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Outline

e A spatial model and Kriging

e Kriging = Penalized least squares = splines
e Robust Kriging.

e Identifying a covariance function

e Inference
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T he additive model

Given n pairs of observations (z;,y;), i=1,...,n

y; = g(x;) + €

€;'S are random errors.

Assume that g is a realization of a Gaussian process. and e are
MN(0,c2I)

Formulating a statistical model for g

makes a very big difference in how we solve the prob-
lem.



A Normal World

We assume that g(x) is a Gaussian process,

pk(z,x") = COV (g9(z), g(z"))

For the moment assume that E(g(x)) = 0.

(A Gaussian process = any subset of the field locations has a
multivariate normal distribution. )

We know what we need to do!

If we know k we know how to make a prediction at x!

g(x) = Elg(x)|data]

i.e. Just use the conditional multivariate normal distribution.



A review of the conditional nhormal

u~ N(O,X)

and

Uy 220
L= Dl ==
< uo ) ( 2SR50 )

[us|uq] = N(ZQ,lzillula T W e Zz,lzillzl,z)

(distribution of us given wuq)



Our application is

uq1 = Yy (the Data)
and

up = {g(z1),...9(zN)}

a vector of function values where we would like to predict.



The Kriging weights
Conditional distribution of g given the data y is Gaussian.
Conditional mean

g =CoV(g,y) [COV(y)] 1y = Ay

rows of A are the Kriging weights.

Conditional variance

COV(g,g) — COV(g,y) [COV (y)] * COV (y,g)

T hese two pieces characterize the entire conditional
distribution



Kriging as a smoother

Suppose the errors are uncorrelated Normals with variance o2,

pK = COV(g,y) = COV(g,g) and COV (y) = (pK + o°I)

§=pK(pK +o°I)" 1y

= K(K + X))ty = A(\)y



My geostatistics/BLUE overhead

For any covariance and any smoothing matrix (not just S above)
we can easily derive the prediction variance.

Question find the minimum of
E|(g(z) - §(x))?]
over all choices of S. T hé answer: The Kriging weights ...

or what we would do if we used the Gaussian process and the
conditional distribution.

Folklore and intuition:

The spatial estimates are not very sensitive if one uses subop-
timal weights, especially if the observations contain some mea-

surement error.
It does matter for measures of uncertainty.



Kriging with a fixed part

Adding a fixed component

g(x) = Y ¢i(w)d; + h(x)

d is fixed

h is a mean zero process with covariance, k.



BLUE /Universal Kriging

Find d by Generalized least squares
5 ey
d = (TTM—lT) 7T M1y

M=t e

" Krig" the residuals
h=K(K 4+ M) (y—-Td)
In general:

§(z) = X ¢i(@)d; + X k(= 25)¢;
) )



with

¢ = (K+ )"y -Td)



T he spline connection

Basis functions:
determined by the covariance function

Penalty function:
(2 = K is based on the covariance.

The minimization criteria:

rgin > (y—(Td+ Ke))? 4+ Mel'Ke
e

The Kriging estimator is a spline with reproducing ker-
nel k.

A is proportional to the measurement (nugget) vari-
ance



Robust Kriging

p(u) a robust function that grows slower than u?

T he robust minimization criteria:

min > p(y — (T'd + Kc);) + Al Ke
=i

€ =

An example of p and its derviative
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A psuedo data algorithm uses iterative penalized least sqaures
estimates.



A causal example of identitying a
covariance function

T he Matern class of covariances:

¢(d) = ppu(d/0))

6 a range parameter, v smoothness at O.
Yy is an exponential for v = 1/2 as v — oo Gaussian.



Matern family: the shape v
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What kind of processes are these?




Correlations among ozone

In many cases spatial processes also have a temporal component.
Here we take the 89 days over the "ozone season’” and just find
sample correlations among stations.
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Comparison to the variogram

Sample variogram for 89 days during summer 1987
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Sensitivity to the covariance

Predicted surfaces:

Exp (200) Matern (2, 200)
&
b4
v

150
100 =
j \
el o \
T \
E \
2 < | \
50 3 ° N
O. \\ ----------------
@ 5 T T T T T T
0 0 50 100 150 200 250 300

distance

Thin plate spline Wendland (2, 180)



Sensitivity to the covariance.

Predicted surfaces:
Exp (200) Matern (2, 200)
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Thin plate spline Wendland (2, 180)



Uncertainty in exceeding 140 PPB

Mean field, four realizations of the conditional distribution
Contours from 10 cases
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Summary

A spatial process model leads to a penalized
least squares estimate

A spline = Kriging estimate= Bayesian pos-
terior mode

For spatial estimators the basis functions are
related to the covariance functions and can
be identified from data



