Multivariate spatial models

and the multiKrig class

Stephan R. Sain, IMAGe, NCAR

ENAR Spring Meetings

March 15, 2009

Outline

- Overview of multivariate spatial regression models.
- Case study: pedotransfer functions and soil water profiles.
- The multiKrig class
 - Case study: NC temperature and precipitation.

2

A Spatial Regression Model

• A spatial regression model:

 $Y = X\beta + h + \epsilon$ (n×1) (n×q)(q×1) (n×1) (n×1)

where

- E[h] = 0, $Var[h] = \Sigma_h$

- $E[\epsilon] = 0$, $Var[\epsilon] = \sigma^2 I$.
- **h** and $\boldsymbol{\epsilon}$ are independent.
- $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{V}), \ \mathbf{V} = \Sigma_{\mathbf{h}} + \sigma^2 \mathbf{I}$
- $\hat{\beta} = (X'V^{-1}X)^{-1}X'V^{-1}Y$, $\hat{\mathbf{h}} = \Sigma_{\mathbf{h}}V^{-1}(Y X\hat{\beta})$

Multivariate Regression

• A multivariate, multiple regression model:

$$\begin{array}{lll} \mathbf{Y} &=& \mathbf{X}\boldsymbol{\beta} &+& \boldsymbol{\epsilon} \\ (n\times p) && (n\times q)(q\times p) && (n\times p) \end{array}$$

where

- Each of the \boldsymbol{n} rows of \mathbf{Y} represents a p-vector observation.
- Each of the p columns of β represent regression coefficients for each variable.
- The rows of ϵ represents a collection of iid error vectors with zero mean and common covariance matrix, $\Sigma.$

Multivariate Regression

• MLEs are straightforward to obtain:

$$\begin{array}{lll} \hat{\boldsymbol{\beta}} & = & (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\ (q \times p) \\ \hat{\boldsymbol{\Sigma}} & = & \frac{1}{n}\mathbf{Y}'\mathbf{P}\mathbf{Y} \\ (p \times p) & \end{array}$$

where $\mathbf{P} = \mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

- Note that the columns of $\hat{\beta}$ can be obtained through p univariate regressions.

Vec and Kronecker

• The Kronecker product of an $m\times n$ matrix ${\bf A}$ and an $r\times q$ matrix ${\bf B}$ is an $mr\times nq$ matrix:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2n}\mathbf{B} \\ \vdots & & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

• Some properties:

$$\begin{array}{rcl} A\otimes (B+C) &=& A\otimes B+A\otimes C\\ A\otimes (B\otimes C) &=& (A\otimes B)\otimes C\\ (A\otimes B)(C\otimes D) &=& AC\otimes BD\\ (A\otimes B)' &=& A'\otimes B'\\ (A\otimes B)^{-1} &=& A^{-1}\otimes B^{-1}\\ |A\otimes B| &=& |A|^m|B|^n \end{array}$$

Vec and Kronecker

• The vec-operator stacks the columns of a matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \text{vec}(\mathbf{A}) = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{12} \\ a_{22} \end{bmatrix}$$

• Some properties:

$$vec(AXB) = (B' \otimes A) vec X$$
$$tr(A'B) = vec(A)' vec(B)$$
$$vec(A + B) = vec(A) + vec(B)$$
$$vec(\alpha A) = \alpha vec(A)$$

Multivariate Regression Revisited

• Rewrite the multivariate, multiple regression model:

 $\begin{array}{lll} \operatorname{vec}(\mathbf{Y}) &=& (\mathbf{I}_p \otimes \mathbf{X}) \operatorname{vec}(\boldsymbol{\beta}) &+& \operatorname{vec}(\boldsymbol{\epsilon}) \\ (np \times 1) && (np \times qp)(qp \times 1) && (np \times 1). \end{array}$

- What is $Var[vec \epsilon]$?
- What is the GLS estimator for $vec(\beta)$?

A Multivariate Spatial Model

• Extend the multivariate, multiple regression model:

$$\begin{array}{rcl} \mathrm{vec}(\mathbf{Y}) &=& (\mathbf{I}_p \otimes \mathbf{X}) \, \mathrm{vec}(\boldsymbol{\beta}) &+& \mathrm{vec}(\mathbf{h}) &+& \mathrm{vec}(\boldsymbol{\epsilon}) \\ (np \times 1) && (np \times qp)(qp \times 1) && (np \times 1) \\ \end{array} \\ & \text{where} \end{array}$$

$$\operatorname{Var}[\operatorname{vec}(\mathbf{h})] = \Sigma_{\mathbf{h}} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1p} \\ \Sigma'_{12} & \Sigma_{22} & \cdots & \Sigma_{2p} \\ \vdots & & \ddots & \vdots \\ \Sigma'_{12} & \Sigma'_{2p} & \cdots & \Sigma_{pp} \end{bmatrix}$$
$$\operatorname{Var}[\operatorname{vec}(\epsilon)] = \Sigma \otimes \mathbf{I}_n$$

A Multivariate Spatial Model

• One simplification to the spatial covariance matrix is to use a Kronecker form:

 $\Sigma_{\mathsf{h}} = \rho \otimes \mathbf{K}$

where

- $-\rho$ is a $p \times p$ matrix of scale parameters
- ${\bf K}$ is an $n\times n$ spatial covariance.

10

A Multivariate Spatial Model

• Extend the multivariate, multiple regression model:

 $\begin{array}{rcl} \operatorname{vec}(\mathbf{Y}) &=& (\mathbf{I}_p \otimes \mathbf{X}) \operatorname{vec}(\beta) &+& \operatorname{vec}(\mathbf{h}) &+& \operatorname{vec}(\epsilon) \\ (np \times 1) && (np \times qp)(qp \times 1) && (np \times 1) \\ \end{array}$ $\begin{array}{rcl} \mathsf{OR} \\ \mathbf{Y} &=& \mathbf{X}\beta &+& \mathbf{h} &+& \epsilon \end{array}$

• Now everything follows...

1:

Case Study: Pedotransfer Functions

- Soil characteristics such as composition (clay, silt, sand) are commonly measured and easily obtainable.
- Unfortunately, crop models require water holding characteristics such as the wilting point or lower limit (LL) and the drained upper limit (DUL) which are not so easy to obtain.
 - Often the LL and DUL are a function of depth soil water profile.

Case Study: Pedotransfer Functions

- Pedotransfer functions are commonly used to estimate LL and DUL.
 - Differential equations, regression, nearest neighbors, neural networks, etc.
 - Often specialized by soil type and/or region.
- Develop a new type of pedotransfer function that can capture the entire soil water profile (LL & DUL as a function of depth).
 - Characterize the variation!

Soil Water Profiles

1

14

The Big Picture

Soil

- Water holding characteristics
- Bulk density
- Etc.
- Weather (20 years)
 - Solar radiation
 - Temperature max/min
 - Precipitation

The Big Picture

- Given a complicated array of inputs, the CERES crop model will give the yields of, for example, maize.
- Deterministic output variation in yields also of interest.
- Goals:
 - Establish a framework to study sources of variation in crop yields.
 - Assess impacts of climate change on crop yields.

16

Data

- n = 272 measurements on N = 63 soil samples
 - Gijsman et al. (2002)
 - Ratliff et al. (1983), Ritchie et al. (1987)
- Includes measurements of:
 - depth,
 - soil composition and texture
 - * percentages of clay, sand, and silt
 - bulk density, organic matter, and
 - field measured values of LL and DUL.

17

Data

• The soil texture measurements form a composition

$$Z_{\text{clay}} + Z_{\text{silt}} + Z_{\text{sand}} = 1$$

and $Z_{\mbox{clay}},\, Z_{\mbox{silt}}$, $\!Z_{\mbox{sand}}$ are the proportions of each soil component.

- Not really three variables...

• To remove the dependence, the additive log-ratio transformation (Aitchinson, 1986) is applied, defining two new variables

$$X_1 = \log \left(\frac{Z_{\text{sand}}}{Z_{\text{clay}}} \right)$$
 $X_2 = \log \left(\frac{Z_{\text{silt}}}{Z_{\text{clay}}} \right).$

Data - Composition vs LL

19

Data - Composition vs LL

20

A Multi-objective Pedotransfer Function

• The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \boldsymbol{\epsilon}(\mathbf{D}_0)$$

where

$$0 = 100 + 1020$$

$$\mathbf{Y}_0 = \log \begin{bmatrix} \mathbf{L} \mathbf{L}_1 \\ \vdots \\ \mathbf{L} \mathbf{L}_d \\ \boldsymbol{\Delta}_1 \\ \vdots \\ \boldsymbol{\Delta}_d \end{bmatrix},$$

and d is the number of measurements (depths) and $\Delta_i = \text{DUL}_i - \text{LL}_i$.

A Multi-objective Pedotransfer Function

• The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \boldsymbol{\epsilon}(\mathbf{D}_0)$$

where

$$\mathbf{T}_0 = \left[\begin{array}{ccc} \mathbf{1} & \mathbf{X}_0 & \mathbf{Z}_{\mathsf{LL},0} & \mathbf{0} \\ & \mathbf{0} & \mathbf{1} & \mathbf{X}_0 & \mathbf{Z}_{\Delta,0} \end{array} \right],$$

and

- $\mathbf{X}_{\mathbf{0}}$ is the transformed soil composition information
- \mathbf{Z}_{LL} and \mathbf{Z}_{Δ} are additional covariates for LL and $\Delta.$
 - $\ast~\mathbf{Z}_{LL}$ includes organic carbon
 - * \mathbf{Z}_Δ includes linear and quadratic terms for depth

22

A Multi-objective Pedotransfer Function

• The model for the multi-objective pedotransfer function for a particular soil is

$$\mathbf{Y}_0 = \mathbf{T}_0 \boldsymbol{\beta} + \mathbf{h}(\mathbf{X}_0) + \boldsymbol{\epsilon}(\mathbf{D}_0)$$

where

- $\bm{h}(X_0)$ is a two-dimensional spatial process that controls the smoothness of the contribution of X
- $\epsilon(\mathrm{D}_0)$ is an error process that
 - $\ast\,$ accounts for the dependence in LL and Δ for a particular depth and
 - accounts for dependence across depths (one-dimensional spatial process).

23

A Multi-objective Pedotransfer Function

Letting

$$\begin{split} \mathbf{Y} = \log \left[\mathsf{LL}_{11} \ \cdots \ \mathsf{LL}_{1d_1} \ \mathsf{LL}_{21} \ \cdots \ \mathsf{LL}_{Nd_N} \ \Delta_{11} \ \cdots \ \Delta_{1d_1} \ \Delta_{21} \ \cdots \ \Delta_{Nd_N} \ \right]', \end{split}$$
 then \mathbf{Y} is multivariate normal with

$$E[\mathbf{Y}] = \mathbf{T}\boldsymbol{\beta} \qquad \forall \operatorname{var}[\mathbf{Y}] = \boldsymbol{\Sigma}_{\mathbf{h}} + \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}}$$
$$\boldsymbol{\Sigma}_{\mathbf{h}} = \begin{bmatrix} \rho_1 & 0\\ 0 & \rho_2 \end{bmatrix} \otimes \mathbf{K}$$
$$\boldsymbol{\Sigma}_{\boldsymbol{\epsilon}} = \mathbf{S} \otimes \mathbf{R}.$$

with

$$-K_{ij} = k(\mathbf{X}_i, \mathbf{X}_j)$$

– ${\bf S}$ is the covariance of (LL, $\Delta)$ at a fixed depth

– ${\bf R}$ is the (spatial) covariance across depths

Covariance Structures

• The covariance function for h is the Matern family

$$C(d) = \sigma^2 \frac{2(\theta d/2)^{\nu} K_{\nu}(\theta d)}{\Gamma(\nu)}$$

where σ^2 is a scale parameter, θ represents the range, ν controls the smoothness.

- $\sigma^2 = 1$ (the ρ controls the variances), $\nu = 1$, and θ is taken to be approximately the range of the data.
- These choices represent a covariance structure that is consistent with the thin-plate spline estimator (large range, more smoothness).
- Analogous to fixing the kernel and estimating the bandwidth with kernel estimators.

25

Covariance Structures

• The covariance function across depths is exponential

$$C(d) = \sigma^2 \exp\left(-d/\theta\right)$$

where again σ^2 is a scale parameter and θ represents the range.

- The parameters $\sigma^2 = 1$ (the matrix S controls the variances) and θ is estimated from the data.
- The multiple realizations of the soils allow for improved ability to estimate both scale and range parameters.

Covariance Structures

Spatial Smoothing

• Write

$$\begin{split} \Sigma_{\mathbf{h}} + \Sigma_{\boldsymbol{\epsilon}} &= \begin{bmatrix} \rho_1 & 0\\ 0 & \rho_2 \end{bmatrix} \otimes \mathbf{K} + \begin{bmatrix} s_{11} & s_{12}\\ s_{12} & s_{22} \end{bmatrix} \otimes \mathbf{R} \\ &= s_{11} \begin{bmatrix} \begin{bmatrix} \eta_1 & 0\\ 0 & \eta_2 \end{bmatrix} \otimes \mathbf{K} + \begin{bmatrix} 1 & v_{12}\\ v_{12} & v_{22} \end{bmatrix} \otimes \mathbf{R} \end{bmatrix} \\ &= s_{11} \Omega \end{split}$$

- The amount of smoothing is due to the relative contributions of the variance components, i.e. η_1 and $\eta_2.$
- Different degrees of smoothing are allowed for LL and $\Delta.$
- Also, this construction allows for different degrees of variation in the error terms for LL and the Δ variables.

28

The Estimator

• The model suggests an estimator of the form

$$\hat{\mathbf{Y}}_0 = \mathbf{T}_0 \hat{\boldsymbol{\beta}} + \mathbf{K}_0' \hat{\boldsymbol{\delta}},$$

where

$$\mathbf{K}_0' = \left[\begin{array}{cc} \eta_1 & 0\\ 0 & \eta_2 \end{array} \right] \otimes \mathbf{K}.$$

• To fit the model, we must estimate:

– $\eta_1,~\eta_2$ and s_{11}

$$-\beta$$
, δ

– ${\bf R}$ and the other entries of ${\bf S}$

29

REML

 $\bullet\,$ Take the QR decomposition of T

$$\mathbf{T} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}.$$

 \bullet Then $\mathbf{Q}_{2}'\mathbf{Y}$ has zero mean and covariance matrix given by

$$\mathbf{Q}_2'(\Sigma_{\mathsf{h}} + \Sigma_{\epsilon})\mathbf{Q}_2.$$

- Maximize (numerically) the likelihood based on $Q_2^\prime Y$ which is only a function of the covariance parameters.
- Estimates of eta and δ follow directly

$$\hat{\beta} = (\mathbf{T}'\hat{\Omega}^{-1}\mathbf{T})^{-1}\mathbf{T}'\hat{\Omega}^{-1}\mathbf{Y} \qquad \hat{\delta} = \hat{\Omega}^{-1}(\mathbf{Y} - \mathbf{T}\hat{\beta}).$$

An Iterative Approach

- 0. Initialize: compute ${\bf K}$ and set ${\bf S}={\bf I}$ and ${\bf R}={\bf I}.$
- 1. Estimate η_1 and η_2 (and $s_{11})$ via a simplified type of REML (grid search).
- 2. Then

 $\hat{\beta} = (\mathbf{T}'\hat{\Omega}^{-1}\mathbf{T})^{-1}\mathbf{T}^{-1}\hat{\Omega}^{-1}\mathbf{Y} \qquad \hat{\delta} = \hat{\Omega}^{-1}(\mathbf{Y} - \mathbf{T}\hat{\beta}).$

- 3. Compute residuals and
 - a. Update ${\bf S}~({\bf R}~\mbox{fixed})$ closed form solution.
 - b. Update R (S fixed) grid search for $\boldsymbol{\theta}.$
- 4. Repeat items 1-3 until convergence.

31

An Iterative Approach

- Let $Y = \mu + h + \epsilon$, where h and ϵ are independent Gaussian random variables; the conditional distribution of $Y \mu h$ given h is a zero mean Gaussian with covariance matrix ϵ .
- Thus, the log-likelihood associated with the residuals is given by

$$-rac{n}{2}|\mathbf{S}| - |\mathbf{R}| - \mathsf{vec}(\mathbf{U})'(\mathbf{S}^{-1}\otimes\mathbf{R}^{-1})\,\mathsf{vec}(\mathbf{U})$$

• The quadratic form can be written as

$$\operatorname{tr}(\mathbf{S}^{-1}\sum_{i}\sum_{j}r^{ij}\mathbf{u}_{j}\mathbf{u}_{j}')$$

where r^{ij} is the $ij{\rm th}$ element of ${\bf R}^{-1}$ and ${\bf u}_i$ is the bivariate, unstacked residual for the $i{\rm th}$ observation.

32

An Iterative Approach

 \bullet An update for ${\bf S}$ can be written as

$$\hat{\mathbf{S}} = \frac{1}{n} \sum_{i} \sum_{j} r^{ij} \mathbf{u}_{j} \mathbf{u}_{i}'$$
$$= \frac{1}{n} \mathbf{U}' \mathbf{R}^{-1} \mathbf{U}$$

where ${\bf U}$ is the $n\times {\bf 2}$ matrix of unstacked residuals.

- Again, a simple grid search for θ is used to obtain a new value for ${\bf R}.$

Parameter Estimates

	η_1	η_2	S ₁₁	S22	S ₁₂	$ \theta$
REML	5.84	1.66	0.0765	0.0483	-0.0222	134.6
Iterative	5.74	2.21	0.0697	0.0445	-0.0217	144.2

Soil Composition and LL

35

Soil Composition and \triangle

Soil Composition and LL/\triangle

Organic Carbon and LL

3

Depth and \bigtriangleup

Residuals (Within Depth)

4(

Spatial Covariance Across Depth

41

Prediction Error

- The real benefit of considering our estimator as a spatial process is in the interpretation with respect to the uncertainty of the estimator:
 - The thin-plate spline is a biased estimator with uncorrelated error; not easy to quantify the bias (interpolation error and smoothing error).
 - The spatial process estimator is unbiased, but with correlated error; more complicated error structure but conceptually straightforward to work with.

Prediction Error

• The estimator can be written as

$$\begin{split} \hat{\mathbf{Y}}_0 &= \mathbf{T}_0 \hat{\boldsymbol{\beta}} + \mathbf{K}_0' \hat{\boldsymbol{\delta}} \\ &= \mathbf{A}_0 \mathbf{Y}, \end{split}$$

where

$$\begin{array}{rcl} \mathbf{A}_0 &=& \mathbf{T}_0(\mathbf{T}'\hat{\boldsymbol{\Omega}}^{-1}\mathbf{T})^{-1}\mathbf{T}'\hat{\boldsymbol{\Omega}}^{-1} \\ &+& \mathbf{K}_0\left(\hat{\boldsymbol{\Omega}}^{-1}-\hat{\boldsymbol{\Omega}}^{-1}\mathbf{T}(\mathbf{T}'\hat{\boldsymbol{\Omega}}^{-1}\mathbf{T})^{-1}\mathbf{T}'\hat{\boldsymbol{\Omega}}^{-1}\right). \end{array}$$

43

Prediction Error

Hence,

$$\begin{aligned} \mathsf{Var}(\mathbf{Y}_0 - \hat{\mathbf{Y}}_0) &= \mathsf{Var}(\mathbf{Y}_0 - \mathbf{A}_0 \mathbf{Y}) \\ &= \mathsf{Var}(\mathbf{Y}_0) + \mathbf{A}_0 \mathsf{Var}(\mathbf{Y}) \mathbf{A}_0' - 2\mathbf{A}_0 \mathsf{Cov}(\mathbf{Y}, \mathbf{Y}_0). \end{aligned}$$

- Var(Y_0) and Var(Y) are computed by plugging in parameters estimates for Σ_h and $\Sigma_\epsilon.$
- The covariance between ${\bf Y}_0$ and ${\bf Y}$ comes from h and is based on the distance between the transformed composition data.

44

Generation of Soil Profiles

- Simulations of log LL and log Δ were generated from a multivariate normal with mean A_0Y and variance given by the prediction error.
- We use an average soil composition profile computed from the data and assumed to constant across all depths,

 $D = \{5, 15, 30, 45, 60, 90, 120, 150\}.$

• Represent a draw from the posterior distribution of soil water profiles based on the estimated mean and covariance structure and the uncertainty gleaned from the data.

Generation of Soil Profiles

46

Application: Crop Models

- Two soils (SIL, S)
 - Given the soil composition, organic carbon, depth, etc., 100 soil profiles (LL, DUL) were generated.
- Twenty years of weather (solar radiation, temperature min/max, and precipitation).
- Yield output generated from the CERES-Maize crop model.

47

Crop Yields

• SIL (red), S (blue), total annual precipitation (solid line)

Crop Yields

• SIL (red), S (blue), average annual temperature (solid line)

49

The multiKrig Class

• Create a multivariate spatial regression within the univariate Krig framework:

$$\mathbf{Y} = \mathbf{T}\boldsymbol{\beta} + \mathbf{h} + \boldsymbol{\epsilon}$$
$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_p \end{bmatrix} \qquad \mathbf{T} = \mathbf{I}_p \otimes \mathbf{X} \qquad \mathbf{h} = \begin{bmatrix} \mathbf{h}_1 \\ \vdots \\ \mathbf{h}_p \end{bmatrix} \qquad \boldsymbol{\epsilon} = \begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \vdots \\ \boldsymbol{\epsilon}_p \end{bmatrix}$$

50

The multiKrig Class

• Create a multivariate spatial regression within the univariate Krig framework:

$$\mathbf{Y} = \mathbf{T}\boldsymbol{\beta} + \mathbf{h} + \boldsymbol{\epsilon}$$

$$\begin{split} \mathsf{E}[\mathbf{Y}] &= \mathbf{T}\boldsymbol{\beta} \\ \mathsf{Var}[\mathbf{Y}] &= \boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}} \\ &= \begin{bmatrix} \rho_1 \\ & \ddots \\ & & \rho_p \end{bmatrix} \otimes \mathbf{V}(\boldsymbol{\theta}) + \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} \otimes \mathbf{I}_n \\ &= \rho_1 \mathbf{R} \otimes \mathbf{V}(\boldsymbol{\theta}) + s_{11} \mathbf{S} \otimes \mathbf{I}_n \\ &= \rho_1 (\mathbf{R} \otimes \mathbf{V}(\boldsymbol{\theta}) + \lambda \mathbf{S} \otimes \mathbf{I}_n) \end{split}$$

The multiKrig Class

• Create a multivariate spatial regression within the univariate Krig framework:

$$\mathbf{Y} = \mathbf{T}\boldsymbol{\beta} + \mathbf{h} + \boldsymbol{\epsilon}$$

$$\begin{split} \mathsf{E}[\mathbf{Y}] &= \mathbf{T}\boldsymbol{\beta} \\ \mathsf{Var}[\mathbf{Y}] &= \boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_{\boldsymbol{\epsilon}} \\ &= \rho_1 \left(\mathbf{R} \otimes \mathbf{V}(\boldsymbol{\theta}) + \lambda \mathbf{S} \otimes \mathbf{I}_n\right) \end{split}$$

• Given S, R, and θ , use Krig to estimate β , ρ_1 and λ .

The multiKrig Class

- Issues:
 - Specifying x, Y, and Z
 - Mean function (null.function)
 - Covariance function (cov.function)
 - Error function (wght.function)
- Estimation (S, R, and θ)

53

Krig Function

- \mathbf{x} is an $n \times q$ matrix of spatial locations
- Y is a *n*-vector of observations observations
- Z is a $n \times q$ matrix of additional covariates

multiKrig Function

- s is an $n \times q$ matrix of spatial locations
- Y is an $n \times p$ matrix of observations
- Z is either:
 - a $n \times q$ matrix of additional covariates, or
 - a list of $n \times q_i$ matrices of additional covariates

55

multiKrig Function

56

$$\mathbf{Y} = \left[\begin{array}{c} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_p \end{array} \right]$$

•
$$\mathbf{x} \leftarrow expand.grid(1:n,1:d)$$
 $\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & n \\ 1 & 2 \\ 1 & 2 \\ 1 & n \\ 1 & 2 \\ 1 & n \\ 1 & 2 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 &$

Covariance Function

- Issue: x is now a matrix of indices.
- Solution: pass the spatial locations as an argument to the covariance function.

62

Weight Function

Estimation

- Krig will estimate β , ρ_1 and λ .
 - REML
 - GCV (not quite there...)
- How to estimate S, \mathbf{R} , and θ ?

6

Thanks!

ssain@ucar.edu www.image.ucar.edu/~ssain

• Sain, S.R., Mearns, L., Shrikant, J., and Nychka, D. (2006), "A multivariate spatial model for soil water profiles," *Journal of Agricultural, Biological, and Environmental Statistics*, **11**, 462-480.