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Outline
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• A spatial model and Kriging

• Kriging = Penalized least squares = splines

• Robust Kriging.

• Identifying a covariance function

• Inference
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The additive model
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Given n pairs of observations (xi, yi), i = 1, . . . , n

yi = g(xi) + εi

εi’s are random errors.

Assume that g is a realization of a Gaussian process. and ε are

MN(0, σ2I)

Formulating a statistical model for g
makes a very big difference in how we solve the prob-
lem.



A Normal World
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We assume that g(x) is a Gaussian process,

ρk(x,x′) = COV (g(x), g(x′))

For the moment assume that E(g(x)) = 0.

(A Gaussian process ≡ any subset of the field locations has a

multivariate normal distribution. )

We know what we need to do!
If we know k we know how to make a prediction at x!

ĝ(x) = E[g(x)|data]

i.e. Just use the conditional multivariate normal distribution.



A review of the conditional normal
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u ∼ N(0,Σ)

and

u =

(
u1
u2

)
Σ =

(
Σ11,Σ12
Σ21,Σ22

)

[u2|u1] = N(Σ2,1Σ
−1
1,1u1, Σ2,2 −Σ2,1Σ

−1
1,1Σ1,2)

(distribution of u2 given u1)



Our application is
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u1 = y (the Data)

and

u2 = {g(x1), ...g(xN)}
a vector of function values where we would like to predict.



The Kriging weights
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Conditional distribution of g given the data y is Gaussian.

Conditional mean

ĝ = COV (g,y) [COV (y)]−1 y = Ay

rows of A are the Kriging weights.

Conditional variance

COV (g, g)− COV (g,y) [COV (y)]−1COV (y, g)

These two pieces characterize the entire conditional
distribution



Kriging as a smoother
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Suppose the errors are uncorrelated Normals with variance σ2.

ρK = COV (g,y) = COV (g, g) and COV (y) = (ρK + σ2I)

ĝ = ρK(ρK + σ2I)−1y

= K(K + λI)−1y = A(λ)y



My geostatistics/BLUE overhead
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For any covariance and any smoothing matrix (not just S above)

we can easily derive the prediction variance.

Question find the minimum of

E
[
(g(x)− ĝ(x))2

]
over all choices of S. The answer: The Kriging weights ...

or what we would do if we used the Gaussian process and the

conditional distribution.

Folklore and intuition:
The spatial estimates are not very sensitive if one uses subop-

timal weights, especially if the observations contain some mea-

surement error.

It does matter for measures of uncertainty.



Kriging with a fixed part
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Adding a fixed component

g(x) =
∑
i

φi(x)di + h(x)

d is fixed

h is a mean zero process with covariance, k.



BLUE/Universal Kriging
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Find d by Generalized least squares

d̂ =
(
TTM−1T

)−1
TTM−1y

M = K + λI

”Krig” the residuals

ĥ = K(K + λI)−1(y − T d̂)

In general:

ĝ(x) =
∑
i
φi(x)d̂i +

∑
j
k(x, xj)ĉj



with

ĉ = (K + λI)−1(y − T d̂)



The spline connection
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Basis functions:
determined by the covariance function

Penalty function:
Ω = K is based on the covariance.

The minimization criteria:

min
d,c

n∑
i=1

(y − (Td +Kc)i)
2 + λcTKc

The Kriging estimator is a spline with reproducing ker-
nel k.

λ is proportional to the measurement (nugget) vari-
ance



Robust Kriging
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ρ(u) a robust function that grows slower than u2

The robust minimization criteria:

min
d,c

n∑
i=1

ρ(y − (Td +Kc)i) + λcTKc

An example of ρ and its derviative
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A psuedo data algorithm uses iterative penalized least sqaures

estimates.



A causal example of identifying a

covariance function
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The Matern class of covariances:

φ(d) = ρψν(d/θ))

θ a range parameter, ν smoothness at 0.

ψν is an exponential for ν = 1/2 as ν →∞ Gaussian.



Matern family: the shape ν
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What kind of processes are these?
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Matern (.5,1.0,2.0) and Wendland (2.0)



Correlations among ozone
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In many cases spatial processes also have a temporal component.
Here we take the 89 days over the ”ozone season” and just find
sample correlations among stations.
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Comparison to the variogram
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Sample variogram for 89 days during summer 1987 :
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Sensitivity to the covariance
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Predicted surfaces:

Exp (200) Matern (2, 200)
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Sensitivity to the covariance.

20

Predicted surfaces:

Exp (200) Matern (2, 200)
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Uncertainty in exceeding 140 PPB
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Mean field, four realizations of the conditional distribution

Contours from 10 cases
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Summary

22

A spatial process model leads to a penalized
least squares estimate

A spline = Kriging estimate= Bayesian pos-
terior mode

For spatial estimators the basis functions are
related to the covariance functions and can
be identified from data


