common is
zlim the z limits for the 3-d plot and also the limits to set up the color scale. The
default for zlim is the range of z.

Details

The legend strip may obscure part of the plot. If so, add this as another step using image.plot.

When using drape.color just drop the results into the col argument of persp. Given this
function there are no surprises how the higher level drape.plot works: it calls drape.color
followed by persp and finally the legend strip is added with image.plot.

The color scales essentially default to the ranges of the z values. However, by specifying zlim and/or
zlim2 one has more control of how the perspective plot is scaled and the limits of the color scale
used to fill the facets. The color assignments are done by dividing up the zlim2 interval into equally
spaced bins and adding a very small inflation to these limits. The mean z2 values, comprising an
(M-1)X(N-1) matrix, for each facet are discretized to the bins. The bin numbers then become the
indices used for the color scale. If zlim2 is not specified it is the range of the z2 matrix is used
to generate the ranges of the color bar. Note that this may be different than the range of the mean
facets. If z2 is not passed then z is used in its place and in this case the zlim2 or zlim argument can
used to define the color scale.

This kind of plot is also supported through the wireframe function in the lattice package. The
advantage of the fields version is that it uses the standard R graphics functions – and is written in R
code.

The drape plot is also drawn by the fields surface function with type="P".

Value

drape.plot If an assignment is made the projection matrix from persp is returned. This informa-
tion can be used to add additional 3-d features to the plot. See the persp help file for an example
how to add additional points and lines using the trans3d function and also the example below.

drape.color If dim( z) = M,N this function returns an (M-1)X(N-1) matrix where each element
is a text string specifying the color.

Author(s)

D. Nychka

See Also

image.plot, quilt.plot, persp, plot.surface, surface, lattice, trans3d

Examples

# an obvious choice:
# Dr. R's favorite New Zealand Volcano!
data( volcano)
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M<- nrow( volcano)
N<- ncol( volcano)
x<- seq( 0,1,,M)
y<- seq( 0,1,,N)

drape.plot( x,y,volcano, col=terrain.colors(128))-> pm

# use different range for color scale and persp plot
# setting of border omits the mesh lines

drape.plot( x,y,volcano, col=terrain.colors(128),zlim=c(0,300),
zlim2=c( 120,165), border=NA)

# note tranparent color for facets outside the zlim2 range

#The projection has been saved in pm
# add a point marking the summit
max( volcano)-> zsummit
ix<- row( volcano)[volcano==zsummit]
iy<- col( volcano)[volcano==zsummit]
trans3d( x[ix], y[iy],zsummit,pm)-> uv
points( uv, col="magenta", pch="+", cex=2)

# overlay volcano wireframe with gradient in x direction.

dz<- (
volcano[1:(M-1), 1:(N-1)] - volcano[2:(M), 1:(N-1)] +
volcano[1:(M-1), 2:(N)] - volcano[2:(M), 2:(N)]

)/2

# convert dz to a color scale:
zlim<- range( c( dz), na.rm=TRUE)
drape.color( dz, zlim =zlim)-> zcol

# wireframe with these colors
persp( volcano, col=zcol, theta=30, phi=20)

# add legend using image.plot function
image.plot( zlim=zlim, legend.only =TRUE, horizontal =TRUE)

Covariance functions
Exponential family, radial basis functions,cubic spline, compactly sup-
ported Wendland family and stationary covariances.

Description

Given two sets of locations computes the cross covariance matrix for some covariance families. In
addition these functions can take advantage of spareness, implement more efficient multiplcation of
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the cross covariance by a vector or matrix and also return a marginal variance to be consistent with
calls by the Krig function.

Note: These functions have been been renamed from the previous fields functions using ’Exp’ in
place of ’exp’ to avoid conflict with the generic exponential function (exp(...))in R.

Usage

Exp.cov(x1, x2, theta = rep(1, ncol(x1)), p = 1, C = NA, marginal=FALSE)

Exp.simple.cov(x1, x2, theta =1, C=NA,marginal=FALSE)

Rad.cov(x1, x2, p = 1, with.log = TRUE, with.constant = TRUE,
C=NA,marginal=FALSE)

cubic.cov(x1, x2, theta = 1, C=NA, marginal=FALSE)

Rad.simple.cov(x1, x2, p=1, with.log = TRUE, with.constant = TRUE,
C = NA, marginal=FALSE)

stationary.cov(x1, x2, Covariance="Exponential", Distance="rdist",
Dist.args=NULL, theta=1.0,C=NA, marginal=FALSE,...)

stationary.taper.cov(x1, x2, Covariance="Exponential",
Taper="Wendland",
Dist.args=NULL, Taper.args=NULL,
theta=1.0, C=NA, marginal=FALSE,
spam.format=TRUE,...)

wendland.cov(x1, x2, theta = rep(1, ncol(x1)), k = 2, C = NA,
marginal =FALSE,Dist.args = NULL,
spam.format = TRUE, derivative = 0)

Arguments

x1 Matrix of first set of locations where each row gives the coordinates of a partic-
ular point.

x2 Matrix of second set of locations where each row gives the coordinates of a
particular point. If this is missing x1 is used.

theta Range (or scale) parameter. This can be a scalar, vector or matrix. If a scalar or
vector these are expanded to be the diagonal elements of a linear transformation
of the coordinates. In R code the transformation applied before distances are
found is: x1 %*% t(solve(theta)) or if theta is a scalar: x1/theta.
Default is theta=1. See Details below.

C A vector with the same length as the number of rows of x2. If specified the
covariance matrix will be multiplied by this vector.

marginal If TRUE returns just the diagonal elements of the covariance matrix using the
x1 locations. In this case this is just 1.0. The marginal argument will trivial for



Covariance functions 65

this function is a required argument and capability for all covariance functions
used with Krig.

p Exponent in the exponential form. p=1 gives an exponential and p=2 gives a
Gaussian. Default is the exponential form.
For the radial basis function this is the exponent for the distance between loca-
tions.

with.constant
If TRUE includes complicated constant for radial basis functions. See the func-
tion radbad.constant for more details. The default is TRUE include the
constant. Without the usual constant the lambda used here will differ by a con-
stant from estimators ( e.g. cubic smoothing splines) that use the constant. Also
a negative value for the constant may be necessary to make the radial basis pos-
itive definite as opposed to negative definite.

with.log If TRUE include a log term for even dimensions. This is needed to be a thin
plate spline of integer order.

Covariance Character string that is the name of the covariance shape function for the dis-
tance between locations. Choices in fields are Exponential, Matern

Distance Character string that is the name of the distance function to use. Choices in
fields are rdist, rdist.earth

Taper Character string that is the name of the taper function to use. Choices in fields
are listed in help(taper).

Dist.args A list of optional arguments to pass to the Distance function.

Taper.args A list of optional arguments to pass to the Taper function. theta should always
be the name for the range (or scale) paremeter.

spam.format If TRUE returns matrix in sparse matrix format implemented in the spam pack-
age. If FALSE just returns a full matrix.

k The order of the Wendland covariance function. See help on Wendland.

derivative If nonzero evaluates the partials of the covariance function at locations x1. This
must be used with "C" option and is mainly called from within a predict function.

... Any other arguments that will be passed to the covariance function. e.g. smoothness
for the Matern.

Details

For purposes of illustration, the function Exp.cov.simple is provided as a simple example
and implements the R code discussed below. It can also serve as a template for creating new
covariance functions for the Krig and mKrig functions. Also see the higher level function
stationary.cov to mix and match different covariance shapes and distance functions.

Functional Form: If x1 and x2 are matrices where nrow(x1)=m and nrow(x2)=n then this function
will return a mXn matrix where the (i,j) element is the covariance between the locations x1[i,] and
x2[j,]. The covariance is found as exp( -(D.ij **p)) where D.ij is the Euclidean distance between
x1[i,] and x2[j,] but having first been scaled by theta.

Specifically if theta is a matrix to represent a linear transformation of the coordinates, then let
u= x1%*% t(solve( theta)) and v= x2%*% t(solve(theta)). Form the mXn distance matrix with
elements:
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D[i,j] = sqrt( sum( ( u[i,] - v[j,])**2 ) ).

and the cross covariance matrix is found by exp(-D). The tapered form (ignoring scaling param-
eters) is a matrix with i,j entry exp(-D[i,j])*T(D[i,j]). With T being a positive definite tapering
function that is also assumed to be zero beyond 1.

Note that if theta is a scalar then this defines an isotropic covariance function and the functional
form is essentially exp(-D/theta).

Implementation: The function r.dist is a useful FIELDS function that finds the cross Euclidean
distance matrix (D defined above) for two sets of locations. Thus in compact R code we have

exp(-rdist(u, v)**p)

Note that this function must also support two other kinds of calls:

If marginal is TRUE then just the diagonal elements are returned (in R code diag( exp(-
rdist(u,u)**p) )).

If C is passed then the returned value is

exp(-rdist(u, v)**p) %*% C

Radial basis functions Rad.cov: The functional form is Constant* rdist(u, v)**p for odd dimen-
sions and Constant* rdist(u,v)**p * log( rdist(u,v) For an m th order thin plate spline in d dimensions
p= 2*m-d and must be positive. The constant, depending on m and d, is coded in the fields function
radbas.constant. This form is only a generalized covariance function – it is only positive
definite when restricted to linear subspace. See Rad.simple.cov for a coding of the radial basis
functions in R code.

Stationary covariance stationary.cov: Here the computation is to apply the function Covari-
ance to the distances found by the Distance function. For example

Exp.cov(x1,x2, theta=MyTheta)

and

stationary.cov( x1,x2, theta=MyTheta, Distance= "rdist", Covariance="Exponential")

are the same. This also the same as

stationary.cov( x1,x2, theta=MyTheta, Distance= "rdist", Covariance="Matern",smoothness=.5).

Stationary tapered covariance stationary.taper.cov: The resulting cross covariance is the
direct or Shure product of the tapering function and the covariance. In R code given location
matrices, x1 and x2 and using Euclidean distance.

Covariance(rdist( x1, x2))*Taper( rdist( x1, x2))

By convention, the Taper function is assumed to be identically zero outside the interval [0,1].
Some efficiency is introduced within the function to search for pairs of locations that are nonzero
with respect to the Taper. This search may find more nonzero pairs than dimensioned by max.points.
Given this error just pass a larger for max.points explicitly. For spam.format TRUE the mul-
tiplication with the C argument is done with the spam sparse multiplication routines through the
"overloading" of the %*% operator. Currently this function only supports the Euclidean distance
function.

About the FORTRAN: The actual function Exp.cov and Rad.cov calls FORTRAN to make
the evaluation more efficient this is especially important when the C argument is supplied. So
unfortunately the actual production code in Exp.cov is not as crisp as the R code sketched above.
See Rad.simple.cov for a R coding of the radial basis functions.
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Value

If the argument C is NULL the cross covariance matrix is returned. In general if nrow(x1)=m and
nrow(x2)=n then the returned matrix will be mXn. Moreover, if x1 is equal to x2 then this is the
covariance matrix for this set of locations.

If C is a vector of length n, then returned value is the multiplication of the cross covariance matrix
with this vector.

See Also

Krig, rdist, rdist.earth, gauss.cov, Exp.image.cov, Exponential, Matern, Wendland.cov, mKrig

Examples

# exponential covariance matrix ( marginal variance =1) for the ozone
#locations
out<- Exp.cov( ozone$x, theta=100)

# out is a 20X20 matrix

out2<- Exp.cov( ozone$x[6:20,],ozone$x[1:2,], theta=100)
# out2 is 15X2 matrix

# Kriging fit where the nugget variance is found by GCV
# Matern covariance shape with range of 100.
#

fit<- Krig( ozone$x, ozone$y, Covariance="Matern", theta=100,smoothness=2)

data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]

# example of calling the taper version directly
# Note that default covariance is exponential and default taper is
# Wendland (k=2).
## Not run:

stationary.taper.cov( x,x, theta=1.5, Taper.args= list(k=2, theta=2.0),
mean.neighbor= 200 )-> temp

# temp is a tapered covariance matrix in sparse format.

is.spam( temp) # evaluates to TRUE

temp<- spam2full(temp) # should be identical to
temp2<- Exp.cov( x,x, theta=1.5) * wendland.cov(x,x,

theta= 2.0*1.5,spam.format=FALSE)

test.for.zero( temp, temp2)
## End(Not run)

# Here is an example of how the cross covariance multiply works
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# and lots of options on the arguments

Ctest<- rnorm(10)

temp<- stationary.cov( x,x[1:10,], C= Ctest,
Covariance= "Wendland",

k=2, dimension=2, theta=1.5 )

# do multiply explicitly

temp2<- stationary.cov( x,x[1:10,],
Covariance= "Wendland",

k=2, dimension=2, theta=1.5 )%*% Ctest

test.for.zero( temp, temp2)

# use the tapered stationary version
# cov.args is part of the argument list passed to stationary.taper.cov
# within Krig.
# This example needs the spam package.
#

## Not run:

Krig(x,y, cov.function = "stationary.taper.cov", theta=1.5,
cov.args= list( Taper.args= list(k=2, theta=2.0) )

) -> out2
## End(Not run)

# BTW this is very similar to
## Not run:
Krig(x,y, theta= 1.5)-> out
## End(Not run)

fields internal Fields internal and secondary functions

Description

Listed below are supporting fucntions for the major methods in fields.

Usage

COR(dat)

D4transform.image(x, inv = FALSE, transpose = FALSE, cut.min = 8)

Krig.df.to.lambda(df, D, guess = 1, tol = 1e-05)
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Krig.fdf (llam, info)
Krig.fgcv (lam, obj)
Krig.fgcv.model (lam, obj)
Krig.fgcv.one (lam, obj)
Krig.find.gcvmin (info, lambda.grid, gcv, gcv.fun, tol, verbose =FALSE,
give.warnings = TRUE)
Krig.find.REML (info, lambda.grid, llike, llike.fun, tol, verbose = TRUE,
give.warnings = FALSE)
Krig.flplike (lam, obj)
Krig.fs2hat (lam, obj)
Krig.ftrace (lam, D)
Krig.parameters (obj, mle.calc=obj$mle.calc)
Krig.replicates (out, verbose = FALSE)
Krig.updateY (out, Y, verbose = FALSE, yM=NA)
Krig.which.lambda(out)
Krig.ynew (out, y=NULL, yM=NULL )

WD4 (x)
WD42d (x)
WD42di (x)
WD4i (x)

WQS (x)
WQS.T (x)
WQS.basis (N, cut.n = 8)
WQS2d (x, transpose = FALSE)
WQS2di (x, transpose = FALSE)
WQSdi (x, transpose = FALSE)
WQSi (x)
WQSi.T (x)
WQS.periodic(x)
WQS.periodic.T(x)
WQS.periodic.basis(N, cut.n = 8)
WQS.periodic.T(x)
WQS2d.cylinder(x, transpose = FALSE, byX=TRUE)
WQS2di.cylinder(x, transpose = FALSE, byX=TRUE)
WQSi.periodic(x)
WQSi.periodic.T(x)

bisection.search (x1, x2, f, tol = 1e-07, niter = 25, f.extra =
NA, upcross.level = 0)

bplot.obj (data, pos = NA, width = NULL, labels = NULL, las=NULL
,add = FALSE, space = 0.25, sort.names = FALSE, xlab = "", ylab = "",

label.cex = 1, xaxt = "n", outlier = TRUE, horizontal = FALSE,
lwd=NA,col=NA,...)
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cat.matrix (mat, digits = 8)

cat.to.list (x, a)

ceiling2 (m)

conjugate.gradient (b, multAx, start, tol = 1e-05, kmax =
25, verbose = TRUE, ...)

describe (x)
describe.bplot (temp, style = "tukey", outlier = TRUE)

double.exp(x)

dyadic.2check( m,n,cut.p=2)
dyadic.check( n,cut.p=2)

draw.bplot (temp, width, xpos, outlier = TRUE, style = "tukey")
draw.bplot.obj (obj, width, xpos, outlier = TRUE,

horizontal = FALSE,lwd=NA,col=NA)

Exp.earth.cov (x1, x2, theta = 1)

fast.1way (lev, y, w = rep(1, length(y)))

find.upcross (fun, fun.info, upcross.level = 0, guess = 1, tol =
1e-05)

gauss.cov (...)

golden.section.search (ax, bx, cx, f, niter = 25, f.extra = NA,
tol = 1e-05)

grey.level (n=256)

image.plot.info (...)
image.plot.plt(x, add=FALSE, legend.shrink = 0.9, legend.width = 1,
horizontal = FALSE, legend.mar=NULL, bigplot = NULL, smallplot = NULL,...)

in.poly (xd, xp, convex.hull = FALSE, inflation=1e-7)

krig.image.parameters (out)

lonlat2xy (lnlt, miles = FALSE)

make.surface.grid (grid.list)

minimax.crit (obj, des = TRUE, R)
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periodic.cov.1d (x1, x2, a, b)
periodic.cov.cyl (x1, x2, a = 0, b = 365, theta = 1)
periodic.plane.3d (x1, x2, a = 0, b = 365, theta = 1)

## S3 method for class 'krig.image':
plot(x, main = NA, digits = 4, which = rep(TRUE, 4),

graphics.reset = TRUE, ...)
## S3 method for class 'qsreg':
plot(x, pch = "*", main = NA,...)
## S3 method for class 'sim.krig.image':
plot(x,...)
## S3 method for class 'spatial.design':
plot(x,...)

## S3 method for class 'interp.surface':
predict(object, loc,...)
## S3 method for class 'krig.image':
predict(object, x, ...)
## S3 method for class 'qsreg':
predict(object, x, derivative = 0, model = object$ind.cv.ps,...)
## S3 method for class 'sreg':
predict(object, x, derivative = 0, model = 1,...)

## S3 method for class 'krig.image':
print(x,...)
## S3 method for class 'qsreg':
print (x, ...)
## S3 method for class 'spatial.design':
print (x,...)
## S3 method for class 'sreg':
print(x, ...)
## S3 method for class 'summary.Krig':
print (x, ...)
## S3 method for class 'summary.krig.image':
print (x, ...)
## S3 method for class 'summary.spatial.design':
print (x, digits = 4,...)
## S3 method for class 'summary.sreg':
print (x, ...)

qr.q2ty (qr, y)

qr.yq2 (qr, y)

qsreg.fit (x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04,
offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1,
length(x)), cost = 1)
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qsreg.psi ( r,alpha=.5,C=1)
qsreg.rho ( r,alpha=.5,C=1)
qsreg.trace (x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04,

offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5,
wt = rep(1, length(x)), cost = 1)

radbas.constant (m, d)

replace.args.function (fun, ...)

sim.krig.image (out, nreps = 10)

sreg.df.to.lambda (df, x, wt, guess = 1, tol = 1e-05)
sreg.fdf (h, info)
sreg.fgcv (lam, obj)
sreg.fgcv.model (lam, obj)
sreg.fgcv.one (lam, obj)
sreg.fit (lam, obj, verbose=FALSE)
sreg.fs2hat (lam, obj)
sreg.trace (h, info)

stats.bplot (x, by, style = "tukey", outlier = TRUE)
stats.sim.krig.image (obj)

summary.gcv.Krig(object, lambda, cost = 1, verbose = FALSE,
offset = 0, y = NULL, ...)

summary.gcv.sreg (object, lambda, cost = 1, nstep.cv = 20,
offset = 0, verbose = TRUE,...)

## S3 method for class 'krig.image':
summary (object, digits = 4, ...)
## S3 method for class 'qsreg':
summary (object, ...)
## S3 method for class 'spatial.design':
summary (object, digits = 4, ...)
## S3 method for class 'sreg':
summary (object, digits = 4, ...)

surface(obj , ...)
## Default S3 method:
surface (obj, ...)
## S3 method for class 'krig.image':
surface(obj, grid.list = NA, extrap = TRUE,

graphics.reset = FALSE, xlab = NULL, ylab = NULL, main = NULL,
zlab = NULL,zlim = NULL,levels = NULL, ptype = "I", ...)

## S3 method for class 'surface':
surface (obj, ...)
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unscale (x, x.center, x.scale)

fields-stuff Fields supporting functions

Description

Some supporting functions that are internal to fields top level methods. Variants of these might be
found in the R base but these have been written for cleaner code or efficiency.

Usage

fields.diagonalize(A,B)

fields.duplicated.matrix(mat, digits = 8)

fields.mkpoly(x, m = 2)

fields.derivative.poly(x, m,dcoef)

fields.evlpoly( x, coef)

fields.evlpoly2( x, coef, ptab)

Arguments

A A positive definite matrix

B A positive definite matrix

mat Arbitrary matrix for examining rows

digits Number of significant digits to use for comparing elements to determine duplci-
ate values.

x Arbitrary matrix where rows are components of a multidimensional vector

m The null space degree – results in a polynomial of degree (m-1)

dcoef Coefficients of a multidimensional polynomial

coef Polynomial coefficients.

ptab Table of powers of different polnomial terms.
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Details

fields.diagonalize finds the matrix transformation G that will convert A to a identity matrix
and B to a diagonal matrix:

GT̂ A G= I GT̂ B G= D.

fields.duplicated finds duplicate rows in a matrix. The digits arguments is the number of
digits that are considered in the comparison. The returned value is an array of integers from 1:M
where M is the number of unique rows and duplicate rows are referenced in the same order that they
appear as the rows of mat.

fields.mkpoly computes the complete matrix of all monomial terms up to degree (m-1). Each
row of x is are the componets of a vector. (The fields function mkpoly returns the number of these
terms.) In 2 dimensions with m=3 there 6 polynomial terms up to quadratic ( 3-1 =2) order and will
be returned as the matrix:

cbind( 1 , x[,1], x[,2], x[,1]**2, x[,1]*x[,2], x[,2]**2 )

This function is used for the fixed effects polynomial or spatial drift used in spatial estimating
functions Krig, Tps and mKrig. The matrix ptab is a table of the powers in each term for each
variable and is included as an attribute to the matrix returned by this function. See the attr
function for extracting an attribute from an object.

ptab for the example above is

[,1] [,2]
[1,] 0 0
[2,] 1 0
[3,] 0 1
[4,] 2 0
[5,] 1 1
[6,] 0 2

This information is used in finding derivatives of the polynomial.

fields.deriviative.poly finds the partial derivative matrix of a multidimensional poly-
nomial of degree (m-1) at different vector values and with coefficients dcoef. This function has
been orgainzed to be a clean utility for the predicting the derivative of the estimated function from
Krig or mKrig. Within the fields context the polynomial itself would be evaluated as fields.mkpoly(
x,m)%*%dcoef. If x has d columns ( also the dimension of the polynomial) and n rows the partial
derivatives of this polynomial at the locations x can be organized in a nXd matrix. This is the object
returned by ths function.

evlpoly and evlpoly2 are FORTRAN based functions for evaluating univariate polynomials
and multivariate polynomials. The table of powers (ptab) needed for evlpoly2 is the same format as
that returned my the fields.mkpoly function.

Author(s)

Doug Nychka

See Also

Krig, Tps, as.image, predict.Krig, predict.mKrig, Krig.engine.default, Wendland
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fields fields - tools for spatial data

Description

Fields is a collection of programs for curve and function fitting with an emphasis on spatial data and
spatial statistics. The major methods implemented include cubic and thin plate splines, universal
Kriging and Kriging for large data sets. One main feature is any covariance function implemented
in R can be used for spatial prediction.

fields stives to have readable and tutorial code. Take a look at the source code for Krig and
Krig.engine.default to see how things work "under the hood".

Some major methods include:

• Tps Thin Plate spline regression (including GCV)

• Krig Spatial process estimation (Kriging) including support for conditional simulation.

The Krig function allow you to supply a covariance function that is written in native R code. See
(stationary.cov) that includes several families of covariances and distance metrics including
the Matern and great circle distance. Also check out mKrig (micro Krig) a fast Kriging routine,
that can take advantage of sparse covariance functions and thus handle very large numbers of spatial
locations.

Some other noteworthy functions are

• cover.design Gnerates space-filling designs where the distance function is expresed in
R/S code

• as.image, image.plot, drape.plot, quilt.plot add.image, crop.image,
half.image.
convenient functions for working with image data and rationally (well, maybe reasonably)
placing a color scale on an image plot.

• sreg, qsreg splint Fast 1-D smoothing splines and 1-D quantile/robust and interpolating
cubic splines

There are also generic functions that support these methods such as

plot - diagnostic plots of fit
summary- statistical summary of fit
print- shorter version of summary
surface- graphical display of fitted surface
predict- evaluation fit at arbitrary points
predict.se- prediction standard errors at arbitrary points.
sim.rf- Simulate a random fields on a 2-d grid.

To get started, try some of the examples from help files for Tps or Krig. See also the man-
ual/tutorial at http://www.image.ucar.edu/Software/Fields

Graphics tips: help( fields.hints) gives some R code tricks for setting up common legends
and axes. And has little to do with this package!

Testing: See help(fields.tests) for testing fields.

http://www.image.ucar.edu/Software/Fields
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DISCLAIMER:

This is software for statistical research and not for commercial uses. The authors do not guarantee
the correctness of any function or program in this package. Any changes to the software should not
be made without the authors permission.

Examples

# some air quality data,daily surface ozone for the Midwest:
data(ozone2)
x<-ozone2$lon.lat
y<- ozone2$y[16,] # June 18, 1987

# pixel plot of spatial data
quilt.plot( x,y)
US( add=TRUE) # add US map

fit<- Tps(x,y)
# fits a GCV thin plate smoothing spline surface to ozone measurements.
# Hey, it does not get any easier than this!

summary(fit) #diagnostic summary of the fit

set.panel(2,2)
plot(fit) # four diagnostic plots of fit and residuals.

set.panel()
surface(fit) # contour/image plot of the fitted surface
US( add=TRUE, col="magenta", lwd=2) # US map overlaid
title("Daily max 8 hour ozone in PPB, June 18th, 1987")

fields.hints fields - graphics hints

Description

Here are some technical hints for assembling multiple plots with common legends or axes and
setting the graphics parameters to make more readable figures . These use the standard graphics
environment.

Usage

fields.style()
fields.color.picker()

Details

fields.style is a simple function to enlarge the characters in a plot and set the colors. List this
out to modify the choices.
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Examples

##Two examples of concentrating a panel of plots together
## to conserve the white space.
## see also the example in image.plot using split.screen.
## The basic trick is to use the oma option to reserve some space around the
## plots. Then unset the outer margins to use that room.

library( fields)

# some hokey image data
x<- 1:20
y<- 1:15
z<- outer( x,y,"+")
zr<- range( c(z))

# add common legend to 3X2 panel

par( oma=c(4,0,0,0))
set.panel( 3,2)
par( mar=c(1,1,0,0))

# squish plots together with just 1 space between
for ( k in 1:6){
image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)
}

par( oma=c(0,0,0,0))
image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

# you may have to play around with legend.mar and the oma settings to
# get enough space.

##
### also add some axes on the sides. in a lattice style
## note oma adds some more room at bottom.

par( oma=c(8,6,1,1))
set.panel( 3,2)
par( mar=c(1,1,0,0))
##
for ( k in 1:6){
image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)
box() # box around figure

# maybe draw an x axis
if( k %in% c(5,6) ){
axis( 1, cex.axis=1.5)
mtext( line=4, side=1, "Xstuff")}

# maybe draw a y axis
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if( k %in% c(1,3,5) ){
axis( 2, cex.axis=1.5)
mtext( line=4, side=2, "Ystuff")}

}

# same trick of adding a legend strip.
par( oma=c(0,0,0,0))
image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

# reset panel
set.panel()

####
# show colors
## the factory colors:

clab<- colors()
n<- length( clab)
N<- ceiling( sqrt(n) )
M<- N
temp<- rep( NA,M*N)
temp[1:n] <- 1:n
z<- matrix(temp, M,N)

image(seq(.5,M+.5,,M+1), seq(.5,N+.5,,N+1)
, z, col=clab, axes=FALSE, xlab="", ylab="")

# see the function fields.color.picker() to locate colors

# dumping out colors by name for a latex document
# this creates text strings that are the LaTeX color definitions
# using the definecolor function.

clab<- colors()
for( nn in clab){
temp<- signif(col2rgb(nn)/256, 3)
cat(
"\definecolor{",

nn, "}",
"{rgb}{", temp[1],

",", temp[2],
",", temp[3],
"}", fill=TRUE , sep="")

}

fields testing scripts
Testing fields functions
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Description

Some of the basic methods in fields can be tested by directly implementing the linear algebra us-
ing matrix expressions and other functions can be cross checked within fields. These compar-
isons are done in the the R source code test files in the tests subdirectory of fields. The function
test.for.zero is useful for comparing the tests in a meaninful and documented way.

Usage

test.for.zero( xtest,xtrue, tol= 1.0e-8, relative=TRUE, tag=NULL)

Arguments

xtest Vector of target values

xtrue Vector of reference values

tol Tolerance to judge whether the test passes.

relative If true a relative error comparison is used. (See details below.)

tag A text string to be printed out with the test results as a reference

Details

The scripts in the tests subdirectory are

Krig.test.R: Tests basic parts of the Krig and Tps functions including replicated and weighted
observations.

Krig.se.test.R: Tests computations of standard errors for the Kriging estimate.

Krig.se.grid.test.R Tests approximate standard errors for the Krig function found by Monte Carlo
conditional simulation.

Krig.test.W.R Tests predictions and A matrix when an off diagonal observation weight matrix is
used.

Krig.se.W.R Tests standard errors when an off diagonal observation weight matrix is used.

spam.test.R Tests sparse matrix formats and linear algebra.

Wend.test.R Tests form for Wendland covariance family and its use of sparse matrix formats.

diag.multiply.test.R Tests special (efficient) version of matrix multiply for diagonal matrices.

evlpoly.test.R Tests evaluation of univariate and multivariate polynomial evaluation.

mKrig.test.R Tests the micro Krig function with and without sparse matrix methods.

To run the tests just attach the fields library and source the testing file. In the the fields source code
these are in a subdirectory "tests". Compare the output to the "XXX.Rout.save" text file. Keeping
in mind that no test messages should print if all is well, this is really a formality. The main reason
these comparisions are provided is for matching the conventions of the R package checking utilities.

test.for.zero is used to print out the result for each individual comparison. Failed tests are
potentially very bad and are reported with a string beginning

"FAILED test value = ... "

If the object test.for.zero.flag exists (it can have any value), all the tests that pass print text beginning,
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" PASSED test at tolerance ..."

This startegy means that if all tests succeed nothing and the object test.for.zero.flag
does not exist then nothing is printed in the test scripts. This is option simplifies the output scripts
for running through the tests – no news is good news.

FORM OF COMPARISON: The actual test done is the sum of absolute differnces:

test value = sum( abs(c(xtest) - c( xtrue) ) ) /denom

Where demon is either mean( abs(c(xtrue))) for relative error or 1.0 otherwise.

Note the use of "c" here to stack any structure in xtest and xtrue into a vector.

flame Response surface experiment ionizing a reagent

Description

The characteristics of an ionizing flame are varied with the intent of maximizing the intensity of
emitted light for lithuim in solution. Areas outside of the measurements are where the mixture may
explode! Note that the optimum is close to the boundary. Source of data is from a master’s level lab
experiment in analytical chemistry from Chuck Boss’s course at NCSU. <s-section name= "DATA
DESCRIPTION"> This is list with the following components

Arguments

x x is a 2 column matrix with the different Fuel and oxygen flow rates for the
burner.

y y is the response. The intensity of light at a particular wavelength indicative of
Lithium ions.

gcv.Krig Finds profile likelihood and GCV estimates of smoothing parameters
for splines and Kriging.

Description

This is a secondary function that will use the computed Krig object and find various estimates of
the smoothing parameter lambda. These are several different flavors of cross-validation, a moment
matching strategy and the profile likelihood. This function can also be used independently with
different data sets (the y’s) if the covariates ( the x’s) are the same and thus reduce the computation.
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Usage

gcv.Krig(out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse = NA,
verbose = FALSE, tol = 1e-05, offset = 0,
y = NULL, give.warnings = TRUE, give.warnings.REML = FALSE)

gcv.sreg (out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse =
NA, offset = 0, trmin = NA, trmax = NA, verbose = FALSE, tol = 1e-05)

Arguments

out A Krig or sreg object.

lambda.grid Grid of lambdas for coarse search. The default is equally spaced on effective
degree of freedom scale.

cost Cost used in GCV denominator

nstep.cv Number of grid points in coarse search.

rmse Target root mean squared error to match with the estimate of sigma**2

verbose If true prints intermediate results.

tol Tolerance in delcaring convergence of golden section search or bisection search.

offset Additional degrees of freedom to be added into the GCV denominator.

y A new data vector to be used in place of the one associated with the Krig object
(obj)

give.warnings
If FALSE will suppress warnings about grid search being out of range for vari-
ous estimates based on GCV.

give.warnings.REML
If FALSE will suppress warnings about grid search being out of range when
finding REML estimate of lambda.

trmin Minimum value of lambda for grid search specified in terms of effective degrees
of freedom.

trmax Maximum value for grid search.

Details

This function finds several estimates of the smoothing parameter using first a coarse grid search
followed by a refinement using a minimization ( in the case of GCV or maximum likelihood) or
bisection in the case of mathcing the rmse. Details of the estimators can be found in the help file
for the Krig function.

The Krig object passed to this function has some matrix decompostions that facilitate rapid compu-
tation of the GCV and ML functions and do not depend on the independent variable. This makes
it possible to compute the Krig object once and to reuse the decompostions for multiple data sets.
(But keep in mind if the x values change then the object must be recalculated.) The example below
show show this can be used for a simulation study on the variability for estimating the smoothing
parameter.
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Value

A list giving a summary of estimates and diagonostic details with the following components:

gcv.grid A matrix describing results of the coarse search rows are values of lambda and
the columns are lambda= value of smoothing parameter, trA=effective degrees
of freedom, GCV=Usual GCV criterion, GCV.one=GCV criterion leave-one-
out, GCV.model= GCV based on average response in the case of replicates,
shat= Implied estimate of sigma , -Log Profile= negative log of profiel likelihood
for the lambda.

lambda.est Summary table of all estimates Rows index different types of estimates: GCV,
GCV.model, GCV.one, RMSE, pure error, -Log Profile and the columns are the
estimated values for lambda, trA, GCV, shat.

Author(s)

Doug Nychka

See Also

Krig, Tps, predict.Krig

Examples

#
Tps( ozone$x, ozone$y)-> obj # default is to find lambda by GCV
summary( obj)

gcv.Krig( obj)-> out
print( out$lambda.est) # results agree with Tps summary

sreg( rat.diet$t, rat.diet$trt)-> out
gcv.sreg( out, tol=1e-10) # higher tolerance search for minimum

# a simulation example
x<- seq( 0,1,,150)
f<- x**2*( 1-x)
f<- f/sqrt( var( f))

set.seed(123) # let's all use the same seed
sigma<- .1
y<- f + rnorm( 150)*sigma

Tps( x,y)-> obj # create Krig object

hold<- matrix( NA, ncol=4, nrow=100)

for( k in 1:100){
# look at GCV estimates of lambda
# new data simulated

y<- f + rnorm(150)*sigma
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# save GCV estimates
hold[k,]<- gcv.Krig(obj, y=y, give.warnings=FALSE)$lambda.est[1,]
}
plot( hold[,2], hold[,4], xlab="estimated eff. df", ylab="sigma hat")
yline( sigma, col=2)
# note some occaisional flaky behaviour with GCV ( eff df > 20!)

grid list Some simple functions for working with gridded data and the grid for-
mat (grid.list) used in fields.

Description

The object grid.list refers to a list that contains information for evaluating a function on a 2-
dimensional grid of points. If a function has more than two independent variables then one also
needs to specify the constant levels for the variables that are not being varied. This format is used
in several places in fields for functions that evaluate function estimates and plot surfaces. These
functions provide some default conversions among information and the gird.list. The function
discretize.image is a useful tool for "registering" irregular 2-d points to a grid.

Usage

parse.grid.list( grid.list, order.variables="xy")
fields.x.to.grid(x,nx=80, ny=80, xy=c(1,2))
fields.convert.grid( midpoint.grid )
discretize.image( x, m = 64, n = 64, grid = NULL,

expand = c(1, 1), boundary.grid=FALSE )

Arguments

grid.list No surprises here – a grid list! These can be unequally spaced.
order.variables

If "xy" the x variable will be subsequently plotted as the horizontal variable. If
"yx" the x variable will be on the vertical axis.

x A matrix of independent variables such as the locations of observations given to
Krig.

nx Number of grid points for x variable.

ny Number of grid points for y variable.

m Number of grid points for x variable.

n Number of grid points for y variable.

xy The column positions that locate the x and y variables for the grid.

grid A grid list!

expand A scalar or two column vector that will expand the grid beyond the range of the
observations.



84 grid list

midpoint.grid
Grid midpoints to convert to grid boundaries.

boundary.grid
If TRUE interpret grid points as boundaries of grid boxes. If FALSE interpret
as the midpoints of the boxes.

Details

The form of a grid.list is list( var.name1= what1 , var.name2=what2 , ... var.nameN=what3) Here
var.names are the names of the independent variables. The what options describe what should be
done with this variable when generating the grid. These should either an increasing sequence of
points or a single vaules. Obviously there should be only be two variables with sequences to define
a grid for a surface.

Most of time the gridding sequences are equally spaced and are easily generated using the seq
function. Also throughout fields the grid points are typically the midpoints of the grid rather the
grid box boundaries. However, these functions can handle unequally spaced grids and the logical
boundary.grid can indicate a grid being the box boundaries.

The variables in the list components are assumed to be in the same order as they appear in the data
matrix.

Some fields internal functions that support interpreting grid list format are:

fields.x.to.grid: Takes an "x" matrix of locations or independent variables and creates a
reasonable grid list. This is used to evaluate predicted surfaces when a grid list is not explicited
given to predict.surface. The variables (i.e. columns of x) that are not part of the grid are set to the
median values. The x grid values are nx equally spaced points in the range x[, xy[1]]. The y
grid values are ny equally spaced points in the range x[, xy[2]].

parse.grid.list: Takes a grid list and returns the information in a more expanded list form
that is easy to use. This is used, for example, by predict.surface to figure out what to do!

fields.convert.grid: Takes a vector of n values assumed to be midpoints of a grid and
returns the n+1 boundaries. See how this is used in discretize.image with the cut function. This
function will handle unequally spaced grid values.

discretize.image: Takes a vector of locations and a 2-d grid and figures out to which boxes
they belong. The output matrix ind has the grid locations. If boundary.grid is FALSE then the grid
list (grid) is assumed to be grid midpoints. The grid boundaries are taken to be the point half way
between these midpoints. The first and last boundaries points are determined by extrapolating so
that the first and last box has the midpoint in its center. (See the code in fields.convert.grid for
details.) If grid is NULL then midpoints are found from m and n and the range of the x matrix.

See Also

as.surface, predict.surface, plot.surface, surface, expand.grid, as.image

Examples

#Given below are some examples of grid.list objects and the results
#when they are used with make.surface.grid. Note that
#make.surface.grid returns a matrix that retains the grid.list
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#information as an attribute.

grid.l<- list( 1:3, 2:5)
make.surface.grid(grid.l)

grid.l <- list( 1:3, 10, 1:3)
make.surface.grid(grid.l)

#The next example shows how the grid.list can be used to
#control surface plotting and evaluation of an estimated function.
# first create a test function

set.seed( 124)

X<- 2*cbind( runif(30), runif(30), runif(30)) -1

dimnames( X)<- list(NULL, c("X1","X2","X3"))
y<- X[,1]**2 + X[,2]**2 + exp(X[,3])

# fit an interpolating thin plate spline
out<- Tps( X,y)

grid.l<- list( X1= seq( 0,1,,20), X2=.5, X3=seq(0,1,,25))
surface( out, grid.list=grid.l)
# surface plot based on a 20X25 grid in X1 an X3
# over the square [0,2] and [0,2]
# holding X2 equal to 1.0.
#

discretize.image( RMprecip$x, m=15, n=15)-> look
Z<- matrix( 0, 15,15)

Z[look$ind]<- 1

image( look$grid$x, look$grid$y, Z) # indicator image of discretized locations.
points( RMprecip$x,col="magenta") # actual locations
# (there may be more than one location in the grid boxes)

image.cov Exponential, Matern and general covariance functions for 2-d gridded
locations.

Description

Given two sets of locations defined on a 2-d grid efficiently multiplies a cross covariance with a
vector. Exp.image.cov and matern.image.cov will be depreciated functions and are replaced by
stationary.image.cov.



86 image.cov

Usage

stationary.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE,
grid, M=NULL,N=NULL, Covariance="Matern", Distance="rdist",...)

Exp.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...)

Rad.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...)

matern.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid,
M=NULL,N=NULL,...)

Arguments

ind1 Matrix of indices for first set of locations this is a two column matrix where each
row is the row/column index of the image element. If missing the default is to
use all grid locations.

ind2 Matrix of indices for second set of locations. If missing this is taken to be ind2.
If ind1 is missing ind2 is coerced to be all grid locations.

Y Vector to multiply by the cross covariance matrix. Y must be the same locations
as those referred to by ind2.

cov.obj A list with the information needed to do the multiplication by convolutions. This
is usually found by using the returned list when setup=T.

setup If true do not do the multiplication but just return the covariance object required
by this function.

grid A grid list giving the X and Y grids for the image. (See example below.) This is
only required if setup is true.

M Size of x-grid used to compute multiplication (see notes on image.smooth for
details) by the FFT. If NULL, the default for M is the largest power of 2 greater
than or equal to 2*m where m= length( grid$x). This will give an exact result
but smaller values of M will yield an approximate, faster result.

N Size of y-grid used to compute multiplication by the FFT.

Covariance Covariance function that is apllied to the distance between locations. (see sta-
tionary.cov) Default is the Matern model. (with smoothness=.5) the expon-
tential.

Distance Distance function applied to locations. Default is Euclidean distance. Another
choice is "rdist.earth", great circle distnace for lon/lat coordinates.

... Any arguments to pass to the covariance function in setting up the covariance
object. This is only required if setup is TRUE. For the "Matern" the arguments
are theta ( the range default=1), and smoothness (default=.5 giving the exponen-
tial). theta can be a matrix reflecting a rotation and scaling of coordinates. See
stationary.cov for details.
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Details

This function was provided to do fast computations for large numbers of spatial locations and sup-
ports the conjugate gradient solution in krig.image. In doing so the observations can be irregular
spaced but their coordinates must be 2-dimensional and be restricted to grid points. (The function
as.image will take irregular, continuous coordinates and overlay a grid on them.)

Returned value: If ind1 and ind2 are matrices where nrow(ind1)=m and nrow(ind2)=n then the
cross covariance matrix, Sigma is an mXn matrix (i,j) element is the covariance between the grid
locations indexed at ind1[i,] and ind2[j,]. The returned result is Sigma%*%Y. Note that one can
always recover the coordinates themselves by evaluating the grid list at the indices. e.g. cbind(
grid$x[ ind1[,1]], grid$y[ind1[,2])) will give the coordinates associated with ind1. Clearly it is
better just to work with ind1!

Functional Form: Following the same form as Exp.cov and matern.cov for irregular locations, the
covariance is defined as phi( D.ij) where D.ij is the Euclidean distance between x1[i,] and x2[j,] but
having first been scaled by theta. Specifically,

D.ij = sqrt( sum.k (( x1[i,k] - x2[j,k]) /theta[k])**2 ).

See Matern for the version of phi for the Matern family.

Note that if theta is a scalar then this defines an isotropic covariance function.

Implementation: This function does the multiplication on the full grid efficiently by a 2-d FFT. The
irregular pattern in Y is handled by padding with zeroes and once that multiplication is done only
the appropriate subset is returned.

As an example assume that the grid is 100X100 let big.Sigma denote the big covariance matrix
among all grid points ( If the parent grid is 100x100 then big.Sigma is 10K by 10K !) Here are the
computing steps:

temp<- matrix( 0, 100,100)

temp[ ind2] <- Y

temp2<- big.Sigma%*% temp

temp2[ind1]

Notice how much we pad with zeroes or at the end throw away! Here the matrix multiplication is
effected through convolution/FFT tricks to avoid creating and multiplying big.Sigma explicitly. It
is often faster to multiply the regular grid and throw away the parts we do not need then to deal
directly with the irregular set of locations.

Note: In this entire discussion Y is treated as vector. However if one has complete data then Y
can also be interpreted as a image matrix conformed to correspond to spatial locations. See the last
example for this distinction.

Value

A vector that is the multiplication of the cross covariance matrix with the vector Y.

See Also

smooth.2d, as.image, krig.image, stationary.cov
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Examples

# multiply 2-d isotropic exponential with theta=4 by a random vector

junk<- matrix(rnorm(100*100), 100,100)

cov.obj<- stationary.image.cov( setup=TRUE,
grid=list(x=1:100,y=1:100),theta=8)

result<- stationary.image.cov(Y=junk,cov.obj=cov.obj)

image( matrix( result, 100,100)) # NOTE that is also a smoother!

# to do it again, no setup is needed
# e.g.
# junk2<- matrix(rnorm(100**2, 100,10))
# result2<- stationary.image.cov(Y=junk2, cov.obj=cov.obj)

# generate a grid and set of indices based on discretizing the locations
# in the precip dataset

out<-as.image( RMprecip$y, x= RMprecip$x)
ind1<- out$ind
grid<- list( x= out$x, y=out$y)

#
# discretized x locations to use for comparison
xd<- cbind( out$x[ out$ind[,1]], out$y[ out$ind[,2]] )

# setup to create cov.obj for exponential covariance with range= 1.25

cov.obj<- stationary.image.cov( setup=TRUE, grid=grid, theta=1.25)

# multiply covariance matrix by an arbitrary vector
junk<- rnorm(nrow( ind1))
result<- stationary.image.cov( ind1, ind1, Y= junk,cov.obj=cov.obj)

# The brute force way would be
# result<- stationary.cov( xd, xd, theta=1.25, C=junk)
# or
# result<- stationary.cov( xd, xd, theta=1.25)
# both of these take much longer

# evaluate the covariance between all grid points and the center grid point
Y<- matrix(0,cov.obj$m, cov.obj$n)
Y[32,32]<- 1
result<- stationary.image.cov( Y= Y,cov.obj=cov.obj)
# covariance surface with respect to the grid point at (32,32)
#
# reshape "vector" as an image
temp<- matrix( result, cov.obj$m,cov.obj$n)
image.plot(cov.obj$grid$x,cov.obj$grid$y, temp)
# or persp( cov.obj$grid$x,cov.obj$grid$y, temp)
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# check out the Matern
cov.obj<- stationary.image.cov(

setup=TRUE, grid=grid, theta=1.25, smoothness=2)
Y<- matrix(0,64,64)
Y[16,16]<- 1

result<- stationary.image.cov( Y= Y,cov.obj=cov.obj)
temp<- matrix( result, cov.obj$m,cov.obj$n)
image.plot( cov.obj$grid$x,cov.obj$grid$y, temp)

# Note we have centered at the location (16,16) for this case

image.plot Draws image plot with a legend strip for the color scale based on
either a regular grid or a grid of quadrilaterals.

Description

This function combines the R image function with some automatic placement of a legend. This is
done by splitting the plotting region into two parts. Putting the image in one and the legend in the
other. It also allows for plotting quadrilateral cells in the image format that often arise from regular
grids transformed with a map projection.

Usage

image.plot(...,
add = FALSE, nlevel = 64, horizontal = FALSE,
legend.shrink = 0.9, legend.width = 1.2, legend.mar =
ifelse(horizontal, 3.1, 5.1), legend.lab = NULL,
graphics.reset = FALSE, bigplot = NULL, smallplot =
NULL, legend.only = FALSE, col = tim.colors(nlevel),
lab.breaks = NULL, axis.args = NULL, legend.args =
NULL, midpoint=FALSE)

Arguments

... The usual arguments to the image function. This includes the use of the breaks
argument for an unequal color scale. If a quadrilateral grid arguments must be
explicitly x,y and z with x, and y being matrices of dimension equal or one more
than z giving the grid locations.

add If true add image and a legend strip to the existing plot.

nlevel Number of color levels used in legend strip
legend.shrink

Amount to shrink the size of legend relative to the full height or width of the
plot.
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legend.width Width in characters of the legend strip. Default is 1.2, a little bigger that the
width of a character.

legend.mar Width in characters of legend margin that has the axis. Default is 5.1 for a
vertical legend and 3.1 for a horizontal legend.

legend.lab Label for the axis of the color legend. Default is no label as this is usual evident
from the plot title.

graphics.reset
If FALSE (default) the plotting region ( plt in par) will not be reset and one can
add more information onto the image plot. (e.g. using functions such as points
or lines.) If TRUE will reset plot parameters to the values before entering the
function.

horizontal If false (default) legend will be a vertical strip on the right side. If true the legend
strip will be along the bottom.

bigplot Plot coordinates for image plot. If not passed these will be determined within
the function.

smallplot Plot coordinates for legend. If not passed these will be determined within the
function.

legend.only If TRUE just add the legend to a the plot in the plot region defined by the coor-
dinates in smallplot. In the absence of other information the range for the legend
is determined from the zlim argument.

col Color table to use for image ( see help file on image for details). Default is
a pleasing range of 64 divisions suggested by Tim Hoar and is similar to the
MATLAB (TM) jet color scheme.

lab.breaks If breaks are supplied these are text string labels to put at each break value. This
is intended to label axis on a transformed scale such as logs.

axis.args Additional arguments for the axis function used to create the legend axis. (See
example below adding a log scaling.)

legend.args Arguments for a complete specification of the legend label. This is in the form
of list and is just passed to the mtext function. Usually this will not be needed.
(See example below.)

midpoint If FALSE (default) for quadrilateral grids grid point will be extended to include
z locations as midpoints. If true z values will be averaged to yield a midpoint
value. (See help on poly.image for details). In most cases midpoint should be
FALSE to preserve exact values for z.

Details

Relationship of x, y and z: If the z component is a matrix then the user should be aware that this
function locates the matrix element z[i,j] at the grid locations (x[i], y[j]) this is very different than
simply listing out the matrix in the usual row column tabular form. See the example below for more
details of this difference in formatting. What does one do if you don’t really have the "z" values
on a regular grid? See the functions quilt.plot.Rd and as.image to discretise irregular
observations to a grid.

If x and y are matrices then z[i,j] is rendered at a quadrilateral that is centered at x[i,j] and y[i,j]
(midpoint TRUE). The details of how this cell is found are buried in poly.image. If midpoint
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is FALSE then x and y are interpreted as the corners of the quadrilateral cells. But what about z?
The four values of z are now averaged to represent a value at the midpoint of the cell and this is
what is used for plotting. Quadrilateral grids was added to help with plotting the gridded output
of geophysical models where the regular grid is defined according to one map projection by the
plotting is required in another projection. Typically the regular grid becomes distorted in a smooth
way when this happens. See the regional climate example for a illustration of this application.

Fine tuning color scales: This function gives some flexibility in tuning the color scale to fit the ren-
dering of z values. This can either be specially designed color scale with specific colors ( see help
on designer.colors), positioning the colors at specific points on the [0,1] scale, or mapping
distinct colors to intervals of z. The examples below show how to do each of these. In addition by
supplying lab.break strings or axis parameters one can annotate the legend axis in an informa-
tive matter.

Dividing up the plotting real estate: It is surprising how hard it is to automatically add the legend!
All "plotting coordinates" mentioned here are in device coordinates. The plot region is assumed
to be [0,1]X[0,1] and plotting regions are defined as rectangles within this square. We found these
easier to work with than user coordinates.

legend.width and legend.mar are in units of character spaces. These units are helpful in
thinking about axis labels that will be put into these areas. To add more or less space between the
legend and the image plot alter the mar parameters. The default mar settings (5.1,5.1,5.1,2.1) leaves
2.1 spaces for vertical legends and 5.1 spaces for horizontal legends. Changing the plot margins
directly replaces the offset argument in the older version of this function.

There are always problems with default solutions to placing information on graphs but the choices
made here may be useful for most cases. The most annoying thing is that after using plot.image
and adding information the next plot that is made may have the slightly smaller plotting region set
by the image plotting. The user should set reset.graphics=TRUE to avoid the plotting size
from changing. The disadvantage, however, of resetting the graphics is that one can no longer add
additional graphics elements to the image plot. Note that filled.contour always resets the graphics
but provides another mechanism to pass through plotting commands. Apparently filled.contour,
while very pretty, does not work for multiple plots. levelplot that is part of the lattice package
has a very similar function to image.plot and a formula syntax in the call.

How this function works: The strategy for image.plot is simple, divide the plotting region into
two smaller regions bigplot and smallplot. The image goes in one and the legend in the
other. This way there is always room for the legend. Some adjustments are made to this rule
by not shrinking the bigplot if there is already room for the legend strip and also sticking the
legend strip close to the image plot. One can specify the plot regions explicitly by bigplot and
smallplot if the default choices do not work. There may be problems with small plotting regions
in fitting both of these elements in the plot region and one may have to change the default character
sizes or margins to make things fit.

By keeping the zlim argument the same across images one can generate the same color scale. (See
the image help file.) One useful technique for a panel of images is to just draw the images with
image and then use image.plot to add a legend to the last plot. (See example below for messing
with the outer margins to make this work.) Usually a square plot (pty="s") done in a rectangular
plot region will have room for the legend stuck to the right side without any other adjustments.
See the examples below and the code for plot.Wimage for more complicated arrangements of
multiple image plots and summary legends.

Adding just the legend strip: Note that to add just the legend strip all the numerical information
one needs is the zlim argument! We like tim.colors as a default color scale. The the topo-
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graphic color scale (topo.colors) is also a close second showing our geophysical basis. See
also terrain.colors for a subset and designer.colors to "roll your own". One nice op-
tion of this last one is to fix colors at particular quantiles of the data rather than at equally spaced
intervals. For color choices see how the nlevels argument figures into the legend and main plot
number of colors.

Side Effects

After exiting, the plotting region may be changed to make it possible to add more features to the
plot. To be explicit, par()$plt may be changed to reflect a smaller plotting region that has
accommodated room for the legend subplot.

See Also

image,poly.image,filled.contour, quilt.plot, plot.surface, add.image, colorbar.plot, tim.colors

Examples

x<- 1:10; y<- 1:15; z<- outer( x,y,"+")

image.plot(x,y,z)

# or obj<- list( x=x,y=y,z=z); image.plot(obj)

# now add some points on diagonal with some clipping anticipated
points( 5:12, 5:12, pch="X", cex=3)

image.plot(x,y,z, legend.lab="inches")

# adding breaks and distinct colors for intervals of z
# with and without lab.breaks

brk<- quantile( c(z))
image.plot(x,y,z, breaks=brk, col=rainbow(4))

# annotate legend strip just at break values
image.plot(x,y,z, breaks=brk, col=rainbow(4),

lab.breaks=names(brk))
#
# compare to

quantile(c(z), c( .05, .1,.5, .9,.95))-> zp

image.plot(x,y,z,
axis.args=list( at=zp, labels=names(zp) ) )

# a log scaling for the colors
ticks<- c( 1, 2,4,8,16,32)
image.plot(x,y,log(z), axis.args=list( at=log(ticks), labels=ticks))

# see help file for designer.colors to generate a color scale that adapts to
# quantiles of z.
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#
#fat (5 characters wide) and short (50% of figure) color bar on the bottom

image.plot( x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE)

# adding label with all kinds of additional arguments.
# use side=4 for vertical legend and side= 1 for horizontal legend
# to be parallel to axes. See help(mtext).

image.plot(x,y,z,
legend.args=list( text="unknown units",

col="magenta", cex=1.5, side=4, line=2))

#### example using a irregular quadrilateral grid
data( RCMexample)
image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,1])

#### multiple images with a common legend

set.panel()

# Here is quick but quirky way to add a common legend to several plots.
# The idea is leave some room in the margin and then over plot in this margin

par(oma=c( 0,0,0,4)) # margin of 4 spaces width at right hand side
set.panel( 2,2) # 2X2 matrix of plots

# now draw all your plots using usual image command
for ( k in 1:4){
image( matrix( rnorm(150), 10,15), zlim=c(-4,4), col=tim.colors())
}

par(oma=c( 0,0,0,1))# reset margin to be much smaller.
image.plot( legend.only=TRUE, zlim=c(-4,4))

# image.plot tricked into plotting in margin of old setting

set.panel() # reset plotting device

#
# Here is a more learned strategy to add a common legend to a panel of
# plots consult the split.screen help file for more explanations.
# For this example we draw two
# images top and bottom and add a single legend color bar on the right side

# first divide screen into the figure region and legend colorbar on the
# right to put a legend.

split.screen( rbind(c(0, .8,0,1), c(.8,1,0,1)))

# now divide up the figure region
split.screen(c(2,1), screen=1)-> ind
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zr<- range( 2,35)
# first image

screen( ind[1])
image( x,y,z, col=tim.colors(), zlim=zr)

# second image
screen( ind[2])
image( x,y,z+10, col=tim.colors(), zlim =zr)

# move to skinny region on right and draw the legend strip
screen( 2)
image.plot( zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7),
col=tim.colors())

close.screen( all=TRUE)

# you can always add a legend arbitrarily to any plot;
# note that here the plot is too big for the vertical strip but the
# horizontal fits nicely.
plot( 1:10, 1:10)
image.plot( zlim=c(0,25), legend.only=TRUE)
image.plot( zlim=c(0,25), legend.only=TRUE, horizontal =TRUE)

# combining the usual image function and adding a legend
# first change margin for some more room
## Not run:
par( mar=c(10,5,5,5))
image( x,y,z, col=topo.colors(64))
image.plot( zlim=c(0,25), nlevel=64,legend.only=TRUE, horizontal=TRUE,
col=topo.colors(64))
## End(Not run)
#
#
# sorting out the difference in formatting between matrix storage
# and the image plot depiction

A<- matrix( 1:48, ncol=6)
# Note that matrix(c(A), ncol=6) == A
image.plot(1:8, 1:6, A)
# add labels to each box
text( c( row(A)), c( col(A)), A)
# and the indices ...
text( c( row(A)), c( col(A))-.25,

paste( "(", c(row(A)), ",",c(col(A)),")", sep=""), col="grey")

# "columns" of A are horizontal and rows are ordered from bottom to top!
#
# matrix in its usual tabular form where the rows are y and columns are x

image.plot( t( A[6:1,]), axes=FALSE)
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image.smooth Kernel smoother for irregular 2-d data

Description

Takes an image matrix and applies a kernel smoother to it. Missing values are handled using the
Nadaraya/Watson normalization of the kernel.

Usage

image.smooth(x, wght = NULL, dx = 1, dy = 1,
kernel.function = double.exp,
theta = 1, grid = NULL, tol = 1e-08, xwidth = NULL, ywidth = NULL,
weights = NULL,...)

setup.image.smooth(nrow = 64, ncol = 64, dx = 1, dy = 1,
kernel.function = double.exp,
theta = 1, xwidth = nrow * dx, ywidth = ncol * dx, ...)

Arguments

x A matrix image. Missing values can be indicated by NAs.
wght FFT of smoothing kernel. If this is NULL the default is to compute this object.
grid A list with x and y components. Each are equally spaced and define the rectan-

gular. ( see grid.list)
dx Grid spacing in x direction
dy Grid spacing in x direction
kernel.function

An R function that takes as its argument the squared distance between two points
divided by the bandwidth. The default is exp( -abs(x)) yielding a normal kernel

theta the bandwidth or scale parameter.
xwidth Amount of zero padding in horizontal dimension in units of the grid spacing. If

NULL the default value is equal to the width of the image the most conserva-
tive value but possibly inefficient for computation. Set this equal to zero to get
periodic wrapping of the smoother. This is useful to smooth a Mercator map
projection.

ywidth Same as xwidth but for the vertical dimension.
weights Weights to apply when smoothing.
tol Tolerance for the weights of the N-W kernel. This avoids kernel estimates that

are "far" away from data. Grid points with weights less than tol are set to NA.
nrow X dimension of image in setting up smoother weights
ncol Y dimension of image
... Other arguments to be passed to the kernel function
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Details

The function works by taking convolutions using an FFT. The missing pixels are taken into ac-
count and the kernel smoothing is correctly normalized for the edge effects following the classical
Nadaraya-Watson estimator. For this reason the kernel doe snot have to be a desity as it is automati-
cally normalized when the kernel weight function is found for the data. If the kernel has limited sup-
port then the width arguments can be set to reduce the amount of computation. (See example below.)
For multiple smoothing compute the fft of the kernel just once using setup.image.smooth and
pass this as the wght argument to image.smooth. this will save an FFT in computations.

Value

The smoothed image in R image format. ( A list with components x, y and z.) setup.image.smooth
returns a list with components W a matrix being the FFT of the kernel, dx, dy, xwidth and ywidth.

See Also

as.image, sim.rf, image.plot

Examples

# first convert precip data to the 128X128 discretized image format ( with
# missing values to indicate where data is not observed)
#
out<- as.image( RMprecip$y, x= RMprecip$x, nrow=128, ncol=128)
# out$z is the image matrix

dx<- out$x[2]- out$x[1]
dy<- out$y[2] - out$y[1]

#
# grid scale in degrees and choose kernel bandwidth to be .25 degrees.

look<- image.smooth( out, theta= .25)

image.plot(look)
points( RMprecip$x)
US( add=TRUE, col="grey", lwd=2)

# to save on computation, decrease the padding with zeroes
# only pad 32 grid points around the margins ofthe image.

look<- image.smooth(out$z, dx=dx, dy=dy, theta= .25, xwidth=32*dx,ywidth=32*dy)

# the range of these data is ~ 10 degrees and so
# with a padding of 32 grid points 32*( 10/128) = 2.5
# about 10 standard deviations of the normal kernel so there is still
# lots of room for padding
# a minimal choice might be xwidth = 4*(.25)= 1 4 SD for the normal kernel
# creating weighting object outside the call
# this is useful when one wants to smooth different data sets but on the
# same grid with the same kernel function
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#

#
# random fields from smoothing white noise with this filter.
#
set.seed(123)
test.image<- matrix( rnorm(128**2),128,128)

wght<- setup.image.smooth( nrow=128, ncol=128, dx=dx, dy=dy,
theta=.25, xwidth=2.5, ywidth=2.5)

#
look<- image.smooth( test.image, dx=dx, dy=dy, wght)

# NOTE: this is the same as using
#
# image.smooth( test.image , 128,128), xwidth=2.5,
# ywidth=2.5, dx=dx,dy=dy, theta=.25)
#
# but the call to image.smooth is faster because fft of kernel
# has been precomputed.

# periodic smoothing in the horizontal dimension

look<- image.smooth( test.image , xwidth=1.5,
ywidth=2.5, dx=dx,dy=dy, theta=1.5)

look2<- image.smooth( test.image , xwidth=0,
ywidth=2.5, dx=dx,dy=dy, theta=1.5)

# compare these two
set.panel( 1,2)
image.plot( look)
title("free boundaries")
image.plot( look2) # look for periodic continuity at edges!
title("periodic boundary in horizontal")
set.panel(1,1)

image2lz Some simple functions for subsetting images

Description

These function help in subsetting a image or reducing it size by averaging adjecent cells.

Usage

crop.image(obj, loc=NULL,...)
half.image(obj)
get.rectangle()



98 image2lz

Arguments

obj A list in image format with the usual x,y defining the grid and z a matrix of
image values.

loc A 2 column matrix of locations within the image region that define the sub-
set. If not specified then the image is plotted and the rectangle can be specified
interactively.

... Graphics arguments passed to image.plot. This is only relevant when loc is
NULLand the locator function is called.

Details

If loc has more than 2 rows then the largest rectangle containing the locations is used.

Author(s)

Doug Nychka

See Also

drape.plot, image.plot

Examples

data(RMelevation)

loc<- rbind( c(-106.5, 40.8),
c(-103.9, 37.5))

# extract elevations for just CO frontrange.
FR<- crop.image(RMelevation, loc)
# check: image.plot( FR)

# average cells 4 to 1 by doing this twice!
half.image( RMelevation)-> temp
half.image( temp)-> temp

# extract the this averaged image
FR2<- crop.image(temp, loc)
zr<- range( FR$z)
set.panel( 1,2)
image.plot( FR, zlim =zr, horizontal=TRUE)
image( FR2, zlim =zr, col=tim.colors())
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interp.surface Fast bilinear interpolator from a grid.

Description

Uses bilinear weights to interpolate values on a rectangular grid to arbitrary locations or to another
grid.

Usage

interp.surface(obj, loc)
interp.surface.grid(obj, grid.list)

Arguments

obj A list with components x,y, and z in the same style as used by contour, persp,
image etc. x and y are the X and Y grid values and z is a matrix with the
corresponding values of the surface

loc A matrix of (irregular) locations to interpolate. First column of loc isthe X
coordinates and second is the Y’s.

grid.list A list with components x and y describing the grid to interpolate

Details

Here is a brief explanation of the interpolation: Suppose that the location, (locx, locy) lies in be-
tween the first two grid points in both x an y. That is locx is between x1 and x2 and locy is between
y1 and y2. Let ex= (l1-x1)/(x2-x1) ey= (l2-y1)/(y2-y1). The interpolant is

( 1-ex)(1-ey)*z11 + (1- ex)(ey)*z12 + ( ex)(1-ey)*z21 + ( ex)(ey)*z22

Where the z’s are the corresponding elements of the Z matrix.

Note that bilinear interpolation can produce some artifacts related to the grid and not reproduce
higher behavior in the surface. For, example the extrema of the interpolated surface will always
be at the parent grid locations. There is nothing special about about interpolating to another grid,
this function just includes a for loop over one dimension and a call to the function for irregular
locations. It was included in fields for convenience. since the grid format is so common.

See also the akima package for fast interpolation from irrgeular locations.

Value

An vector of interpolated values. NA are returned for regions of the obj$z that are NA and also for
locations outside of the range of the parent grid.

See Also

image.smooth, as.surface, as.image, image.plot, krig.image,Tps
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Examples

#
# evaluate an image at a finer grid
#

data( lennon)
# create the surface object
obj<- list( x= 1:20, y=1:20, z= lennon[ 201:220, 201:220])

# sample at 50 equally spaced points
temp<- seq( 1,20,,50)
make.surface.grid( list( temp,temp))-> loc
interp.surface( obj, loc)-> look
# take a look
image.plot( as.surface( loc, look))

krig.image Spatial process estimate for large irregular 2-d dats sets.

Description

Computes the spatial predictions for large numbers of irregularly spaced observations using the
standard Kriging equations. The main approximation is that the locations are discretized to a regular
grid, but the field need not be observed at all grid boxes.

In Bayesian terms this function computes the posterior mean for the field given the observations
under the usual Gaussian assumptions for the fields and observations. The solution is found by the
iterative solution of a large linear system using the conjugate gradient algorithm (CGA). Part of the
calculations rely on discretizing the spatial locations to a regular grid to make use of the FFT for
fast multiplication of a covariance matrix with a vector.

Usage

krig.image(x, Y, cov.function, m=NULL, n=NULL, lambda=0, start=NULL,
tol=1e-05, kmax=25, cov.obj=NULL, grid=NULL,
weights=rep(1, length(Y)), verbose=FALSE, conv.verbose=FALSE, expand=1, ...)

Arguments

x A 2 column matrix of observed locations

Y Values of observed field. Missing values are omitted from computation.

cov.function An S function that multiplies the covariance matrix by a vector. Two that are part
of FIELDS are Exp.image.cov ( Exponential and Gaussian) and W.image.cov (
W transform covariance model)

lambda The value of the smoothing parameter. Should be nonnegative. See the notes
below for more information about this parameter
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m Number of grid points in the x axis. Default is to use the length of grid$x.

n Number of grid points in the y axis. Default is to use the length of grid$y.

cov.obj A covariance object that contains information to be used by the covariance func-
tion specified above. If this is not specified this object will be created within
krig.image.

grid A list with components x and y that specify the grid points in the x and y direc-
tions. The default is to use the number of point specified by m and n and use the
ranges from the observed locations.

start Starting values for omega2 in the iterative algorithm. Default is zero.

tol Convergence tolerance for CGA.

kmax Maximum number of iterations for CGA

weights This vector is proportional to the reciprocal variance of the measurement errors.
The default is a vector of ones.

verbose If true all kinds of stuff is printed out! Default is false of course.

conv.verbose If true the convergence criterion is printed out at each iteration of the CGA. The
values are scaled as the criterion divided by the tolerance. So the algorithm
terminates when the values are less than one.

expand The amount the grid should be expanded beyond the range of the observed data.
For example expand 1.1 will give a range that is 10 % larger on each end.

... Any extra arguments are considered as information for the covariance function
and are used to create the covariance object.

Details

From a functional point of view krig.image and supporting functions are similar to the class Krig.
The main difference is that only 2-dimensional problems are considered and the solution is calcu-
lated for a fixed value of lambda. (The Krig function can estimate lambda.) For large data sets a
practical way to estimate lambda is by out of sample cross-validation and the FIELDS manual gives
a detailed example of this for the precip data set. Also see the manual for an explanation of the
computational strategy (Conjugate Gradient) here.

Efficiency for large datasets comes with restrictions on the range of covariance functions and some
other features. Currently FIELDS just has two covarince models: exponential/Gaussian and wavelet
based. However, it is not difficult to modify these to other models. The default discretization is to a
64X64 grid however even 256X256 is manageable and quite likely to separate irregular locations in
most cases. The user should also keep in mind that the estimate is the result of an iterative algorithm
and so issues such as good starting values and whether the algorithm converged are present.

The spatial model includes a linear spatial drift and MLE estimates of the nugget variance and sill
are found based on the values of lambda. If the weights are all equal to one and the covariance
function is actually a correlation function, in the notation of this function, the "sill" is sigma2 + rho
and the "nugget" is sigma2. Moreover sigma2 and rho are constrained so sigma2/rho =lambda. This
is why lambda is the crucial parameter in this model.

Although the field is only estimated to the resolution of the grid, prediction off of the grid is sup-
ported by bilinear interpolation using the FIELDS function interp.surface.
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Value

An list object of class krig.image. An explanation of some components:

call The calling sequence

cov.function A copy of the covariance S function

na.ind logical indicating missing values in Y

xraw Passed spatial locations having removed missing values

y Observations having omitted missing values

N Length of y

weights passed weights having omitted missing cases.

lambda

grid list with components x an y indicating grid for discretization

cov.obj List object to use with cov.function

m Number of grid point in x axis

n Number of grid point in y axis

index A two column matrix indicating the indices of the closest grid point to each
observed location.

x Observed locations discretized to nearest grid point

yM Observed values but with a weighted average replacing multiple values associ-
ated with the same grid point.

xM Discretized locations associated with yM

weightsM Weight vector associated with YM.

uniquerows Logical indicating which rows of x are unique.

shat.rep Pooled standard deviation among observations that fall within the same gird
points

indexM A two column matrix indicating the indices of the closest grid point to each
observed location, yM.

qr.T QR decomposition of the matrix of constant and linear terms at xM

multAx The S function that is used for matrix multiplication in the CGA.

omega2 Parameter vector that describes the spatial process part of the conditional mean.

converge CGA convergence information

beta Constant, and the two linear parameters for the fixed linear part of the model

delta Covariance matrix times delta give the spatial predictions.

rhohat, rho Conditional on lambda the MLE for the parameter multiplying the covariance
function.

sigma2, shat.MLE
Conditional on lambda the MLE for the parameter dividing the weight function.

surface A list giving the predicted surface at the grid points.
fitted.values

Predicted values at true locations



krig.image 103

References

Large spatial prediction problems and nonstationary fields (1998) Nychka, D., Wikle, C. and Royle,
J.A.

FIELDS manual

See Also

plot.krig.image, predict.krig.image, Exp.image.cov, sim.krig.image

Examples

#
# fit a monthly precipitation field over the Rocky Mountains
# grid is 64X64
out<- krig.image( x= RMprecip$x, Y = RMprecip$y, m=64,n=64,cov.function=
Exp.image.cov,
lambda=.5, theta=1, kmax=100)

#
# range parameter for exponential here is .5 degree in lon and lat.
#diagnostic plots.
plot( out)

# look at the surface
image.plot( out$surface) #or just surface( out)

#
#simulate 4 realizations from the conditional distribution
look<- sim.krig.image( out, nreps=4)
# take a look: plot( look)

# check out another values of lambda reusing some of the objects from the
# first fit

out2<- krig.image( RMprecip$x, RMprecip$y, cov.function= Exp.image.cov,
lambda=4,
start= out$omega2,cov.obj=out$cov.obj)
#
# some of the obsare lumped together into a singel grid box
#
# find residuals among grid box means and predictions
res<- predict( out2, out2$xM) - out2$yM
#compare with sizes of out2$residuals (raw y data)

#starting values from first fit in out$omega2
# covariance and grid information are
# bundled in the cov.obj
##

#
## fitting a thin plate spline. The default here is a linear null space
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## and second derivative type penalty term.
## you will just have to try different values of lambda vary them on
## log scale to

out<- krig.image( RMprecip$x, RMprecip$y, cov.function=Rad.image.cov,
lambda=1, m=64, n=64, p=2, kmax=300)

# take a look: image.plot( out$surface)

# check out different values reuse some of the things to make it quicker
# note addition of kmax argument to increase teh number of iterations

out2<- krig.image( RMprecip$x, RMprecip$y,cov.function=Rad.image.cov,
lambda=.5, start= out$omega2, cov.obj=out$cov.obj, kmax=400)

# here is something rougher
out3<- krig.image( RMprecip$x, RMprecip$y,cov.function=Rad.image.cov,
lambda=1e-2, start= out2$omega2, cov.obj=out$cov.obj,kmax=400,
tol=1e-3)

# here is something close to an interpolation
out4<- krig.image( RMprecip$x, RMprecip$y,cov.function=Rad.image.cov,
lambda=1e-7, start= out3$omega2, cov.obj=out$cov.obj,kmax=500, tol=1e-3)

#compare the the four surfaces:
# but note the differences in scales ( fix zlim to make them the same)
#
# take a look
# set.panel( 2,2)
# image.plot( out$surface)
# points( out$x, pch=".")

# image.plot( out2$surface)
# image.plot( out3$surface)
# image.plot( out4$surface)

# some diagnostic plots)
set.panel( 4,4)
plot( out, graphics.reset=FALSE)
plot( out2, graphics.reset=FALSE)
plot( out3, graphics.reset=FALSE)
plot( out4, graphics.reset=FALSE)
set.panel(1,1)

lennon Gray image of John Lennon.

Description

A 256X256 image of John Lennon.
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mKrig "micro Krig" Spatial process estimate of a curve or surface, "kriging"
with a known covariance function.

Description

This is a simple version of the Krig function that is optimized for large data sets and a clear exposi-
tion of the computations. Lambda, the smoothing parameter must be fixed.

Usage

mKrig(x, y, weights = rep(1, nrow(x)),
lambda = 0, cov.function = "stationary.cov",

m = 2, chol.args=NULL,cov.args=NULL, ...)

## S3 method for class 'mKrig':
predict( object, xnew=NULL, derivative=0, ...)
## S3 method for class 'mKrig':
print( x, ... )

Arguments

x Matrix of unique spatial locations ( or in print or surface the returned mKrig
object.)

y Vector of observations at spatial locations, missing values are not allowed!

weights Precision ( 1/variance) of each observation

lambda Smoothing parameter or equivalently the ratio between the nugget and process
varainces.

cov.function The name, a text string of the covariance function.

m The degree of the polynomial used in teh fixed part is (m-1)

chol.args A list of optional arguments (pivot, nnzR) that will be used with the call to
the cholesky decomposition. Pivoting is done by default to make use of sparse
matrices when they are generated. This argument is useful in some cases for
sparse covariance functions to reset the memory parameter nnzR. (See example
below.)

cov.args A list of optional arguments that will be used in calls to the covariance function.

... In mKrig and predict additional arguments that will be passed to the covari-
ance function.

object Object returned by mKrig. (Same as "x" in the print function.)

xnew Locations for predictions.

derivative If zero the surface will be evaluated. If not zero the matrix of partial derivatives
will be computed.
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Details

This function is an abridged version of Krig that focuses on the computations in Krig.engine.fixed
done for a fixed lambda parameter for unique spatial locations and for data without missing values.
These restriction simply the code for reading. Note that also little checking is done and the spatial
locations are not transformed before the estimation.

predict.mKrig will evaluate the derivatives of the estimated function if derivatives are sup-
ported in the covariance function. For example the wendland.cov function supports derivatives.

print.mKrig is a simple summary function for the object.

Sparse matrix methods are handled through overloading the usual linear algebra functions with
sparse versions. But to take advantage of some additional options in the sparse methods the list
argument chol.args is a device for changing some default values. The most important of these
is nnzR, the number of nonzero elements anticipated in the Cholesky factorization of the postive
definite linear system used to solve for the basis coefficients. The sparse of this system is essentially
the same as the covariance matrix evalauted at the observed locations. As an example of resetting
nzR to 450000 one would use the following argument for chol.args in mKrig:

chol.args=list(pivot=TRUE,memory=list(nnzR= 450000))

Value

d Coefficients of the polynomial fixed part.

c Coefficients of the nonparametric part.

nt Dimension of fixed part.

np Dimension of c.

x Spatial locations used for fitting.

cov.function.name
Name of covariance function used.

cov.args A list with all the covariance arguments that were specified in the call.

chol.args A list with all the cholesky arguments that were specified in the call.

call A copy of the call to mKrig.

non.zero.entries
Number of nonzero entries in the covariance matrix for the process at the obser-
vation locations.

Author(s)

Doug Nychka, Reinhard Furrer

See Also

Krig, surface.mKrig, Tps, fastTps
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Examples

#
# Midwest ozone data 'day 16' stripped of missings
data( ozone2)
y<- ozone2$y[16,]
good<- !is.na( y)
y<-y[good]
x<- ozone2$lon.lat[good,]

# nearly interpolate using defaults (Exponential)
mKrig( x,y, theta = 2.0, lambda=.01)-> out
#
# NOTE this should be identical to
# Krig( x,y, theta=2.0, lambda=.01)

# interpolate using tapered version the taper scale is set to 1.5
# Default covariance is the Wendland.
# Tapering will done at a scale of 1.5 relative to the scaling
# done through the theta passed to the covariance function.

mKrig( x,y,cov.function="stationary.taper.cov",
theta = 2.0, lambda=.01, Taper.args=list(theta = 1.5, k=2)

) -> out2

predict.surface( out2)-> out.p
surface( out.p)

# here is a series of examples with a bigger problem
# using a compactly supported covariance directly

set.seed( 334)
N<- 1000
x<- matrix( 2*(runif(2*N)-.5),ncol=2)
y<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( 1000)*.1

mKrig( x,y, cov.function="wendland.cov",k=2, theta=.2,
lambda=.1)-> look2

# take a look at fitted surface
predict.surface(look2)-> out.p
surface( out.p)

# this works because the number of nonzero elements within distance theta
# are less than the default maximum allocated size of the
# sparse covariance matrix.
# see spam.options() for the default values

# The following will give a warning for theta=.9 because
# allocation for the covariance matirx storage is too small.
# Here theta controls the support of the covariance and so
# indirectly the number of nonzero elements in the sparse matrix
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## Not run:
mKrig( x,y, cov.function="wendland.cov",k=2, theta=.9, lambda=.1)-> look2
## End(Not run)

# The warning resets the memory allocation for the covariance matirx according the
# values 'spam.options(nearestdistnnz=c(416052,400))'
# this is inefficient becuase the preliminary pass failed.

# the following call completes the computation in "one pass"
# without a warning and without having to reallocate more memory.

spam.options(nearestdistnnz=c(416052,400))
mKrig( x,y, cov.function="wendland.cov",k=2, theta=.9, lambda=1e-2)-> look2

# as a check notice that
# print( look2)
# report the number of nonzero elements consistent with the specifc allocation
# increase in spam.options

# new data set of 1500 locations
set.seed( 234)
N<- 1500
x<- matrix( 2*(runif(2*N)-.5),ncol=2)
y<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01

# the following is an example of where the allocation (for nnzR)
# for the cholesky factor is too small. A warning is issued and
# the allocation is increased by 25
#
## Not run:

mKrig( x,y,
cov.function="wendland.cov",k=2, theta=.1,
lambda=1e2 )-> look2

## End(Not run)
# to avoid the warning
mKrig( x,y,

cov.function="wendland.cov",k=2, theta=.1,
lambda=1e2,
chol.args=list(pivot=TRUE,memory=list(nnzR= 450000)) )-> look2

# success!

##################################################
# finding a good choice for theta
##################################################
# Suppose the target is a spatial prediction using roughly 50 nearest neighbors
# (tapering covariances is effective for rouhgly 20 or more in the situation of
# interpolation) see Furrer, Genton and Nychka (2006).

# take a look at a random set of 100 points to get idea of scale

set.seed(223)
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ind<- sample( 1:N,100)
hold<- rdist( x[ind,], x)
dd<- (apply( hold, 1, sort))[65,]
dguess<- max(dd)
# dguess is now a reasonable guess at finding cutoff distance for
# 50 or so neighbors

# full distance matrix excluding distances greater than dguess
# but omit the diagonal elements -- we know these are zero!

hold<- nearest.dist( x, delta= dguess,upper=NULL, diag=FALSE)
# exploit spam format to get quick of number of nonzero elements in each row

hold2<- diff( hold@rowpointers)
# min( hold2) = 55 which we declare close enough

# now the following will use no less than 55 nearest neighbors
# due to the tapering.

## Not run:
mKrig( x,y, cov.function="wendland.cov",k=2, theta=dguess,

lambda=1e2) -> look2
## End(Not run)

#
# Using mKrig for evaluating a solution on a big grid.
# (Thanks to Jan Klennin for motivating this example.)

x<- RMprecip$x
y<- RMprecip$y

Tps( x,y)-> obj

# make up an 80X80 grid that has ranges of observations
# use same coordinate names as the x matrix

glist<- fields.x.to.grid(x, nx=80, ny=80) # this is a cute way to get a default grid that covers x

# convert grid list to actual x and y values ( try plot( Bigx, pch="."))
make.surface.grid(glist)-> Bigx

# include actual x locations along with grid.
Bigx<- rbind( x, Bigx)

# evaluate the surface on this set of points (exactly)

predict(obj, x= Bigx)-> Bigy

# theta sets range for the compact covariance function
# this will involve less than 20 nearest neighbors tha have
# nonzero covariance

theta<- c( 2.5*(glist$lon[2]-glist$lon[1]),
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2.5*(glist$lat[2]-glist$lat[1]))

# this is an interplotation of the values using a compact
# but thin plate spline like covariance.

mKrig( Bigx,Bigy, cov.function="wendland.cov",k=4, theta=theta,
lambda=0)->out2

# the big evaluation this takes about 45 seconds on a Mac G4 latop
predict.surface( out2, nx=400, ny=400)-> look

# the nice surface
## Not run:

surface( look)
US( add=TRUE, col="white")

## End(Not run)

minitri Mini triathlon results

Description

Results from a mini triathlon sponsored by Bud Lite, held in Cary, NC, June 1990. Times are in
minutes for the male 30-34 group. Man was it hot and humid! (DN)

The events in order were swim: (1/2 mile) bike: (15 miles) run: (4 miles)

<s-section name= "DATA DESCRIPTION"> This is a dataframe. Row names are the place within
this age group based on total time.

Arguments

swim swim times

bike bike times

run run times

ozone Data set of ozone measurements at 20 Chicago monitoring stations.

Description

The ozone data is a list of components, x and y. x component is longitude and latitude position of
each of the 20 Chicago monitoring stations, y is the average daily ozone values over the time period
6/3/87-8/30/87.
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Format

This data set is a list containing the following components:

lon.lat Longitude-latitude positions of monitoring stations.

x An approximate Cartesian set of coordinates for the locations where the units are in miles. The
origin is in the center of the locations.

y Average daily ozone values over 1987 summer.

Source

AIRS, the EPA air quality data base.

See Also

Tps, Krig

Examples

fit<- Tps(ozone$x, ozone$y)
# fitting a surface to ozone measurements.
surface( fit, type="I")

ozone2 Daily 8-hour ozone averages for sites in the Midwest

Description

The response is 8-hour average (surface) ozone ( from 9AM-4PM) measured in parts per billion
(PPB) for 153 sites in the midwestern US over the period June 3,1987 through August 31, 1987,
89 days. This season of high ozone corresponds with a large modeling experiment using the EPA
Regional Oxidant Model.

Usage

data(ozone2)

Format

The data list has components: <s-args> <s-arg name="y"> a 89X153 matrix of ozone values. Rows
are days and columns are the sites. </s-arg> </s-arg name="lon.lat"> Site locations in longitude
and latitude as a 153X2 table </s-arg> <s-arg name="chicago.subset"> Logical vector indicating
stations that form teh smaller Chicagoland subset. (see FIELDS ozone data set) </s-arg> </s-args>
<s-section name="Reference"> Nychka, D., Cox, L., Piegorsch, W. (1998) Case Studies in Envi-
ronmental Statistics Lecture Notes in Statistics, Springer Verlag, New York
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Examples

data( ozone2)

# pairwise correlation among all stations
# ( See cover.design to continue this example)
cor.mat<- cor( ozone2$y, use="pairwise")

#raw data image for day number 16
good<- !is.na( ozone2$y[16,])
out<- as.image( ozone2$y[16,good], x=ozone2$lon.lat[good,])
image.plot( out)

plot.Krig Diagnostic and summary plots of a Kriging or spline object

Description

Plots a series of four diagnostic plots that summarize the fit.

Usage

## S3 method for class 'Krig':
plot(x, digits=4, which= 1:4,...)
## S3 method for class 'sreg':
plot(x, digits = 4, which = 1:4, ...)

Arguments

x A Krig or an sreg object

digits Number of significant digits for the RMSE label.

which A vector specifying by number which of the four plots to draw. 1:4 plots all
four.

... Optional graphics arguments to pass to each plot.

Details

This function creates four summary plots of the Krig or sreg object. The default is to put these on
separate pages. However if the screen is already divided in some other fashion the plots will just
be added according to that scheme. This option is useful to compare to compare several different
model fits.

The first is a scatterplot of predicted value against observed.

The second plot is "standardized" residuals against predicted value. Here we mean that the residuals
are divided by the GCV estimate for sigma and multiplied by the square root of any weights that
have been specified. In the case of a "correlation model" the residuals are also divided by the
marginal standard deviation from this model.
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The third plot are the values of the GCV function against the effective degrees of freedom. When
there are replicate points several versions of the GCV function may be plotted. GCV function is
with respect to the standardized data if a correlation model is specified. A vertical line indicates the
minimium found.

The fourth plot is a histogram of the standardized residuals. For sreg if multiple lambdas are given
plotted are boxplots of the residuals for each fit.

See Also

Krig, summary.Krig, Tps, set.panel

Examples

fit<-Krig(ozone$x, ozone$y, theta=200)
# fitting a surface to ozone
# measurements

set.panel( 2,2)
plot(fit)

fit<-sreg(rat.diet$t,rat.diet$con)

# fit rat data
set.panel(2,2)
plot(fit)

set.panel(1,1) # reset graphics window.

plot.Wimage Plots 2-d wavelet coefficents by level and type

Description

Produces a panel of images using the split.screen tools that organize the wavelet coefficients
from a multiresolution by location, resolution level and type.

Usage

## S3 method for class 'Wimage':
plot(x, cut.min, graphics.reset = TRUE, common.range = FALSE,

color.table = tim.colors(128), Nlevel = NULL, with.lines = FALSE,
omd.width = 0.2, ...)
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Arguments

x matrix of coefficients

cut.min defines minimum level
graphics.reset

If TRUE will reset device to orignal settings including closing the split.screen
mode.

common.range If TRUE image plots will be on common color scale.

color.table Color table to be used for image plots. Default is Tim Hoar’s favorite.

Nlevel Number of levels to plot. Default is to plot all.

with.lines If TRUE will add white outlines of pixels. Default is FALSE to prevent from
tiny pixels from turning white!

omd.width Fration of device surface width devoted to the vertical color legend strips. De-
fault usually accomodates most axis labels.

... Other Graphical parameters to be passed to the par function.

Details

As with most complicated graphical figures you basically get what it draws although it should be
easy to modify this function for customization. The split.screen set of graphical functions are
used to divide up the plotting real estate into subplots of different sizes. The user can experiment
with different outer margin space (omd.width) Use cex.axis argument in the call to change the size
of the numerals in the color strip.

By setting grahics.reset to FALSE the function returns a matrix giving the split screen ids to ref-
erence each of the individual plots. Use the screen function to move to given plot and use a
high level plotting function to overlay information. (See example below.) Use close.screen(
all=TRUE) to turn off split.screen mode for subsequent and normal plotting.

Author(s)

Doug Nychka

Examples

old.par<- par(no.readonly=TRUE) # these functions may leave the device in
# with some funny defaults

#
#multiresolution of John Lennon
data(lennon)
Wtransform.image( lennon, cut.min=16)->look
plot.Wimage( look, cut.min=16)

# adding information
plot.Wimage( look, cut.min=16, Nlevel=3, graphics.reset=FALSE)-> plot.layout
# plot.layout here is a 4X3 matrix with the screen numbers
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# move to the smooth coefficients plot

screen( plot.layout[1,1])
plot( c(.5,16.5), c( .5,16.5), type="n",axes=FALSE)
points( 8,8, cex=2, pch="+")

# NOTE: just points( 8,8) will not work here. This has to do with split.screen not
# reseting the plotting pars correctly.

box(col=6, lwd=2)# just for fun

close.screen( all=TRUE)
par( old.par) # reset to old settings

plot.surface Plots a surface

Description

Plots a surface object in several different ways to give 3-d information e.g. a contour plots, perspec-
tive plots.

Usage

## S3 method for class 'surface':
plot(x, main = NULL, type = "C", zlab = NULL, xlab = NULL,

ylab = NULL, levels = NULL, zlim = NULL, graphics.reset = NULL,
labcex = 0.6, add.legend=TRUE, ...)

Arguments

x A surface object. At the minimum a list with components x,y and z in the same
form as the input list for the standard contour, persp or image functions. This
can also be an object from predict.surface.

main Title for plot.

type type="p" for a perspective/drape plot, type="I" for an image plot with a legend
strip (see image.plot). type="C" is the "I" option with contours lines added.
type="b" gives both "p" and "C" as a 2X1 panel

zlab z-axes label

xlab x-axes label

ylab y-axes labels

levels Vector of levels to be passed to contour function.
graphics.reset

Reset to original graphics parameters after function plotting. Default is to reset
if type ="b" but not for the single plot options.
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zlim Sets z limits on perspective plot.
labcex Label sizes for axis labeling etc.
add.legend If TRUE adds a legend to the draped perspective plot
... Other graphical parameters that are passed along to either drape.persp or im-

age.plot

See Also

surface, predict.surface, as.surface, drape.plot, image.plot

Examples

fit<- Tps( BD[,1:4], BD$lnya) # fit surface to data

# surface of variables 2 and 3
# holding 1 and 4 fixed at their median levels
out.p<-predict.surface(fit, xy=c(2,3))
plot.surface(out.p, type="C") # surface plot

poisson.cov Poisson spherical covariance function

Description

Given two sets of locations in lon/lat computes the cross covariance matrix for the Poisson covari-
ance among all pairings.

Usage

poisson.cov(x1, x2, eta = .2)

Arguments

x1 Matrix of first set of locations where each row gives the coordinates of a partic-
ular point. First column is longitudes and the second column is latitudes.

x2 Matrix of second set of locations where each row gives the coordinates of a
particular point. If this is missing x1 is used.

eta Range (or scale) parameter. Should be in the interval [0,1]

Details

This covariance is one of the few closed form covariances for the sphere and also know as the
Poisson kernel. If x1 and x2 are matrices where nrow(x1)=m and nrow(x2)=n then this function
should return a mXn matrix where the (i,j) element is the covariance between the locations x1[i,]
and x2[j,]. The covariance is found as

(1-eta**2)/(1 - 2 * eta * D.ij + eta**2)**(1.5)

where D.ij is the great circle distance between x1[i,] and x2[j,].
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Value

If nrow(x1)=m and nrow(x2)=n then the returned cross covariance matrix, will be mXn.

See Also

Krig, rdist.earth

Examples

# plot of covariance

x<- make.surface.grid( list( x=seq( -180,180,,40), y= seq( -85,85,,40)))
x0<- matrix( c(0,0), ncol=2)
look<- poisson.cov( x,x0, eta=.5)
image.plot(as.surface(x,look))

poly.image Image plot for cells that are irregular quadrilaterals.

Description

Creates an image using polygon filling based on a grid of irregular quadrilaterals. This function is
useful for a regular grid that has been transformed to another nonlinear or rotated coordinate system.
This situation comes up in lon-lat grids created under different map projections. Unlike the usual
image format this function requires the grid to be specified as two matrices x and y that given the
grid x and y coordinates explicitly for every grid point.

Usage

poly.image(x, y, z, col = tim.colors(64), transparent.color = "white",
midpoint = FALSE, zlim = range(z, na.rm = TRUE),
xlim = range(x), ylim = range(y), add = FALSE, border=NA,...)

poly.image.regrid(x)

Arguments

x A matrix of the x locations of the grid.

y A matrix of the y locations of the grid.

z Values for each grid cell. Can either be the value at the grid points or interpreted
as the midpoint of the grid cell.

col Color scale for plotting.
transparent.color

Color to plot cells that are outside the range specified in the function call.

midpoint Only relevant if the dimensions of x,y, and z are the same. If TRUE the z values
will be averaged and then used as the cell midpoints. If FALSE the x/y grid will
be expanded and shifted to represent grid cells corners. (See poly.image.regrid.)
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zlim Plotting limits for z.

xlim Plotting limits for x.

ylim Plotting limits for y.

add If TRUE will add image onto current plot.

border Color of the edges of the quadrilaterals, the default is no color.

... If add is FALSE, additional graphical arguments that will be supplied to the plot
function.

Details

This function is straightforward except in the case when the dimensions of x,y, and z are equal. In
this case the relationship of the values to the grid cells is ambigious and the switch midpoint gives
two possible solutions. The z values at 4 neighboring grid cells can be averaged to estimate a new
value interpreted to be at the center of the grid. This is done when midpoint is TRUE. Alternatively
the full set of z values can be retained by redefining the grid. This is accomplisehd by finding the
midpoints of x and y grid points and adding two outside rows and cols to complete the grid. The
new result is a new grid that is is (M+1)X (N+1) if z is MXN. These new grid points define cells
that contain each of the original grid points as their midpoints. Of course the advantage of this
alternative is that the values of z are preserved in the image plot; a feature that may be important for
some uses.

The function image.plot uses this function internally when image information is passed in this
format and can add a legend. In most cases just use image.plot.

The function poly.image.regrid does a simple averaging and extrapolation of the grid loca-
tions to shift from midpoints to corners. In the interior grid corners are found by the average of
the 4 closest midpoints. For the edges the corners are just extrapolated based on the separation of
nieghboring grid cells.

Author(s)

Doug Nychka

See Also

image.plot

Examples

data(RCMexample)
set.panel( 1,2)
par(pty="s")
# plot with grid modified
poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1])

# use midpoints of z
poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1],midpoint=TRUE)

# images are very similar.
set.panel()
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# Regridding of x and y
l1<- poly.image.regrid( RCMexample$x)
l2<- poly.image.regrid( RCMexample$y)

# test that this works
i<- 1:10
plot( l1[i,i], l2[i,i])
points( RCMexample$x[i,i], RCMexample$y[i,i],col="red")

predict.Krig Evaluation of Krig spatial process estimate.

Description

Provides predictions from the Krig spatial process estimate at arbitrary points, new data (Y) or other
values of the smoothing parameter (lambda) including a GCV estimate.

Usage

## S3 method for class 'Krig':
predict(
object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed

= FALSE, lambda = NA, df = NA, model = NA,
eval.correlation.model = TRUE, y = NULL, yM = NULL,
verbose = FALSE, ...)

Arguments

object Fit object from the Krig or Tps function.

x Matrix of x values on which to evaluate the kriging surface. If omitted, the data
x values, i.e. out$x will be used.

Z Vector/Matrix of additional covariates to be included in fixed part of spatial
model

drop.Z If TRUE only spatial fixed part of model is evaluated. i.e. Z covariates are not
used.

just.fixed Only fixed part of model is evaluated

lambda Smoothing parameter. If omitted, out$lambda will be used. (See also df and gcv
arguments)

df Effective degrees of freedom for the predicted surface. This can be used in place
of lambda ( see the function Krig.df.to.lambda)

model Generic argument that may be used to pass a different lambda.
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eval.correlation.model
If true ( the default) will multiply the predicted function by marginal sd’s and add
the mean function. This usually what one wants. If false will return predicted
surface in the standardized scale. The main use of this option is a call from Krig
to find MLE’s of rho and sigma2

y Evaluate the estimate using the new data vector y (in the same order as the old
data). This is equivalent to recomputing the Krig object with this new data but
is more efficient because many pieces can be reused. Note that the x values are
assumed to be the same.

yM If not NULL evaluate the estimate using this vector as the replicate mean data.
That is, assume the full data has been collapsed into replicate means in the same
order as xM. The replicate weights are assumed to be the same as the original
data. (weightsM)

verbose Print out all kinds of intermediate stuff for debugging

... Other arguments passed to predict.

Details

The main goal in this function is to reuse the Krig object to rapidly evaluate different estimates.
Thus there is flexibility in changing the value of lambda and also the independent data without
having to recompute the matrices associated with the Krig object. The reason this is possible is that
most on the calculations depend on the observed locations not on lambda or the observed data.

Value

Vector of predicted responses

See Also

Krig, predict.surface gcv.Krig

Examples

Krig(ozone$x,ozone$y, theta=50) ->fit
predict( fit) # gives predicted values at data points

# only the fixed part of the model

predict( fit, just.fixed=TRUE)

# in this case the default is a linear spatial drift (m=2) and there
# are no additional covariates

grid<- make.surface.grid( list( seq( -40,40,,15), seq( -40,40,,15)))

look<- predict(fit,grid) # evaluate on a grid of points

# some useful graphing functions
out.p<- as.surface( grid, look) # reformat into $x $y $z image-type object
contour( out.p)
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# refit with 10 degrees of freedom in surface

look<- predict(fit,grid, df=15)

# refit with random data

look<- predict( fit, grid, y= rnorm( 20))

predict.se.Krig Standard errors of predictions for Krig spatial process estimate

Description

Finds the standard error ( or covariance) of prediction based on a linear combination of the observed
data. The linear combination is usually the "Best Linear Unbiased Estimate" (BLUE) found from
the Kriging equations. There are also provisions to use a different covariance for evaluation than
the one used to define the BLUE.

Usage

## S3 method for class 'Krig':
predict.se(object, x = NULL, cov = FALSE, verbose = FALSE,...)

Arguments

object A Krig object.

x Points to compute the predict standard error or the prediction cross covariance
matrix.

cov If TRUE the full covariance matrix for the predicted values is returned. Make
sure this will not be big if this option is used. ( e.g. 50X50 grid will return a
matrix that is 2500X2500!) If FALSE just the marginal standard deviations of
the predicted values are returned. Default is FALSE – of course.

verbose If TRUE will print out various information for debugging.

... These additional arguments passed to the predict.se function.

Details

The predictions are represented as a linear combination of the dependent variable, Y. Call this LY.
Based on this representation the conditional variance is the same as the expected value of (P(x) +
Z(X) - LY)**2. where P(x)+Z(x) is the value of the surface at x and LY is the linear combination
that estimates this point. Finding this expected value is straight forward given the unbiasedness of
LY for P(x) and the covariance for Z and Y.

In these calculations it is assumed that the covariance parameters are fixed. This is an approximation
since in most cases they have been estimated from the data. It should also be noted that if one
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assumes a Gaussian field and known parameters in the covariance, the usual Kriging estimate is the
conditional mean of the field given the data. This function finds the conditional standard deviations
(or full covariance matrix) of the fields given the data.

There are two useful extensions supported by this function. Adding the variance to the estimate of
the spatial mean if this is a correlation model. (See help file for Krig) and calculating the variances
under covariance misspecification. The function predict.se.KrigA uses the A matrix to find
the standard errors or covariances directly from the linear combination of the spatial predictor.
Currently this is also the calculation in predict.se.Krig although a shortcut using the Kriging
equations is planned for a later verion of fields.

Value

A vector of standard errors for the predicted values of the Kriging fit.

See Also

Krig, predict.Krig, predict.surface.se

Examples

#
# Note: in these examples predict.se will default to predict.se.Krig using
# a Krig object

fit<- Krig(ozone$x,ozone$y,cov.function="Exp.cov", theta=10) # Krig fit
predict.se.Krig(fit) # std errors of predictions at obs.

# make a grid of X's
xg<-make.surface.grid(
list(East.West=seq(-27,34,,20),North.South=seq(-20,35,,20)))
out<- predict.se.Krig(fit,xg) # std errors of predictions

#at the grid points out is a vector of length 400
#reshape the grid points into a 20X20 matrix etc.

out.p<-as.surface( xg, out)
surface( out.p, type="C")

# this is equivalent to the single step function
# (but default is not to extrapolation beyond data
# out<- predict.surface.se( fit)
# image.plot( out)



predict.se 123

predict.se Standard errors of predictions

Description

Calculates the standard error of predictions. This is usually the fitted object from a function estimate
such as from Krig or Tps.

Usage

predict.se(object, ...)

Arguments

object A fitted model object of a certain class

... Additional arguments to be passed to a particular method. e.g. a grid.list or
model specification.

Details

This function is generic and will call the appropriate function to calculate the standard errors for
the object class. The prediction standard error is for the estimated function or parameters (a mean
value) not for the prediction of a new observation.

Value

A vector of standard errors for the predicted values.

See Also

predict, predict.surface.se, predict.se.Krig

Examples

fit<-Krig(ozone$x,ozone$y, Covariance="Matern",theta=50, smoothness=1)
predict.se(fit) # std errors of predictions

#
# create a grid of points
xg<- make.surface.grid(

list(East.West=seq(-15,15,,20),North.South=seq(-20,20,,20) ) )
out<- predict.se(fit,xg)
image.plot( as.surface( xg, out))
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predict.surface Evaluates a fitted function or its standard errors as a surface object

Description

Evaluates a a fitted model on a 2-D grid keeping any other variables constant. The resulting object
is suitable for use with functions for viewing 3-d surfaces.

Usage

predict.surface(object, grid.list = NA, extrap = FALSE, chull.mask =
NA, nx = 80, ny = 80, xy = c(1, 2), order.variables="xy",...)

predict.surface.se(object, grid.list = NA, extrap = FALSE, chull.mask =
NA, nx = 80, ny = 80, xy = c(1, 2),
order.variables="xy",verbose=FALSE, ...)

Arguments

object An object from fitting a function to data. In FIELDS this is usually a Krig object.

grid.list A list with as many components as variables describing the surface. All com-
ponents should have a single value except the two that give the grid points for
evaluation. If the matrix or data frame has column names, these must appear in
the grid list. See the grid.list help file for more details. If this is omitted and the
fit just depends on two variables the grid will be made from the ranges of the
observed variables.

extrap Extrapolation beyond the range of the data. If false function will be restricted to
the convex hull of the observed data or the hull defined from the points from the
argument chull.mask.

chull.mask Whether to restrict the fitted surface to be on a convex hull, NA’s are assigned
to values outside the convex hull. chull.mask should be a sequence of points
defining a convex hull. Default is to form the convex hull from the observations
if this argument is missing (and extrap is false).

nx Number of grid points in X axis.

ny Number of grid points in Y axis.

xy A two element vector giving the positions for the "X" and "Y" variables for
the surface. The positions refer to the columns of the x matrix used to define
the multidimensional surface. This argument is provided in lieu of generating
the grid list. If a 4 dimensional surface is fit to data then xy= c(2,4) will
evaluate a surface using the second and fourth variables with variables 1 and
3 fixed at their median values. NOTE: this argument is ignored if a grid.list
arguments is passed.
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order.variables
If "xy" the variables in grid.list are taken in order as "x" then "y". If "yx" the
roles are reversed. Suppose a grid.list had components lat, lon, elevation and
one wanted a lon/lat surface at a fixed elevation. Then one would set to "yx" to
make "x" lon and "y" lat.

verbose If TRUE prints out some imtermediate results for debugging.
... Any other arguments to pass to the predict function associated with the fit object.

Details

This function creates the right grid using the grid.list information or the attribute in xg, calls the
predict function for the object with these points and also adding any extra arguments passed in the
... section, and then reforms the results as a surface object (as.surface). To determine the what parts
of the prediction grid are in the convex hull of the data the function in.poly is used. The argument
inflation in this function is used to include a small margin around the outside of the polygon so that
point on convex hull are included. This potentially confusing modification is to prevent excluding
grid points that fall exactly on the ranges of the data.

Value

The usual list components for making contour and perspective plots (x,y,z) along with labels for the
x and y variables.

See Also

Tps, Krig, predict, grid.list, make.surface.grid, as.surface, surface, in.poly

Examples

fit<- Tps( BD[,1:4], BD$lnya) # fit surface to data

# evaluate fitted surface for first two
# variables holding other two fixed at median values

out.p<- predict.surface(fit)
surface(out.p, type="C")

#
# plot surface for second and fourth variables
# on specific grid.

glist<- list( KCL=29.77, MgCl2= seq(3,7,,25), KPO4=32.13,
dNTP=seq( 250,1500,,25))

out.p<- predict.surface(fit, glist)
surface(out.p, type="C")

out.p<- predict.surface.se(fit, glist)
surface(out.p, type="C")
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print.Krig Print kriging fit results.

Description

Prints the results from a fitting a spatial process estimate (Krig)

Usage

## S3 method for class 'Krig':
print(x,digits=4,...)

Arguments

x Object from Krig function.

digits Number of significant digits in printed output. Default is 4.

... Other arguments to print.

Value

Selected summary results from Krig.

See Also

print, summary.Krig, Krig

Examples

fit<- Krig(ozone$x,ozone$y, theta=100)
print(fit) # print the summary
fit # this will work too

pushpin Adds a "push pin" to an existing 3-d plot

Description

Adds to an existing 3-d perspective plot a push pin to locate a specific point.

Usage

pushpin( x,y,z,p.out, height=.05,col="black",text=NULL,adj=-.1,cex=1.0,...)
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Arguments

x x location

y y location

z z location

p.out Projection information returned by persp

height Height of pin in device coordinates (default is about 5% of the vertical distance
).

col Color of pin head.

text Optional text to go next to pin head.

adj Position of text relative to pin head.

cex Character size for pin head and/or text

... Additional graphics arguments that are passed to the text function.

Details

See the help(text) for the conventions on the adj argument and other options for placing text.

Author(s)

Doug Nychka

See Also

drape.plot,persp

Examples

# Dr. R's favorite New Zealand Volcano!
data( volcano)
M<- nrow( volcano)
N<- ncol( volcano)
x<- seq( 0,1,,M)
y<- seq( 0,1,,N)

drape.plot( x,y,volcano, col=terrain.colors(128))-> pm

max( volcano)-> zsummit
xsummit<- x[ row( volcano)[volcano==zsummit]]
ysummit<- y[ col( volcano)[volcano==zsummit]]

pushpin( xsummit,ysummit,zsummit,pm, text="Summit")
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qsreg Quantile or Robust spline regression

Description

Uses a penalized likelihood approach to estimate the conditional quantile function for regression
data. This method is only implemented for univariate data. For the pairs (X,Y) the conditional
quantile, f(x), is P( Y<f(x)| X=x) = alpha. This estimate is useful for determining the envelope
of a scatterplot or assessing departures from a constant variance with respect to the independent
variable.

Usage

qsreg(x, y, lam = NA, maxit = 50, maxit.cv = 10, tol =
1e-07, offset = 0, sc = sqrt(var(y)) * 1e-05, alpha =
0.5, wt = rep(1, length(x)), cost = 1, nstep.cv = 80,
hmin = NA, hmax = NA, trmin = 2 * 1.05, trmax = 0.95

* length(unique(x)))

Arguments

x Vector of the independent variable in y = f(x) + e

y Vector of the dependent variable

lam Values of the smoothing parameter. If omitted is found by GCV based on the
the quantile criterion

maxit Maximum number of iterations used to estimate each quantile spline.

maxit.cv Maximum number of iterations to find GCV minimum.

tol Tolerance for convergence when computing quantile spline.

cost Cost value used in the GCV criterion. Cost=1 is the usual GCV denominator.

offset Constant added to the effective degrees of freedom in the GCV function.

sc Scale factor for rounding out the absolute value function at zero to a quadratic.
Default is a small scale to produce something more like quantiles. Scales on the
order of the residuals will result is a robust regression fit using the Huber weight
function. The default is 1e-5 of the variance of the Y’s. The larger this value
the better behaved the problem is numerically and requires fewer iterations for
convergence at each new value of lambda.

alpha Quantile to be estimated. Default is find the median.

wt Weight vector default is constant values. Passing nonconstant weights is a pretty
strange thing to do.

nstep.cv Number of points used in CV grid search

hmin Minimum value of log( lambda) used for GCV grid search.

hmax Maximum value of log( lambda) used for GCV grid search.
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trmin Minimum value of effective degrees of freedom in model used for specifying
the range of lambda in the GCV grid search.

trmax Maximum value of effective degrees of freedom in model used for specifying
the range of lambda in the GCV grid search.

Details

This is an experimental function to find the smoothing parameter for a quantile or robust spline using
a more appropriate criterion than mean squared error prediction. The quantile spline is found by
an iterative algorithm using weighted least squares cubic splines. At convergence the estimate will
also be a weighted natural cubic spline but the weights will depend on the estimate. Alternatively
at convergence the estimate will be a least squares spline applied to the empirical psuedo data.
The user is referred to the paper by Oh and Nychka ( 2002) for the details and properties of the
robust cross-validation using empirical psuedo data. Of course these weights are crafted so that the
resulting spline is an estimate of the alpha quantile instead of the mean. CV as function of lambda
can be strange so it should be plotted.

Value

trmin trmax Define the minimum and maximum values for the CV grid search in terms of
the effective number of parameters. (see hmin, hmax) Object of class qsreg with
many arguments similar to a sreg object. One difference is that cv.grid has five
columns the last being the number of iterations for convergence at each value of
lambda.

See Also

sreg

Examples

# fit a CV quantile spline
fit50<- qsreg(rat.diet$t,rat.diet$con)
# (default is .5 so this is an estimate of the conditional median)
# control group of rats.
plot( fit50)
predict( fit50)
# predicted values at data points
xg<- seq(0,110,,50)
plot( fit50$x, fit50$y)
lines( xg, predict( fit50, xg))

# A robust fit to rat diet data
#
SC<- .5* median(abs((rat.diet$con- median(rat.diet$con))))
fit.robust<- qsreg(rat.diet$t,rat.diet$con, sc= SC)
plot( fit.robust)

# The global GCV function suggests little smoothing so
# try the local
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# minima with largest lambda instead of this default value.
# one should should consider redoing the three quantile fits in this
# example after looking at the cv functions and choosing a good value for
#lambda
# for example
lam<- fit50$cv.grid[,1]
tr<- fit50$cv.grid[,2]
# lambda close to df=6
lambda.good<- max(lam[tr>=6])
fit50.subjective<-qsreg(rat.diet$t,rat.diet$con, lam= lambda.good)
fit10<-qsreg(rat.diet$t,rat.diet$con, alpha=.1, nstep.cv=200)
fit90<-qsreg(rat.diet$t,rat.diet$con, alpha=.9, nstep.cv=200)
# spline fits at 50 equally spaced points
sm<- cbind(

predict( fit10, xg),
predict( fit50.subjective, xg),predict( fit50, xg),
predict( fit90, xg))

# and now zee data ...
plot( fit50$x, fit50$y)
# and now zee quantile splines at 10
#
matlines( xg, sm, col=c( 3,3,2,3), lty=1) # the spline

quilt.plot Image plot for irregular spatial data.

Description

Given a vector of z values associated with 2-d locations this function produces an image-like plot
where the locations are discretized to a grid and the z values are coded as a color level from a color
scale.

Usage

quilt.plot(x, y, z, nrow = 64, ncol = 64, grid = NULL,
add.legend=TRUE,add=FALSE,col=tim.colors(256),...)

Arguments

x A vector of the x coordinates of the locations -or- a a 2 column matrix of the x-y
coordinates.

y A vector of the y coordinates -or- if the locations are passed in x the z vector

z Values of the variable to be plotted.

nrow Number of grid boxes in x.

ncol Number of grid boxes in y.
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grid A grid in the form of a grid list.

add.legend If TRUE a legend color strip is added

add If FALSE add to existing plot.

col Color scale for the image, the default is tim.colors – a pleasing spectrum.

... arguments to be passed to the image.plot function

Details

This function combines the discretization to an image by the function as.image and is then
graphed by image.plot. Locations that fall into the same grid box will have their z values
averaged.

A similar function exists in the lattice package and produces good looking plots. The advantage of
this fields version is that it uses the standard R graphics functions and is written in R code. Also,
the aggregation to average values for z values in the same grid box allows for different choices of
grids. If two locations are very close, separating them could result in very small boxes.

As always, legend placement is never completely automatic. Place the legend independently for
more control, perhaps using image.plot in tandem with split.screen or enlarging the plot
margin See help(image.plot) for examples of this function and these strategies.

Author(s)

D.Nychka

See Also

as.image, image.plot, lattice, persp, drape.plot

Examples

data( ozone2)
# plot 16 day of ozone data set

quilt.plot( ozone2$lon.lat, ozone2$y[16,])
US( add=TRUE, col="grey", lwd=2)

#
# and ... if you are fussy
# do it again
# quilt.plot( ozone2$lon.lat, ozone2$y[16,],add=TRUE)
# to draw over the state boundaries.
#

### adding a legend strip "by hand"
par( mar=c( 5,5,5,10)) # save some room for the legend
quilt.plot( ozone2$lon.lat, ozone2$y[16,], add.legend=FALSE)
image.plot(ozone2$lon.lat, ozone2$y[16,],legend.only=TRUE)
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rat.diet Experiment studying an appetite supressant in rats.

Description

The ‘rat.diet’ data frame has 39 rows and 3 columns. These are data from a study of an appetite
supressant given to young rats. The suppressant was removed from the treatment group at around
60 days. The responses are the median food intake and each group had approximately 10 animals.

Usage

data(rat.diet)

Format

This data frame contains the following columns:

t Time in days

con Median food intake of the control group

trt Median food intake of the treatment group

rdist Euclidean distance matrix

Description

Given two sets of locations computes the full Euclidean distance matrix among all pairings or a
sparse version for points within a fixed threshhold distance.

Usage

rdist(x1, x2)

fields.rdist.near(x1,x2, delta, max.points= NULL, mean.neighbor = 50)

Arguments

x1 Matrix of first set of locations where each row gives the coordinates of a partic-
ular point.

x2 Matrix of second set of locations where each row gives the coordinates of a
particular point. If this is missing x1 is used.

delta Threshhold distance. All pairs of points that separated by more than delta in
distance are ignored.
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max.points Size of the expected number of pairs less than or equal to delta. The default is
set to the nrow(x1)*mean.neighbor.

mean.neighbor
Sets the temp space for max.points

Details

More about fields.rdist.near:

The sparse version is designed to work with the sparse covariance functions in fields and anticipates
that the full matrix, D is too large to store. The argument max.points is set as a default to nrow(
x1)*100 and allocates the space to hold the sparse elements. In case that there are more points that
are within delta the function stops with an error but lists the offending rows. Just rerun the function
with a larger choice for max.points

It possible that for certain x1 points there are no x2 points within a distance delta. This situation
will cause an error if the list is converted to spam format.

Returned values

Let D be the mXn distance matrix, with m= nrow(x1) and n=nrow( x2). The elements are the
Euclidean distances between the all locations x1[i,] and x2[j,]. That is,

D.ij = sqrt( sum.k (( x1[i,k] - x2[j,k]) **2 ).

rdist The distance matrix D is returned.

fields.rdist.near The elements of D that are less than or equal to delta are returned in the
form of a list.

List components:

ind Row and column indices of elements

ra (Distances ( D.ij)

da Dimensions of full distance matrix.

This is a simple sparse format that can be manipulated by several fields functions. E.g. ind2spam
will convert this list to the format used by the spam sparse matrix package. ind2full will convert
this to an ordinary matrix with zeroes.

See Also

Exp.cov, rdist.earth, ind2spam, ind2full

Examples

out<- rdist( ozone$x)
# out is a 20X20 matrix.

out2<- rdist( ozone$x[1:5,], ozone$x[11:20,])
#out2 is a 5X10 matrix

set.seed(123)
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x1<- matrix( runif( 20*2), 20,2)
x2<- matrix( runif( 15*2), 15,2)

out3<- fields.rdist.near( x1,x2, delta=.5)
# out3 is a sparse structure in list format

# or to "save" work space decrease size of temp array

out3<- fields.rdist.near( x1,x2, delta=.5,max.points=20*15)

# explicitly reforming as a full matrix
temp<- matrix( NA, nrow=out3$da[1], ncol= out3$da[2])
temp[ out3$ind] <- out3$ra

# or justuse

temp<- spind2full( out3)
image( temp)

# this is identical to
temp2<- rdist( x1,x2)
temp2[ temp2<= .5] <- NA

rdist.earth Great circle distance matrix

Description

Given two sets of longitude/latitude locations computes the Great circle (geographic) distance ma-
trix among all pairings.

Usage

rdist.earth(x1, x2, miles = TRUE, R = NULL)

Arguments

x1 Matrix of first set of lon/lat coordinates first column is the longitudes and second
is the latitudes.

x2 Matrix of second set of lon/lat coordinates first column is the longitudes and
second is the latitudes. If missing x1 is used.

miles If true distances are in statute miles if false distances in kilometers.

R Radius to use for sphere to find spherical distances. If NULL the radius is either
in miles or kilometers depending on the values of the miles argument. If R=1
then distances are of course in radians.
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Details

Surprisingly this all done efficiently in R by dot products of the direction cosines. Thanks to Qing
Yang for pointing this out a long time ago.

Value

The great circle distance matrix if nrow(x1)=m and nrow( x2)=n then the returned matrix will be
mXn.

See Also

rdist, stationary.cov

Examples

out<- rdist.earth ( ozone$lon.lat)
#out is a 20X20 distance matrix

ribbon.plot Adds to an existing plot, a ribbon of color, based on values from a
color scale, along a sequence of line segments.

Description

Given a series of 2-d points and values at these segments, the function colors the segments according
to a color scale and the segment values. This is essentially an image plot restricted to line segments.

Usage

ribbon.plot(x,y,z,zlim=NULL, col=tim.colors(256),
transparent.color="white",...)

Arguments

x x locations of line segments

y y locations of line segments

z Values associated with each segment.

zlim Range for z values to determine color scale.

col Color table used for strip. Default is our favorite tim.colors being a scale from a
dark blue to dark red.

transparent.color
Color used for missing values. Default is that missing values make the ribbon
transparent.

... Optional graphical arguments that are passed to the segment plotting function.
A favorite is lwd to make a broad ribbon.
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Details

Besides possible 2-d applications, this function is useful to annotate a curve on a surface using
colors. The values mapped to acolor scheme could indicate a feature other than the height of the
surface. For example, this function could indicate the slope of the surface.

Author(s)

Doug Nychka

See Also

image.plot, arrow.plot, add.image, colorbar.plot

Examples

plot( c(-1.5,1.5),c(-1.5,1.5), type="n")
temp<- list( x= seq( -1,1,,40), y= seq( -1,1,,40))
temp$z <- outer( temp$x, temp$y, "+")
contour( temp, add=TRUE)

t<- seq( 0,.5,,50)
y<- sin( 2*pi*t)
x<- cos( pi*t)
z<- x + y

ribbon.plot( x,y,z, lwd=10)

persp( temp, phi=15, shade=.8, col="grey")-> pm
trans3d( x,y,z,pm)-> uv
ribbon.plot( uv$x, uv$y, z**2,lwd=5)

set.panel Specify a panel of plots

Description

Divides up the graphics window into a matrix of plots.

Usage

set.panel(m=1, n=1, relax=FALSE)

Arguments

m Number of rows in the panel of plots
n Number of columns in the panel.
relax If true and the par command is already set for multiple plots, then the set.panel

command is ignored. The default is relax set to false.
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Details

After set.panel is called, the graphics screen is reset to put plots according to a m x n table. Plotting
starts in the upper left hand corner and proceeds row by row. After m x n plots have been drawn,
the next plot will erase the window and start in the 1,1 position again. This function is just a
repackaging for specifying the mfrow argument to par. Setting up a panel of plots is a quick way to
change the aspect ratio of the graph (ratio of height to width) or the size. For example, plotting 2
plots to a page produces a useful size graph for including in a report. You can print out the graphs
at any stage without having to fill up the entire window with plots. This function, except for the
"relax" option is equivalent to the S sequence: par( mfrow=c(m,n)).

Side Effects

The function will echo your choice of m and n to the terminal.

See Also

par

Examples

set.panel(5,2) #divide screen to hold 10 plots where there are 5 rows
#and 2 columns

plot( 1:10)
plot( 2:8)

set.panel() #reset screen to one plot per screen

sim.Krig Conditonal simulation of a spatial process

Description

Generates exact (or approximate) random draws from the conditional distribution of a spatial pro-
cess given specific observations. This is a useful way to characterize the uncertainty in the predicted
process from data. This is known as conditional simulation in geostatistics or generating an ensem-
ble prediction in the geosciences. sim.Krig.grid can generate a conditional sample for a large regular
grid but is restricted to stationary correlation functions.

Usage

sim.Krig.standard(object, xp, M = 1, verbose = FALSE, sigma2 = NA, rho = NA)

sim.Krig.grid(object, grid.list = NA, M = 1, nx = 40, ny = 40, xy=c(1,2), verbose =
FALSE,
sigma2 = NA, rho = NA, extrap = FALSE)
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Arguments

object A Krig object

xp Locations where to evaluate the conditional process.

M Number of draws from conditional distribution.

verbose If true prints out intermediate information.

sigma2 User specified value for nugget variance or measurement error. See Details be-
low.

rho User specified value for sill, or multiplier of spatial covariance function. See
Detials below.

grid.list Grid information for evaluating the conditional surface as a grid.list.

nx Number of grid points in x.

ny Number of grid points in y.

xy A two element vector giving the positions for the "X" and "Y" variables for the
surface. The positions refer to the columns of the location matrix used to define
the multidimensional surface from the Krig object. This argument is provided
in lieu of generating the grid list. If a 4 dimensional surface is fit to data then
xy= c(2,4)will evaluate a surface using the second and fourth variables with
variables 1 and 3 fixed at their median values. NOTE: this argument is ignored
if a grid.list argument is passed.

extrap If FALSE conditional process is not evaluated outside the convex hull of obser-
vations.

Details

These functions generate samples from a conditional multivariate distribution that describes the un-
certainty in the estimated spatial process under Gaussian assumptions. An important approximation
throughout these functions is that all covariance parameters are fixed at their estimated or prescribed
values.

Given a spatial process Z(x)= P(x) + h(x) observed at

Y.k = P(x.k) + h(x.k) + e.k

where P(x) is a low order, fixed polynomial and h(x) a Gaussian spatial process. With Y= Y.1, ...,
Y.N, the goal is to sample the conditional distribution of the process.

[Z(x) | Y ]

For fixed a covariance this is just a multivariate normal sampling problem. sim.Krig.standard
samples this conditional process at the points xp and is exact for fixed covariance parameters.
sim.Krig.grid also assumes fixed covariance parameters and does approxiamte sampling on a
grid.

The outline of the algorithm is

0) Find the spatial prediction at the unobserved locations based on the actual data. Call this Z.hat(x).

1) Generate an unconditional spatial process and from this process simluate synthetic observations.

2) Use the spatial prediction model ( using the true covariance) to estimate the spatial process at
unobserved locations.
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3) Find the difference between the simulated process and its prediction based on synthetic observa-
tions. Call this e(x).

4) Z.hat(x) + e(x) is a draw from [Z(x) | Y ].

sim.Krig.standard follows this algorithm exactly.

sim.Krig.grid evaluates the conditional surface on grid and simulates the values of h(x) off
the grid using bilinear interpolation of the four nearest grid points. Because of this approximation it
is important to choose the grid to be fine relative to the spacing of the observations. The advantage
of this approximation is that one can consider conditional simulation for large grids – beyond the
size possible with exact methods. Here the method for simulation is circulant embedding and so is
restricted to correlation stationary fields.

Value

For sim.Krig.standard a matrix with columns indexed by the locations in xp and M rows.

For sim.Krig.grid a list with arguments x and y defining the grid locations in the usual manner
and z contains the values of the simulated conditional field(s). z is a three dimesional array where
the first two indices are "x" and "y" and the third index is between 1 and M and indexes the simulated
fields.

Author(s)

Doug Nychka

See Also

sim.rf, Krig

Examples

data( ozone2)

set.seed( 399)

# fit to day 16 from Midwest ozone data set.
Krig( ozone2$lon.lat, ozone2$y[16,], Covariance="Matern",
theta=1.0,smoothness=1.0, na.rm=TRUE)-> out

# NOTE theta =1.0 is not the best choice but
# allows the sim.rf circulant embedding algorithm to
# work without increasing the domain.

#six missing data locations
xp<- ozone2$lon.lat[ is.na(ozone2$y[16,]),]

# 50 draws from process at xp given the data
# this is an exact calculation
sim.Krig.standard( out,xp, M=50)-> sim.out

# Compare: stats(sim.out)[3,] to Exact: predict.se( out, xp)
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# simulations on a grid
# NOTE this is approximate due to the bilinear interpolation
# for simulating the unconditional random field.

sim.Krig.grid(out,M=5)-> sim.out

# take a look at the ensemble members.

predict.surface( out, grid= list( x=sim.out$x, y=sim.out$y))-> look

zr<- c( 40, 200)

set.panel( 3,2)
image.plot( look, zlim=zr)
title("mean surface")

for ( k in 1:5){
image( sim.out$x, sim.out$y, sim.out$z[,,k], col=tim.colors(), zlim =zr)
}

sim.rf Simulates a random field

Description

Simulates a random Gaussian field on a regular grid.

Usage

sim.rf(obj)

Arguments

obj A covariance object that includes information about the covariance function and
the grid for evaluation. Usually this created by a setup call to Exp.image.cov.
(See details below.)

... Additional arguments passed to a particular method.

Details

This function takes an object that includes some preliminary calculations and so is more efficient for
simulating more than one field from the same covariance. However, the algorithm using a 2-d FFT
may not always work if the correlation scale is large (See the FIELDS manual for more details.)
The simple fix is increase the size of the domain so that the correlation sale becomes smaller relative
to the extent of th domain.

For a stationary model the covariance object has the components:

names( obj) "m" "n" "grid" "N" "M" "wght"
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. where m and n are the number of grid points in x and y grid is a list with the grid point values
for x and y N and M is the size of the larger grid that is used for simulation ( usually M= 2*m and
N=2*n) to minimize periodic effects. wght is a matrix from the FFT of the covariance function. The
easiest way to create this object is to use for example Exp.image.cov with setup=T ( see below).

The classic reference for this algorithm is Wood, A.T.A. and Chan, G. (1994). Simulation of Station-
ary Gaussian Processes in [0,1]d . Journal of Computational and Graphical Statistics, 3, 409-432.

Value

A matrix with the random field values

See Also

Exp.image.cov, matern.image.cov

Examples

#Simulate a Gaussian random field with an exponential covariance function,
#range parameter = 2.0 and the domain is [0,5]X [0,5] evaluating the
#field at a 100X100 grid.
grid<- list( x= seq( 0,5,,100), y= seq(0,5,,100))
obj<-Exp.image.cov( grid=grid, theta=.5, setup=TRUE)
look<- sim.rf( obj)
# Now simulate another ...
look2<- sim.rf( obj)
# take a look
set.panel(2,1)
image.plot( grid$x, grid$y, look)
title("simulated gaussian field")
image.plot( grid$x, grid$y, look2)
title("another (independent) realization ...")

smooth.2d Kernel smoother for irregular 2-d data

Description

An approximate Nadaraya Watson kernel smoother is obtained by first discretizing the locations to
a grid and then using convolutions to find and to apply the kernel weights. The main advantage of
this function is a smoother that avoids explicit looping.

Usage

smooth.2d(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL,
x = NULL, nrow = 64, ncol = 64, surface = TRUE, cov.function =

gauss.cov, Mwidth = NULL, Nwidth = NULL, ...)
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Arguments

Y A vector of data to be smoothed
ind Row and column indices that correspond to the locations of the data on regular

grid. This is most useful when smoothing the same locations many times. (See
also the x argument.)

weight.obj An object that has the FFT of the convolution kernel and other information ( i.e.
the result from calling this with setup=TRUE).

setup If true creates a list that includes the FFT of the convolution kernel. In this case
the function will return this list. Default is false.

grid A list with components x and y being equally spaced values that define the grid.
Default are integers 1:nrow, 1:ncol. If x is given the ranges will be used to define
the grid.

x Actual locations of the Y values. Not needed if ind is specified.
nrow Number of points in the horizontal (x) axis of the grid. Not needed if grid is

specified the default is 64
ncol Number of points in the vertical (y) axis of the grid. Not needed if grid list is

specified the default is 64
surface If true (the default) a surface object is returned suitable for use by image, persp

or contour functions. If false then just the nrowXncol matrix of smoothed values
is returned.

cov.function S function describing the kernel function. To be consistent with the other spatial
function this is in the form of a covariance function. The only assumption is that
this be stationary. Default is the (isotropic) Gaussian.

Nwidth The size of the padding regions of zeroes when computing the (exact) convolu-
tion of the kernel with the data. The most conservative values are 2*nrow and
2*ncol, the default. If the kernel has support of say 2L+1 grid points then the
padding region need only be of size L+1.

Mwidth See Nwidth.
... Parameters that are passed to the smoothing kernel. ( e.g. the scale parameter

theta for the exponential or gaussian)

Details

The irregular locations are first discretized to a regular grid ( using as.image) then a 2d- FFT is
used to compute a Nadaraya-Watson type kernel estimator. Here we take advantage of two features.
The kernel estimator is a convolution and by padding the regular by zeroes where data is not ob-
sevred one can sum the kernel over irregular sets of locations. A second convolutions to find the
normalization of the kernel weights.

The kernel function is specified by an function that should evaluate with the kernel for two matrices
of locations. Assume that the kernel has the form: K( u-v) for two locations u and v. The function
given as the argument to cov.function should have the call myfun( x1,x2) where x1 and x2 are
matrices of 2-d locations if nrow(x1)=m and nrow( x2)=n then this function should return a mXn
matrix where the (i,j) element is K( x1[i,]- x2[j,]). Optional arguments that are included in the ...
arguments are passed to this function when it is used. The default kernel is the Gaussian and the
argument theta is the bandwidth. It is easy to write other other kernels, just use Exp.cov.simple as a
template.
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Value

Either a matrix of smoothed values or a surface object. The surface object also has a component
’ind’ that gives the subscripts of the image matrix where the data is present.

Examples

# Normal kernel smooth of the precip data with bandwidth of .5 ( degree)
#
look<- smooth.2d( RMprecip$y, x=RMprecip$x, theta=.25)

# finer resolution used in computing the smooth
look3<-smooth.2d( RMprecip$y, x=RMprecip$x, theta=.25, nrow=256,
ncol=256,Nwidth=32,
Mwidth=32)
# if the width arguments were omitted the padding would create a
# 512X 512 matrix with the data filled in the upper 256X256 part.
# with a bandwidth of .25 degrees the normal kernel is essentially zero
# beyond 32 grid points from its center ( about 6 standard deviations)
#
# take a look:

#set.panel(2,1)
#image( look3, zlim=c(-8,12))
#points( RMprecip$x, pch=".")
#image( look, zlim =c(-8,12))
#points( RMprecip$x, pch=".")

# bandwidth changed to .25, exponential kernel
look2<- smooth.2d( RMprecip$y, x=RMprecip$x, cov.function=Exp.cov,theta=.25)
#

spam2lz Conversion of formats for sparse matrices

Description

Some supporting functions that are internal to fields top level methods. These are used to convert
between the efficient but opaque format used by spam and more easily checked format based directly
on the row and column indices of non zero elements.

Usage

spind2full(obj)

spam2full(obj)

spind2spam(obj)
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spam2spind(obj)

Arguments

obj Either a list with the sparse index components (spind) or an obj of class spam.

Details

The differencee in formats is best illustarted by an example:

A 4X5 sparse matrix:

[,1] [,2] [,3] [,4] [,5]
[1,] 1 9 0 0 33
[2,] 0 0 0 26 34
[3,] 3 11 0 27 35
[4,] 0 12 20 0 36

spind format is a list with components "ind", "ra" and "da" here is how the matrix above would be
encoded:

ind
I

[1,] 1 1
[2,] 1 2
[3,] 1 5
[4,] 2 4
[5,] 2 5
[6,] 3 1
[7,] 3 2
[8,] 3 4
[9,] 3 5

[10,] 4 2
[11,] 4 3
[12,] 4 5

da
[1] 4 5

ra
[1] 1 9 33 26 34 3 11 27 35 12 20 36

spam format is an S4 class with slot names "entries", "colindices", "rowpointers" and "dimension".

entries

[1] 1 9 33 26 34 3 11 27 35 12 20 36

colindices
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[1] 1 2 5 4 5 1 2 4 5 2 3 5

rowpointers

[1] 1 4 6 10 13

dimension

[1] 4 5

The row pointers are the position in the array of entries where the next row starts.

NOTE: It is possible for the spind format to have a missing row of all zeroes but this not allowed in
spam format and produces an error message.

Author(s)

Doug Nychka

See Also

as.spam

splint Cubic spline interpolation

Description

A fast, FORTRAN based function for cubic spline interpolation.

Usage

splint(x, y, xgrid, wt=NULL, derivative=0,lam=0, df=NA)

Arguments

x The x values that define the curve or a two column matrix of x and y values.

y The y values that are paired with the x’s.

xgrid The grid to evaluate the fitted cubic interpolating curve.

derivative Indicates whether the function or a a first or second derivative should be evalu-
ated.

wt Weights for different obsrevations in the scale of reciprocal variance.

lam Value for smoothing parameter. Default value is zero giving interpolation.

df Effective degrees of freedom. Default is to use lambda =0 or a df equal to the
number of observations.
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Details

Fits a piecewise interpolating or smoothing cubic polynomial to the x and y values. This code is
designed to be fast but does not many options in sreg or other more statistical implementations.
To make the solution well posed the the second and third derivatives are set to zero at the limits of
the x values. Extrapolation outside the range of the x values will be a linear function.

It is assumed that there are no repeated x values; use sreg followed by predict if you do have
replicated data.

Value

A vector consisting of the spline evaluated at the grid values in xgrid.

References

See Additive Models by Hastie and Tibshriani.

See Also

sreg, Tps

Examples

x<- seq( 0, 120,,200)

# an interpolation
splint(rat.diet$t, rat.diet$trt,x )-> y

plot( rat.diet$t, rat.diet$trt)
lines( x,y)
#( this is weird and not appropriate!)

# the following two smooths should be the same

splint( rat.diet$t, rat.diet$con,x, df= 7)-> y1

# sreg function has more flexibility than splint but will
# be slower for larger data sets.

sreg( rat.diet$t, rat.diet$con, df= 7)-> obj
predict(obj, x)-> y2

# in fact predict.sreg interpolates the predicted values using splint!

# the two predicted lines (should) coincide
lines( x,y1, col="red",lwd=2)
lines(x,y2, col="blue", lty=2,lwd=2)
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sreg Smoothing spline regression

Description

Fits a cubic smoothing spline to univariate data. The amount of smoothness can be specified or
estimated from the data by GCV. <!–brief description–>

Usage

sreg(x, y, lambda = NA, df = NA, offset = 0,
weights = rep(1, length(x)), cost = 1,
nstep.cv = 80, tol=1e-5,find.diagA = TRUE, trmin = 2.01,
trmax = NA, lammin = NA,
lammax = NA, verbose = FALSE,
do.cv = TRUE, method = "GCV", rmse = NA,
na.rm = TRUE)

Arguments

x Vector of x value

y Vector of y values

lambda Single smoothing parameter or a vector of values . If omitted smoothing param-
eter estimated by GCV. NOTE: lam here is equivalent to the value lambda*N in
Tps/Krig where N is the number of unique observations. See example below.

df Amount of smoothing in term of effective degrees of freedom for the spline

offset an offset added to the term cost*degrees of freedom in the denominator of the
GCV function. (This would be used for adjusting the df from fitting other mod-
els such as in back-fitting additive models.)

weights A vector that is proportional to the reciprocal variances of the errors.

cost Cost value to be used in the GCV criterion.

nstep.cv Number of grid points of smoothing parameter for GCV grid search.

tol Tolerance for convergence in minimizing the GCV or other criteria to estimate
the smoothing parameter.

find.diagA If TRUE calculates the diagonal elements of the smoothing matrix. The effective
number of degrees of freedom is the sum of these diagonal elements. Default
is true. This requires more stores if a grid of smoothing parameters is passed. (
See returned values below.)

trmin Sets the minimum of the smoothing parameter range for the GCV grid search in
terms of effective degrees of freedom.

trmax Sets the maximum of the smoothing parameter range for the GCV grid search
in terms of effective degrees of freedom. If NA the range is set to .99 of number
of unique locations.
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lammin Same function as trmin but in the lambda scale.

lammax Same function as trmax but in the lambda scale.

verbose Print out all sorts of debugging info. Default is falseof course!

do.cv Evaluate the spline at the GCV minimum. Default is true.

method A character string giving the method for determining the smoothing parameter.
Choices are "GCV", "GCV.one", "GCV.model", "pure error", "RMSE". Default
is "GCV".

rmse Value of the root mean square error to match by varying lambda.

na.rm If TRUE NA’s are removed from y before analysis.

Details

MODEL: The assumed model is Y.k=f(x.k) +e.k where e.k should be approximately normal and
independent errors with variances sigma**2/w.k

ESTIMATE: A smoothing spline is a locally weighted average of the y’s based on the relative
locations of the x values. Formally the estimate is the curve that minimizes the criterion:

(1/n) sum(k=1,n) w.k( Y.k - f( X.k))**2 + lambda R(f)

where R(f) is the integral of the squared second derivative of f over the range of the X values.
Because of the inclusion of the (1/n) in the sum of squares the lambda parameter in sreg corresponds
to the a value of lambda*n in the Tps function and in the Krig function.

The solution to this minimization is a piecewise cubic polynomial with the join points at the unique
set of X values. The polynomial segments are constructed so that the entire curve has continuous
first and second derivatives and the second and third derivatives are zero at the boundaries. The
smoothing has the range [0,infinity]. Lambda equal to zero gives a cubic spline interpolation of the
data. As lambda diverges to infinity ( e.g lambda =1e20) the estimate will converge to the straight
line estimated by least squares.

The values of the estimated function at the data points can be expressed in the matrix form:

predicted values= A(lambda)Y

where A is an nXn symmetric matrix that does NOT depend on Y. The diagonal elements are the
leverage values for the estimate and the sum of these (trace(A(lambda)) can be interpreted as the
effective number of parameters that are used to define the spline function. IF there are replicate
points the A matrix is the result of finding group averages and applying a weighted spline to the
means. The A matrix is also used to find "Bayesian" confidence intervals for the estimate, see the
example below.

CROSS-VALIDATION:The GCV criterion with no replicate points for a fixed value of lambda is

(1/n)(Residual sum of squares)/((1-(tr(A)-offset)*cost + offset)/n)**2,

Usually offset =0 and cost =1. Variations on GCV with replicate points are described in the docu-
mentation help file for Krig. With an appropriate choice for the smoothing parameter, the estimate
of sigma**2 is found by (Residual sum of squares)/tr(A).

COMPUTATIONS: The computations for 1-d splines exploit the banded structure of the matrices
needed to solve for the spline coefficients. Banded structure also makes it possible to get the diago-
nal elements of A quickly. This approach is different from the algorithms in Tps and tremendously
more efficient for larger numbers of unique x values ( say > 200). The advantage of Tps is getting
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"Bayesian" standard errors at predictions different from the observed x values. This function is
similar to the S-Plus smooth.spline. The main advantages are more information and control over
the choice of lambda and also the FORTRAN source code is available (css.f).

See also the function splint which is designed to be a bare bones but fast smoothing spline.

Value

Returns a list of class sreg. Some of the returned components are

call Call to the function

yM Vector of dependent variables. If replicated data is given these are the replicate
group means.

xM Unique x values matching the y’s.

weights Proportional to reciprocal variance of each data point.

weightsM Proportional to reciprocal pooled variance of each replicated mean data value
(xM).

x Original x data.

y Original y data.

method Method used to find the smoothing parameter.

pure.ss Pure error sum of squares from replicate groups.
shat.pure.error

Estimate of sigma from replicate groups.

shat.GCV Estimate of sigma using estimated lambda from GCV minimization

trace Effective degrees of freedom for the spline estimate(s)

gcv.grid Values of trace, GCV, shat. etc. for a grid of smoothing parameters. If lambda (
or df) is specified those values are used.

lambda.est Summary of various estimates of the smoothing parameter

lambda If lambda is specified the passed vector, if missing the estimated value.

residuals Residuals from spline(s). If lambda or df is specified the residuals from these
values. If lambda and df are omitted then the spline having estimated lambda.
This will be a matrix with as many columns as the values of lambda.

fitted.values
Matrix of fitted values. See notes on residuals.

predicted A list with components x and y. x is the unique values of xraw in sorted order.
y is a matrix of the spline estimates at these values.

eff.df Same as trace.

diagA Matrix containing diagonal elements of the smoothing matrix. Number of columns
is the number of lambda values. WARNING: If there is replicated data the di-
agonal elements are those for the smoothing the group means at the unique x
locations.

See Also

Krig, Tps, splint
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Examples

# fit a GCV spline to
# control group of rats.
fit<- sreg(rat.diet$t,rat.diet$con)
summary( fit)

set.panel(2,2)
plot(fit) # four diagnostic plots of fit
set.panel()

predict( fit) # predicted values at data points

xg<- seq(0,110,,50)
sm<-predict( fit, xg) # spline fit at 50 equally spaced points
der.sm<- predict( fit, xg, deriv=1) # derivative of spline fit
set.panel( 2,1)
plot( fit$x, fit$y) # the data
lines( xg, sm) # the spline
plot( xg,der.sm, type="l") # plot of estimated derivative
set.panel() # reset panel to 1 plot

# the same fit using the thin plate spline numerical algorithms
# sreg does not scale the obs so instruct Tps not to sacel either
# this will make lambda comparable within factor of n.

fit.tps<-Tps( rat.diet$t,rat.diet$con, scale="unscaled")
summary( fit.tps)

# compare sreg and Tps results to show the adjustment to lambda.

predict( fit)-> look
predict( fit.tps, lambda=fit$lambda*fit$N)-> look2
test.for.zero( look, look2) # silence means it checks to 1e-8

# finding approximate standard errors at observations

SE<- fit$shat.GCV*sqrt(fit$diagA)

# compare to predict.se( fit.tps) differences are due to
# slightly different lambda values and using shat.MLE instad of shat.GCV
#

# 95
Zvalue<- qnorm(.0975)
upper<- fit$fitted.values + Zvalue* SE
lower<- fit$fitted.values - Zvalue* SE
#
# conservative, simultaneous Bonferroni bounds
#
ZBvalue<- qnorm(1- .025/fit$N)
upperB<- fit$fitted.values + ZBvalue* SE
lowerB<- fit$fitted.values - ZBvalue* SE
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#
# take a look

plot( fit$x, fit$y)
lines( fit$predicted, lwd=2)
matlines( fit$x,
cbind( lower, upper, lowerB, upperB), type="l", col=c( 2,2,4,4), lty=1)
title( "95 pct pointwise and simultaneous intervals")
# or try the more visually honest:
plot( fit$x, fit$y)
lines( fit$predicted, lwd=2)
segments( fit$x, lowerB, fit$x, upperB, col=4)
segments( fit$x, lower, fit$x, upper, col=2, lwd=2)
title( "95 pct pointwise and simultaneous intervals")

set.panel( 1,1)

stats Calculate summary statistics

Description

Various summary statistics are calculated for different types of data.

Usage

stats(x, by)

Arguments

x The data structure to compute the statistics. This can either be a vector, matrix
(data sets are the columns), or a list (data sets are the components).

by If x is a vector, an optional vector (either character or numerical) specifying the
categories to divide x into separate data sets.

Details

Stats breaks x up into separate data sets and then calls describe to calculate the statistics. Statis-
tics are found by columns for matrices, by components for a list and by the relevent groups when
a numeric vector and a by vector are given. The default set of statistics are the number of (non-
missing) observations, mean, standard deviation, minimum, lower quartile, median, upper quartile,
maximum, and number of missing observations. If any data set is nonnumeric, missing values are
returned for the statistics. The by argument is a useful way to calculate statistics on parts of a data
set according to different cases.

Value

A matrix where rows index the summary statistics and the columns index the separate data sets.
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See Also

stats.bin, stats.bplot, describe

Examples

#Statistics for 8 normal random samples:
zork<- matrix( rnorm(200), ncol=8)
stats(zork)

zork<- rnorm( 200)
id<- sample( 1:8, 200, replace=TRUE)
stats( zork, by=id)

stats.bin Bins data and finds some summary statistics.

Description

Cuts up a numeric vector based on binning by a covariate and applies the fields stats function to
each group

Usage

stats.bin(x, y, N = 10, breaks = NULL)

Arguments

x Values to use to decide bin membership

y A vector of data

N Number of bins. If the breaks is missing there are N bins equally spaced on the
range of x.

breaks The bin boundaries. If there are N+1 of these there will be N bins. The bin
widths can be unequal.

Value

A list with several components. stats is a matrix with columns indexing the bins and rows being
summary statistics found by the stats function. These are: number of obs, mean, sd, min, quartiles,
max and number of NA’s. (If there is no data for a given bin, NA’s are filled in. ) breaks are the
breaks passed to the function and centers are the bin centers.

See Also

bplot, stats
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Examples

u<- rnorm( 2000)
v<- rnorm( 2000)
x<- u
y<- .7*u + sqrt(1-.7**2)*v

look<- stats.bin( x,y)
look$stats["Std.Dev.",]

data( ozone2)
# make up a variogram day 16 of Midwest daily ozone ...
look<- vgram( ozone2$lon.lat, c(ozone2$y[16,]), lon.lat=TRUE)

# break points
brk<- seq( 0, 250,,40)

out<-stats.bin( look$d, look$vgram, breaks=brk)
# plot bin means, and some quantiles Q1, median, Q3
matplot( out$centers, t(out$stats[ c("mean", "median","Q1", "Q3"),]),
type="l",lty=c(1,2,2,2), col=c(3,4,3,4), ylab="ozone PPB")

summary.Krig Summary for Krig spatial process estimate

Description

Creates a list of summary results including estimates for the nugget variance (sigma) and the
smoothing parameter (lambda). This list is usually printed using print.summary.Krig.

Usage

## S3 method for class 'Krig':
summary(object, digits=4,...)

Arguments

object A Krig object.

digits Number of significant digits in summary.

... Other arguments to summary

Details

This function is a method for the generic function summary for class Krig. The results are formatted
and printed using print.summary.Krig.
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Value

Gives a summary of the Krig object. The components include the function call, number of observa-
tions, effective degrees of freedom, residual degrees of freedom, root mean squared error, R-squared
and adjusted R-squared, log10(lambda), cost, GCV minimum and a summary of the residuals.

See Also

Krig, summary, print.summary.Krig

Examples

fit<- Krig(ozone$x, ozone$y, theta=100)
summary(fit) # summary of fit

summary.ncdf Summarizes a netCDF file handle

Description

Provides a summary of the variable names and sizes from the handle returned from netCDF file.

Usage

## S3 method for class 'ncdf':
summary(object,...)

Arguments

object The "handle" returned by the read.ncdf function from the ncdf package.

... Other arguments to pass to this function. Currently, no other arguments are used.

Details

This function is out of place in fields but was included because often large geophysical data sets
are in netCDF format and the ncdf R package is also needed. To date the summary capability in
the ncdf package is limited and this function is used to supplement it use. The function is also a a
useful device to see how the ncdf object is structured.

Author(s)

D. Nychka

See Also

ncdf



surface.Krig 155

surface.Krig Plots a surface and contours

Description

Creates different plots of the fitted surface of a Krig object. This is a quick way to look at the fitted
function over reasonable default ranges.

Usage

## S3 method for class 'Krig':
surface(obj, grid.list = NA, extrap = FALSE, graphics.reset =

NULL, xlab = NULL, ylab = NULL, main = NULL, zlab =
NULL, zlim = NULL, levels = NULL, type = "C", nx =
80, ny = 80, ...)

## S3 method for class 'mKrig':
surface(obj,
grid.list = NA, extrap = FALSE, graphics.reset = NULL, xlab = NULL,

ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL,
type = "C", nx=80, ny=80, ...)

Arguments

obj A Krig object or an mKrig object.

grid.list A list with as many components as variables describing the surface. All com-
ponents should have a single value except the two that give the grid points for
evaluation. If the matrix or data frame has column names, these must appear in
the grid list. If grid.list is missing an the surface has just two dimensions the
grid is based on the ranges of the observed data.

extrap Extrapolation beyond the range of the data. If false only the convex hull of the
observations is plotted. Default is false.

graphics.reset
Reset to original graphics parameters after function plotting.

type Type of plot as a character. "p" perspective plot (persp). "c" contour plot (con-
tour). "b" a two panel figure with perspective and contour plots. "I" image plot
with legend strip (image.plot). "C" image plot with contours overlaid. Image
with contour is the default.

main Title of plot

xlab x axis label

ylab y axis label

zlab z axis label if "p" or "b" type is used.

zlim Z limits passed to persp

levels Contour levels passed to contour.
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nx Number of grid points to evaluate surface on the horizontal axis (the x-axis).

ny Number of grid points to evaluate surface on the vertical axis (the y-axis).

... Any other plotting options.

Details

This function is essentially a combination of predict.surface and plot.surface. It may not always
give a great rendition but is easy to use for checking the fitted surface. The default of extrap=F is
designed to discourage looking at the estimated surface outside the range of the observations.

NOTE: that any Z covariates will b edropped and only the spatial part of the model will be evaluated.

See Also

Krig predict.surface, plot.surface, image.plot

Examples

fit<- Krig(ozone$x,ozone$y, theta=30) # krig fit

#Image plot of surface with nice, smooth contours and shading

surface(fit, type="C", nx=128, ny=128)

tim.colors Some useful color tables for images.

Description

Two color scales useful for image plots: a pleasing rainbow style color table patterned after that
used in Matlab by Tim Hoar and also a simple colr interpolation between two colors passing through
white.

Usage

tim.colors(n = 64)
two.colors(n=256, start="darkgreen", end="red", middle="white")
designer.colors( n=256, col= c("darkgreen", "white", "darkred"),

x= seq(0,1,, length(col)) )

Arguments

n Number of color levels. The setting n=64 is the orignal definition.

start Starting color for lowest values in color scale

end Ending color.
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middle Color scale passes through this color at halfway

col A list of colors (names or hex values) to interpolate

x Positions of colors on a [0,1] scale. Default is to assume that the x values are
equally spacesd from 0 to 1.

Details

The color in R can be represented as three vectors in RGB coordinates and these coordinates are
interpolated separately using a cubic spline to give color values that intermediate to the specified
colors.

Ask Tim Hoar about tim.colors! He is a matlab black belt and this is his favorite scale in that system.
two.colors is really about three different colors. For other colors try fields.color.picker
to view possible choices. start="darkgreen", end="azure4" are the options used to get
a nice color scale for rendering aerial photos of ski trails. (See http://www.image.ucar.
edu/Data/MJProject.)

designer.color is the master function for two.colors and tim.colors. It can be useful if one
wants to customize the color table to match quantiles of a distribution. e.g. if the median of the data
is at .3 with respect to the range then set x equal to c(0,.3,1) and specify three colors to provide a
transtion that matches the median value. In fields language this function interpolates between a set
of colors at locations x. While you can be creative about these colors just using another color scale
as the basis is easy. For example

designer.color( 256, rainbow(4), x= c( 0,.2,.8,1.0))

leaves the choice of the colors to Dr. R after a thunderstorm.

Value

A vector giving the colors in a hexadecimal format.

See Also

topo.colors, terrain.colors, image.plot, quilt.plot, grey.scale, fields.color.picker

Examples

tim.colors(10)
# returns an array of 10 strings in hex format
#e.g. (red, green, blue) values of (16,255, 239)
# translates to "#10FFEF" .

# veiw some color table choices
set.panel( 1,3)
par( pty="s")
z<- outer( 1:20,1:20, "+")

image( z, col=tim.colors( 200)) # 200 levels

image( z, col=two.colors() )

http://www.image.ucar.edu/Data/MJProject
http://www.image.ucar.edu/Data/MJProject
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coltab<- designer.colors(col=c("blue", "grey", "green"), x= c( 0,.3,1) )
image( z, col= coltab )

# peg colors at some desired quantiles of data.
# NOTE need 0 and 1 for the color scale to make sense
x<- quantile( c(z), c(0,.25,.5,.75,1.0) )
# scale these to [0,1]
zr<- range( c(z))
x<- (x-zr[1])/ (zr[2] - zr[1])

coltab<- designer.colors(256,rainbow(5), x)
image( z, col= coltab ) # see image.plot for adding all kinds of legends

# colors now change at quantiles of data

set.panel()

transformx Linear transformation

Description

Linear transformation of each column of a matrix. There are several choices of the type of centering
and scaling.

Usage

transformx (x, scale.type = "unit.sd", x.center, x.scale)

Arguments

x Matrix with columns to be transformed.

scale.type Type of transformation the default is "unit.sd": subtract the mean and divide
by the standard deviation. Other choices are "unscaled" (do nothing), "range"
(transform to [0,1]),"user" (subtract a supplied location and divide by a scale).

x.center A vector of centering values to subtract from each column.

x.scale A vector of scaling values to subtract from each column.

Details

After deciding what the centering and scaling values should be for each column of x, this function
just calls the standard utility scale. This function was created partly to attach the transformation
information as attributes to the transformed matrix. It is used in Krig, cover.design, krig.image etc.
to transform the independent variables.
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Value

A matrix whose columns have between transformed. This matrix also has the attributes: scale.type,
x.center and y.center with the transformation information.

See Also

scale

Examples

#
newx<-transformx( ozone$x, scale.type="range")

vgram Finds a traditional or robust variogram for spatial data.

Description

Computes pairwise squared differences as a function of distance. Returns either raw values or
statistics from binning.

Usage

vgram(loc, y, id=NULL, d=NULL, lon.lat=FALSE, dmax=NULL, N=NULL, breaks=NULL)

Arguments

loc Matrix where each row is the coordinates of an observed point of the field

y Value of the field at locations

id A 2 column matrix that specifies which variogram differnces to find. If omit-
ted all possible pairing are found. This can used if the data has an additional
covariate that determines proximity, for example a time window.

d Distances among pairs indexed by id. If not included distances from from di-
rectly from loc.

lon.lat If true, locations are assumed to be longitudes and latitudes and distances found
are great circle distances ( in miles see rdist.earth). Default is false.

dmax Maximum distance to compute variogram.

N Number of bins to use.

breaks Bin boundaries for binning variogram values. Need not be equally spaced but
must be ordered.
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Value

A list with these components.

vgram Variogram values

d Pairwise distances

call Calling string

stats Matrix of statistics for values in each bin. Rows are the summaries returned
by the stats function or describe. If not either breaks or N arguments are not
supplied then this component is not computed.

centers Bin centers.

References

See any standard reference on spatial statistics. For example Cressie, Spatial Statistics

See Also

vgram.matrix bplot.xy, vgram.matrix

Examples

#
# compute variogram for the midwest ozone field day 16
# (BTW this looks a bit strange!)
#
data( ozone2)
good<- !is.na(ozone2$y[16,])
x<- ozone2$lon.lat[good,]
y<- ozone2$y[16,good]

look<-vgram( x,y, N=15, lon.lat=TRUE) # locations are in lon/lat so use right
#distance
# take a look:
#plot( look$d, look$vgram)
#lines(look$centers, look$stats["mean",], col=4)

brk<- seq( 0, 250,,25)

## or some boxplot bin summaries

bplot.xy( look$d, sqrt(look$vgram), breaks=brk,ylab="sqrt(VG)")
lines(look$centers, look$stats["mean",], col=4)
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vgram.matrix Computes a variogram from an image

Description

Computes a variogram for an image taking into account different directions and returning summary
information about the differences in each of these directions.

Usage

vgram.matrix(dat, R=5, dx = 1,dy = 1 )

plot.vgram.matrix(x,...)

Arguments

dat A matrix spacing of rows and columns are assumed to have the same distance.

R Maximum radius for finding variogram differences assuming that the grid points
are spaced one unit a part. Default is go out to a radius of 5.

dx The spacing of grid points on the X axis. This is used to calculate the correct
distance between grid points. If dx is not equal to dy then the collapse argument
must be FALSE.

dy The spacing of grid points on the Y axis. See additional notes for dx.

x Returned list from vgram.matrix

... Arguments for image.plot

Details

For the "full" case the statistics can summarize departures from isotropy by separating the variogram
differences according to orientation. For small R this runs efficiently because the differences are
found by sub-setting the image matrix.

For example, suppose that a row of the ind matrix is (2,3). The variogram value associated with
this row is the mean of the differences (1/2)*(X(i,j)- X( i+2,j+3))**2 for all i and j. (Here X(.,.) are
the values for the spatial field.) In this example d= sqrt(13) and there will be another entry with the
same distance but corresponding to the direction (3,2). plot.vgram.matrix attempts to organize all
the different directions into a coherent image plot.

Value

A list with the following components: d, a vector of distances for the differences, and vgram, the
variogram values. This is the traditional variogram ignoring direction.

d.full, a vector of distances for all possible shifts up distance R, ind, a two column matrix giving
the x and y increment used to compute the shifts, and vgram.full, the variogram at each of these
separations. Also computed is vgram.robust, Cressie’s version of a robust variogram statistic.

Also returned is the component N the number of differences found for each separation csae.
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See Also

vgram

Examples

# variogram for Lennon image.
data(lennon)
out<-vgram.matrix( lennon)

plot( out$d, out$vgram, xlab="separation distance", ylab="variogram")
# image plot of vgram values by direction.

# look at different directions
out<-vgram.matrix( lennon, R=8)

plot( out$d, out$vgram)
# add in different orientations
points( out$d.full, out$vgram.full, col="red")

#image plot of variogram values for different directions.
set.panel(1,1)
plot.vgram.matrix( out)
# John Lennon appears remarkably isotropic!

world Plot of the world

Description

Plots quickly, medium resolution outlines of large land masses and bodies of water.

Usage

world(ylim = c(-90, 90), xlim = NULL, add = FALSE, asp = 1,
xlab = "", ylab = "", xaxt = "n", yaxt = "n", eps =
0.1, col=1,shift = FALSE,
fill=FALSE, col.water="white", col.land="darkgrey", ...)

world.color(xlim= c(-180,180), ylim=c(-90,90),
col.water="white",col.land="darkgrey", ... )

Arguments

ylim range of latitudes

xlim range of longitudes

add logical; if true will add the world map to current plot.
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asp aspect ratio used if add is false, see plot.default.

xlab,ylab labels for x- and y-axis; empty by default.

xaxt,yaxt axis type for x- and y-axis; empty by default.

eps Tolerance to decide when to insert line break about 0 if map is to be shifted.
(leave this at .1)

shift If TRUE shifts to be centered on the Dateline and longitude runs from 0 to 360.
If FALSE centers on Prime Meridian and longitude runs from -180 to 180.

col Color for map lines when fill is FALSE.

fill If FALSE draws land outlines. If TRUE fills in land and water with different
colors.

col.land Color for land filling.

col.water Color for water filling.

... If the land is not filled these are graphical arguments that are passed to the
lines (and plot if add is false) function that draws the outline.

If fill is TRUE then these arguments are passed to the polygon function that does the filling.

Details

Both functions use the FIELDS dataset world.dat for the coordinates. The main advantage of this
function is that it is fast and easy to modify. The shift option to center over the dateline is useful
because often plots of oceanic and atmospheric information center the map this way.

The function world.color can be used separately but is also called by world with fill being
TRUE. When used alone it will just add the colored landmasses and water to an existing plot. It
is easy to modify just to add the land masses and use the existing back ground color as water.
Unfortunately world.color will not work when shift is TRUE. The current code could be modified
if you need this option. Thanks to Steve McIntyre for suggesting and testin the fill option.

See Also

US

Examples

world()
# add the US
US( add=TRUE,col="blue")

world( fill=TRUE) # land filled in dark grey

## Western Europe (*which* big islands are missing?)
## with a coordinate grid:

world(xlim=c(-10,18),ylim=c(36,60),
xaxt = "s", yaxt = "s", fill=TRUE, col.land="darkgreen")

box() # add back in the box that was obscured by the ocean fill.
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# add back in outline of land.
world( add=TRUE,lwd=1.5, col="green")

grid()

xline Draw a vertical line

Description

Adds vertical lines in the plot region.

Usage

xline(x, ...)

Arguments

x Values on x axis specifying location of vertical lines.

... Any ploting options for abline.

See Also

yline, abline

Examples

plot( 1:10)
xline( 6.5, col=2)

world( col=3)
yline( seq( -80,80,10),col=4, lty=2)
xline( seq( -180,180,10),col=4,lty=2)
yline( 0, lwd=2, col=4)
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yline Draw horizontal lines

Description

Adds horizontal lines in the plot region.

Usage

yline(y, ...)

Arguments

y Values on y axis specifying location of vertical lines.

... Any ploting options for abline.

See Also

xline, abline

Examples

world( col=3)
yline( seq( -80,80,10),col=4, lty=2)
xline( seq( -180,180,10),col=4,lty=2)
yline( 0, lwd=2, col=4)
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(%d*%-methods), 58
%d*%,numeric,numeric-method

(%d*%-methods), 58
%d*%-methods, 58

add.image, 42
arrow.plot, 44
arrows, 45
as.image, 45
as.surface, 46

BD, 1
bisection.search (fields

internal), 66
bplot, 48
bplot.obj (fields internal), 66
bplot.xy, 50

cat.matrix (fields internal), 66
cat.to.list (fields internal), 66
ceiling2 (fields internal), 66

CO.elev (Colorado Monthly
Meteorological Data), 2

CO.id (Colorado Monthly
Meteorological Data), 2

CO.loc (Colorado Monthly
Meteorological Data), 2

CO.names (Colorado Monthly
Meteorological Data), 2

CO.ppt (Colorado Monthly
Meteorological Data), 2

CO.tmax (Colorado Monthly
Meteorological Data), 2

CO.tmin (Colorado Monthly
Meteorological Data), 2

CO.years (Colorado Monthly
Meteorological Data), 2

coef.Krig (Krig), 6
Colorado Monthly Meteorological

Data, 2
colorbar.plot, 51
conjugate.gradient (fields

internal), 66
COR (fields internal), 66
Covariance functions, 61
cover.design, 53
crop.image (image2lz), 95
cubic.cov (Covariance functions),

61

D4transform.image (fields
internal), 66

describe (fields internal), 66
designer.colors (tim.colors), 154
discretize.image (grid list), 81
double.exp (fields internal), 66
drape.color (drape.plot), 59
drape.plot, 59
draw.bplot (fields internal), 66
dyadic.2check (fields internal),

66
dyadic.check (fields internal), 66

Exp.cov (Covariance functions), 61
Exp.earth.cov (fields internal),

66
Exp.image.cov (image.cov), 83
Exp.simple.cov (Covariance

functions), 61
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Exponential (Exponential,
Matern, Radial Basis), 3

Exponential, Matern, Radial
Basis, 3

fast.1way (fields internal), 66
fastTps (Tps), 22
fields, 73
fields internal, 66
fields testing scripts, 76
fields-stuff, 71
fields.color.picker

(fields.hints), 74
fields.convert.grid (grid list),

81
fields.derivative.poly

(fields-stuff), 71
fields.diagonalize

(fields-stuff), 71
fields.duplicated.matrix

(fields-stuff), 71
fields.evlpoly (fields-stuff), 71
fields.evlpoly2 (fields-stuff), 71
fields.hints, 74
fields.mkpoly (fields-stuff), 71
fields.rdist.near (rdist), 130
fields.style (fields.hints), 74
fields.tests (fields testing

scripts), 76
fields.x.to.grid (grid list), 81
find.upcross (fields internal), 66
fitted.Krig (Krig), 6
flame, 78

gauss.cov (fields internal), 66
gcv.Krig, 78
gcv.sreg (gcv.Krig), 78
get.rectangle (image2lz), 95
golden.section.search (fields

internal), 66
grey.level (fields internal), 66
grid list, 81
grid.list (grid list), 81

half.image (image2lz), 95

image.cov, 83
image.plot, 87
image.plot.info (fields

internal), 66

image.plot.plt (fields internal),
66

image.smooth, 93
image2lz, 95
in.poly (fields internal), 66
interp.surface, 97

Krig, 6, 18, 80, 154
Krig.Amatrix, 5
Krig.check.xY (The Engines:), 15
Krig.coef (The Engines:), 15
Krig.cor.Y (The Engines:), 15
Krig.df.to.lambda (fields

internal), 66
Krig.engine.default (The

Engines:), 15
Krig.engine.fixed (The Engines:),

15
Krig.engine.knots (The Engines:),

15
Krig.fdf (fields internal), 66
Krig.fgcv (fields internal), 66
Krig.find.gcvmin (fields

internal), 66
Krig.find.REML (fields internal),

66
Krig.flplike (fields internal), 66
Krig.fs2hat (fields internal), 66
Krig.ftrace (fields internal), 66
krig.image, 98
krig.image.parameters (fields

internal), 66
Krig.make.u (The Engines:), 15
Krig.make.W (The Engines:), 15
Krig.make.Wi (The Engines:), 15
Krig.null.function, 19
Krig.parameters (fields

internal), 66
Krig.replicates (fields

internal), 66
Krig.transform.xY (The Engines:),

15
Krig.updateY (fields internal), 66
Krig.which.lambda (fields

internal), 66
Krig.ynew (fields internal), 66

lennon, 102
lines, 161
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lonlat2xy (fields internal), 66

make.surface.grid (fields
internal), 66

Matern (Exponential, Matern,
Radial Basis), 3

matern.image.cov (image.cov), 83
minimax.crit (fields internal), 66
minitri, 108
mKrig, 103

ozone, 108
ozone2, 109

par, 135
parse.grid.list (grid list), 81
periodic.cov.1d (fields

internal), 66
periodic.cov.cyl (fields

internal), 66
periodic.plane.3d (fields

internal), 66
plot, 161
plot.default, 161
plot.Krig, 110
plot.krig.image (fields

internal), 66
plot.qsreg (fields internal), 66
plot.sim.krig.image (fields

internal), 66
plot.spatial.design (fields

internal), 66
plot.sreg (plot.Krig), 110
plot.surface, 113
plot.vgram.matrix (vgram.matrix),

159
plot.Wimage, 111
poisson.cov, 114
poly.image, 115
predict.interp.surface (fields

internal), 66
predict.Krig, 80, 117
predict.krig.image (fields

internal), 66
predict.mKrig (mKrig), 103
predict.qsreg (fields internal),

66
predict.se, 121
predict.se.Krig, 119

predict.se.KrigA
(predict.se.Krig), 119

predict.sreg (fields internal), 66
predict.surface, 122
predict.Tps (fields internal), 66
print.Krig, 124
print.krig.image (fields

internal), 66
print.mKrig (mKrig), 103
print.qsreg (fields internal), 66
print.spatial.design (fields

internal), 66
print.sreg (fields internal), 66
print.summary.Krig (fields

internal), 66
print.summary.krig.image (fields

internal), 66
print.summary.spatial.design

(fields internal), 66
print.summary.sreg (fields

internal), 66
PRISMelevation (RMprecip), 21
pushpin, 124

qr.q2ty (fields internal), 66
qr.yq2 (fields internal), 66
qsreg, 126
qsreg.fit (fields internal), 66
qsreg.psi (fields internal), 66
qsreg.rho (fields internal), 66
qsreg.trace (fields internal), 66
quilt.plot, 128

Rad.cov (Covariance functions), 61
Rad.image.cov (image.cov), 83
Rad.simple.cov (Covariance

functions), 61
radbas.constant (fields

internal), 66
RadialBasis (Exponential,

Matern, Radial Basis), 3
rat.diet, 130
RCMexample, 20
rdist, 130
rdist.earth, 132
replace.args.function (fields

internal), 66
resid.Krig (Krig), 6
ribbon.plot, 133
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RMelevation (RMprecip), 21
RMprecip, 21

set.panel, 134
setup.image.smooth

(image.smooth), 93
sim.Krig, 135
sim.krig.image (fields internal),

66
sim.rf, 138
smooth.2d, 139
spam2full (spam2lz), 141
spam2lz, 141
spam2spind (spam2lz), 141
spind2full (spam2lz), 141
spind2spam (spam2lz), 141
splint, 143
sreg, 25, 127, 145
sreg.df.to.lambda (fields

internal), 66
sreg.fdf (fields internal), 66
sreg.fgcv (fields internal), 66
sreg.fit (fields internal), 66
sreg.fs2hat (fields internal), 66
sreg.trace (fields internal), 66
stationary.cov (Covariance

functions), 61
stationary.image.cov (image.cov),

83
stationary.taper.cov (Covariance

functions), 61
stats, 149
stats.bin, 150
stats.bplot (fields internal), 66
stats.sim.krig.image (fields

internal), 66
summary.gcv.Krig (fields

internal), 66
summary.gcv.sreg (fields

internal), 66
summary.Krig, 151
summary.krig.image (fields

internal), 66
summary.ncdf, 152
summary.qsreg (fields internal),

66
summary.spatial.design (fields

internal), 66
summary.sreg (fields internal), 66

surface (fields internal), 66
surface.Krig, 25, 153
surface.krig.image (fields

internal), 66
surface.mKrig (surface.Krig), 153
surface.surface (fields

internal), 66

test.for.zero (fields testing
scripts), 76

The Engines:, 15
tim.colors, 154
Tps, 18, 22, 80
transformx, 156
two.colors (tim.colors), 154

unscale (fields internal), 66
US, 27
US.dat, 28

vgram, 157, 160
vgram.matrix, 159

W.i2s (W.info), 28
W.info, 28, 38
W.s2i (W.info), 28
WD4 (fields internal), 66
WD42d (fields internal), 66
WD42di (fields internal), 66
WD4i (fields internal), 66
Wendland, 30
wendland.coef (Wendland), 30
wendland.cov (Covariance

functions), 61
Wendland2.2 (Wendland), 30
Wimage.cov, 31
Wimage.i2s (Wimage.info), 35
Wimage.info, 35, 38
Wimage.info.plot, 38
Wimage.s2i (Wimage.info), 35
Wimage.sim (Wimage.cov), 31
world, 160
world.dat (fields internal), 66
WQS (fields internal), 66
WQS.periodic.basis (fields

internal), 66
WQS.periodic.T (fields internal),

66
WQS.T (fields internal), 66
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WQS2d (fields internal), 66
WQS2di (fields internal), 66
WQSdi (fields internal), 66
WQSi (fields internal), 66
WQSi.periodic.T (fields

internal), 66
WQSi.T (fields internal), 66
Wtransform, 39
Wtransform.cylinder.image

(Wtransform), 39
Wtransform.image, 38
Wtransform.image (Wtransform), 39
Wtransform.image.cov

(Wimage.cov), 31

xline, 162

yline, 163
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